-
Notifications
You must be signed in to change notification settings - Fork 38
/
SL_ResNet_HAM10000.py
603 lines (458 loc) · 24 KB
/
SL_ResNet_HAM10000.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#=============================================================================
# Split learning: ResNet18 on HAM10000
# HAM10000 dataset: Tschandl, P.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions (2018), doi:10.7910/DVN/DBW86T
# We have three versions of our implementations
# Version1: without using socket and no DP+PixelDP
# Version2: with using socket but no DP+PixelDP
# Version3: without using socket but with DP+PixelDP
# This program is Version1: Single program simulation
# ============================================================================
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F
import math
import os.path
import pandas as pd
from sklearn.model_selection import train_test_split
from PIL import Image
from glob import glob
from pandas import DataFrame
import random
import numpy as np
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import copy
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
print(torch.cuda.get_device_name(0))
#===================================================================
program = "SL ResNet18 on HAM10000"
print(f"---------{program}----------") # this is to identify the program in the slurm outputs files
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# To print in color -------test/train of the client side
def prRed(skk): print("\033[91m {}\033[00m" .format(skk))
def prGreen(skk): print("\033[92m {}\033[00m" .format(skk))
#===================================================================
# No. of users
num_users = 5
epochs = 200
frac = 1 # participation of clients; if 1 then 100% clients participate in SL
lr = 0.0001
#=====================================================================================================
# Client-side Model definition
#=====================================================================================================
# Model at client side
class ResNet18_client_side(nn.Module):
def __init__(self):
super(ResNet18_client_side, self).__init__()
self.layer1 = nn.Sequential (
nn.Conv2d(3, 64, kernel_size = 7, stride = 2, padding = 3, bias = False),
nn.BatchNorm2d(64),
nn.ReLU (inplace = True),
nn.MaxPool2d(kernel_size = 3, stride = 2, padding =1),
)
self.layer2 = nn.Sequential (
nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1, bias = False),
nn.BatchNorm2d(64),
nn.ReLU (inplace = True),
nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1),
nn.BatchNorm2d(64),
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
resudial1 = F.relu(self.layer1(x))
out1 = self.layer2(resudial1)
out1 = out1 + resudial1 # adding the resudial inputs -- downsampling not required in this layer
resudial2 = F.relu(out1)
return resudial2
net_glob_client = ResNet18_client_side()
if torch.cuda.device_count() > 1:
print("We use",torch.cuda.device_count(), "GPUs")
net_glob_client = nn.DataParallel(net_glob_client) # to use the multiple GPUs; later we can change this to CPUs only
net_glob_client.to(device)
print(net_glob_client)
#=====================================================================================================
# Server-side Model definition
#=====================================================================================================
# Model at server side
class Baseblock(nn.Module):
expansion = 1
def __init__(self, input_planes, planes, stride = 1, dim_change = None):
super(Baseblock, self).__init__()
self.conv1 = nn.Conv2d(input_planes, planes, stride = stride, kernel_size = 3, padding = 1)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, stride = 1, kernel_size = 3, padding = 1)
self.bn2 = nn.BatchNorm2d(planes)
self.dim_change = dim_change
def forward(self, x):
res = x
output = F.relu(self.bn1(self.conv1(x)))
output = self.bn2(self.conv2(output))
if self.dim_change is not None:
res =self.dim_change(res)
output += res
output = F.relu(output)
return output
class ResNet18_server_side(nn.Module):
def __init__(self, block, num_layers, classes):
super(ResNet18_server_side, self).__init__()
self.input_planes = 64
self.layer3 = nn.Sequential (
nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1),
nn.BatchNorm2d(64),
nn.ReLU (inplace = True),
nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1),
nn.BatchNorm2d(64),
)
self.layer4 = self._layer(block, 128, num_layers[0], stride = 2)
self.layer5 = self._layer(block, 256, num_layers[1], stride = 2)
self.layer6 = self._layer(block, 512, num_layers[2], stride = 2)
