forked from guglielmocamporese/hands-segmentation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
459 lines (391 loc) · 16.9 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
##################################################
# Imports
##################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torchvision.utils import make_grid
from PIL import Image, ImageDraw
import numpy as np
import scipy.io
import os
import matplotlib.pyplot as plt
# Utils
def show_sample(image, mask=None, alpha=0.7):
print('Image shape:', image.shape)
plt.imshow(image.permute(1, 2, 0))
if mask is not None:
print('Mask shape:', mask.shape)
plt.imshow(mask[0], alpha=alpha)
plt.show()
def show_samples(images, masks=None, alpha=0.7, nrow=4):
print('Images shape:', images.shape)
if masks is not None:
print('Masks shape:', masks.shape)
B, C, H, W = images.shape
col = [0.2, 0.3, 0.8]
col = torch.tensor(col).unsqueeze(0).unsqueeze(-1).unsqueeze(-1).repeat(B, 1, H, W)
images = torch.where(masks.repeat(1, 3, 1, 1) > 0,
alpha * col + (1 - alpha) * images, images)
image_grid = make_grid(images, nrow=nrow, padding=0)
plt.figure(figsize=(15, 15))
plt.imshow(image_grid.permute(1, 2, 0), aspect='auto')
plt.axis(False)
plt.show()
class Denorm(object):
def __init__(self, mean=None, std=None):
self.mean = np.array([0.0, 0.0, 0.0]) if mean is None else mean
self.std = np.array([1.0, 1.0, 1.0]) if std is None else std
def __call__(self, x):
"""
Denormalize the image.
Args:
x: tensor of shape [bs, c, h, w].
Output:
x_denorm: tensor of shape [bs, c, h, w].
"""
denorm_fn = transforms.Normalize(mean=- self.mean / (self.std + 1e-8), std=1.0 / (self.std + 1e-8))
x_denorm = []
for x_i in x:
x_denorm += [denorm_fn(x_i)]
x_denorm = torch.stack(x_denorm, 0)
return x_denorm
##################################################
# EgoYouTubeHands