self. averagePool = nn.AvgPool2d(kernel_size = 7, stride = 1)
self.fc = nn.Linear(512 * block.expansion, classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _layer(self, block, planes, num_layers, stride = 2):
dim_change = None
if stride != 1 or planes != self.input_planes * block.expansion:
dim_change = nn.Sequential(nn.Conv2d(self.input_planes, planes*block.expansion, kernel_size = 1, stride = stride),
nn.BatchNorm2d(planes*block.expansion))
netLayers = []
netLayers.append(block(self.input_planes, planes, stride = stride, dim_change = dim_change))
self.input_planes = planes * block.expansion
for i in range(1, num_layers):
netLayers.append(block(self.input_planes, planes))
self.input_planes = planes * block.expansion
return nn.Sequential(*netLayers)
def forward(self, x):
out2 = self.layer3(x)
out2 = out2 + x # adding the resudial inputs -- downsampling not required in this layer
x3 = F.relu(out2)
x4 = self. layer4(x3)
x5 = self.layer5(x4)
x6 = self.layer6(x5)
x7 = F.avg_pool2d(x6, 7)
x8 = x7.view(x7.size(0), -1)
y_hat =self.fc(x8)
return y_hat
net_glob_server = ResNet18_server_side(Baseblock, [2,2,2], 7) #7 is my numbr of classes
if torch.cuda.device_count() > 1:
print("We use",torch.cuda.device_count(), "GPUs")
net_glob_server = nn.DataParallel(net_glob_server) # to use the multiple GPUs
net_glob_server.to(device)
print(net_glob_server)
#===================================================================================
# For Server Side Loss and Accuracy
loss_train_collect = []
acc_train_collect = []
loss_test_collect = []
acc_test_collect = []
batch_acc_train = []
batch_loss_train = []
batch_acc_test = []
batch_loss_test = []
criterion = nn.CrossEntropyLoss()
count1 = 0
count2 = 0
#====================================================================================================
# Server Side Program
#====================================================================================================
def calculate_accuracy(fx, y):
preds = fx.max(1, keepdim=True)[1]
correct = preds.eq(y.view_as(preds)).sum()
acc = 100.00 *correct.float()/preds.shape[0]
return acc
# to print train - test together in each round-- these are made global
acc_avg_all_user_train = 0
loss_avg_all_user_train = 0
loss_train_collect_user = []
acc_train_collect_user = []
loss_test_collect_user = []
acc_test_collect_user = []
#client idx collector
idx_collect = []
l_epoch_check = False
fed_check = False
# Server-side function associated with Training
def train_server(fx_client, y, l_epoch_count, l_epoch, idx, len_batch):
global net_glob_server, criterion, device, batch_acc_train, batch_loss_train, l_epoch_check, fed_check
global loss_train_collect, acc_train_collect, count1, acc_avg_all_user_train, loss_avg_all_user_train, idx_collect
global loss_train_collect_user, acc_train_collect_user
net_glob_server.train()
optimizer_server = torch.optim.Adam(net_glob_server.parameters(), lr = lr)
# train and update
optimizer_server.zero_grad()
fx_client = fx_client.to(device)
y = y.to(device)
#---------forward prop-------------
fx_server = net_glob_server(fx_client)
# calculate loss
loss = criterion(fx_server, y)
# calculate accuracy
acc = calculate_accuracy(fx_server, y)
#--------backward prop--------------
loss.backward()
dfx_client = fx_client.grad.clone().detach()
optimizer_server.step()
batch_loss_train.append(loss.item())
batch_acc_train.append(acc.item())
# server-side model net_glob_server is global so it is updated automatically in each pass to this function
# count1: to track the completion of the local batch associated with one client
count1 += 1
if count1 == len_batch:
acc_avg_train = sum(batch_acc_train)/len(batch_acc_train) # it has accuracy for one batch
loss_avg_train = sum(batch_loss_train)/len(batch_loss_train)
batch_acc_train = []
batch_loss_train = []
count1 = 0
prRed('Client{} Train => Local Epoch: {} \tAcc: {:.3f} \tLoss: {:.4f}'.format(idx, l_epoch_count, acc_avg_train, loss_avg_train))
# If one local epoch is completed, after this a new client will come
if l_epoch_count == l_epoch-1:
l_epoch_check = True # for evaluate_server function - to check local epoch has hitted
# we store the last accuracy in the last batch of the epoch and it is not the average of all local epochs
# this is because we work on the last trained model and its accuracy (not earlier cases)
#print("accuracy = ", acc_avg_train)
acc_avg_train_all = acc_avg_train
loss_avg_train_all = loss_avg_train
# accumulate accuracy and loss for each new user
loss_train_collect_user.append(loss_avg_train_all)
acc_train_collect_user.append(acc_avg_train_all)
# collect the id of each new user
if idx not in idx_collect:
idx_collect.append(idx)
#print(idx_collect)
# This is to check if all users are served for one round --------------------
if len(idx_collect) == num_users:
fed_check = True # for evaluate_server function - to check fed check has hitted
# all users served for one round ------------------------- output print and update is done in evaluate_server()
# for nicer display
idx_collect = []
acc_avg_all_user_train = sum(acc_train_collect_user)/len(acc_train_collect_user)
loss_avg_all_user_train = sum(loss_train_collect_user)/len(loss_train_collect_user)
loss_train_collect.append(loss_avg_all_user_train)
acc_train_collect.append(acc_avg_all_user_train)
acc_train_collect_user = []
loss_train_collect_user = []
# send gradients to the client
return dfx_client
# Server-side functions associated with Testing
def evaluate_server(fx_client, y, idx, len_batch, ell):
global net_glob_server, criterion, batch_acc_test, batch_loss_test
global loss_test_collect, acc_test_collect, count2, num_users, acc_avg_train_all, loss_avg_train_all, l_epoch_check, fed_check
global loss_test_collect_user, acc_test_collect_user, acc_avg_all_user_train, loss_avg_all_user_train
net_glob_server.eval()
with torch.no_grad():
fx_client = fx_client.to(device)
y = y.to(device)
#---------forward prop-------------
fx_server = net_glob_server(fx_client)
# calculate loss
loss = criterion(fx_server, y)
# calculate accuracy
acc = calculate_accuracy(fx_server, y)
batch_loss_test.append(loss.item())
batch_acc_test.append(acc.item())
count2 += 1
if count2 == len_batch:
acc_avg_test = sum(batch_acc_test)/len(batch_acc_test)
loss_avg_test = sum(batch_loss_test)/len(batch_loss_test)
batch_acc_test = []
batch_loss_test = []
count2 = 0
prGreen('Client{} Test => \tAcc: {:.3f} \tLoss: {:.4f}'.format(idx, acc_avg_test, loss_avg_test))
# if a local epoch is completed
if l_epoch_check:
l_epoch_check = False
# Store the last accuracy and loss
acc_avg_test_all = acc_avg_test
loss_avg_test_all = loss_avg_test
loss_test_collect_user.append(loss_avg_test_all)
acc_test_collect_user.append(acc_avg_test_all)
# if all users are served for one round ----------
if fed_check:
fed_check = False
acc_avg_all_user = sum(acc_test_collect_user)/len(acc_test_collect_user)
loss_avg_all_user = sum(loss_test_collect_user)/len(loss_test_collect_user)
loss_test_collect.append(loss_avg_all_user)
acc_test_collect.append(acc_avg_all_user)
acc_test_collect_user = []
loss_test_collect_user= []
print("====================== SERVER V1==========================")
print(' Train: Round {:3d}, Avg Accuracy {:.3f} | Avg Loss {:.3f}'.format(ell, acc_avg_all_user_train, loss_avg_all_user_train))
print(' Test: Round {:3d}, Avg Accuracy {:.3f} | Avg Loss {:.3f}'.format(ell, acc_avg_all_user, loss_avg_all_user))
print("==========================================================")
return
#==============================================================================================================
# Clients Side Program
#==============================================================================================================
class DatasetSplit(Dataset):
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return image, label
# Client-side functions associated with Training and Testing
class Client(object):
def __init__(self, net_client_model, idx, lr, device, dataset_train = None, dataset_test = None, idxs = None, idxs_test = None):
self.idx = idx
self.device = device
self.lr = lr
self.local_ep = 1
#self.selected_clients = []
self.ldr_train = DataLoader(DatasetSplit(dataset_train, idxs), batch_size = 256*4, shuffle = True)
self.ldr_test = DataLoader(DatasetSplit(dataset_test, idxs_test), batch_size = 256*4, shuffle = True)
def train(self, net):
net.train()
optimizer_client = torch.optim.Adam(net.parameters(), lr = self.lr)
for iter in range(self.local_ep):
len_batch = len(self.ldr_train)
for batch_idx, (images, labels) in enumerate(self.ldr_train):
images, labels = images.to(self.device), labels.to(self.device)
optimizer_client.zero_grad()
#---------forward prop-------------
fx = net(images)
client_fx = fx.clone().detach().requires_grad_(True)
# Sending activations to server and receiving gradients from server
dfx = train_server(client_fx, labels, iter, self.local_ep, self.idx, len_batch)
#--------backward prop -------------
fx.backward(dfx)
optimizer_client.step()
#prRed('Client{} Train => Epoch: {}'.format(self.idx, ell))
return net.state_dict()
def evaluate(self, net, ell):
net.eval()
with torch.no_grad():
len_batch = len(self.ldr_test)
for batch_idx, (images, labels) in enumerate(self.ldr_test):
images, labels = images.to(self.device), labels.to(self.device)
#---------forward prop-------------
fx = net(images)
# Sending activations to server
evaluate_server(fx, labels, self.idx, len_batch, ell)
#prRed('Client{} Test => Epoch: {}'.format(self.idx, ell))
return
#=====================================================================================================
# dataset_iid() will create a dictionary to collect the indices of the data samples randomly for each client
# IID HAM10000 datasets will be created based on this
def dataset_iid(dataset, num_users):
num_items = int(len(dataset)/num_users)
dict_users, all_idxs = {}, [i for i in range(len(dataset))]
for i in range(num_users):
dict_users[i] = set(np.random.choice(all_idxs, num_items, replace = False))
all_idxs = list(set(all_idxs) - dict_users[i])
return dict_users
#=============================================================================
# Data loading
#=============================================================================
df = pd.read_csv('data/HAM10000_metadata.csv')
print(df.head())
lesion_type = {
'nv': 'Melanocytic nevi',
'mel': 'Melanoma',
'bkl': 'Benign keratosis-like lesions ',
'bcc': 'Basal cell carcinoma',
'akiec': 'Actinic keratoses',
'vasc': 'Vascular lesions',
'df': 'Dermatofibroma'
}
# merging both folders of HAM1000 dataset -- part1 and part2 -- into a single directory
imageid_path = {os.path.splitext(os.path.basename(x))[0]: x
for x in glob(os.path.join("data", '*', '*.jpg'))}
#print("path---------------------------------------", imageid_path.get)
df['path'] = df['image_id'].map(imageid_path.get)
df['cell_type'] = df['dx'].map(lesion_type.get)
df['target'] = pd.Categorical(df['cell_type']).codes
print(df['cell_type'].value_counts())
print(df['target'].value_counts())
#==============================================================
# Custom dataset prepration in Pytorch format
class SkinData(Dataset):
def __init__(self, df, transform = None):
self.df = df
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
X = Image.open(self.df['path'][index]).resize((64, 64))
y = torch.tensor(int(self.df['target'][index]))
if self.transform:
X = self.transform(X)
return X, y
#=============================================================================
# Train-test split
train, test = train_test_split(df, test_size = 0.2)
train = train.reset_index()
test = test.reset_index()
#=============================================================================
# Data preprocessing
#=============================================================================
# Data preprocessing: Transformation
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Pad(3),
transforms.RandomRotation(10),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
])
test_transforms = transforms.Compose([
transforms.Pad(3),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
])
# With augmentation
dataset_train = SkinData(train, transform = train_transforms)
dataset_test = SkinData(test, transform = test_transforms)
#----------------------------------------------------------------
dict_users = dataset_iid(dataset_train, num_users)
dict_users_test = dataset_iid(dataset_test, num_users)
#net_glob_client.train()
# this epoch is global epoch, also known as rounds
for iter in range(epochs):
m = max(int(frac * num_users), 1)
idxs_users = np.random.choice(range(num_users), m, replace = False)
# Sequential training/testing among clients
for idx in idxs_users:
local = Client(net_glob_client, idx, lr, device, dataset_train = dataset_train, dataset_test = dataset_test, idxs = dict_users[idx], idxs_test = dict_users_test[idx])
# Training ------------------
w_client = local.train(net = copy.deepcopy(net_glob_client).to(device))
# Testing -------------------
local.evaluate(net = copy.deepcopy(net_glob_client).to(device), ell= iter)
# copy weight to net_glob_client -- use to update the client-side model of the next client to be trained
net_glob_client.load_state_dict(w_client)
#===================================================================================
print("Training and Evaluation completed!")
#===============================================================================
# Save output data to .excel file (we use for comparision plots)
round_process = [i for i in range(1, len(acc_train_collect)+1)]
df = DataFrame({'round': round_process,'acc_train':acc_train_collect, 'acc_test':acc_test_collect})
file_name = program+".xlsx"
df.to_excel(file_name, sheet_name= "v1_test", index = False)
#=============================================================================
# Program Completed
#=============================================================================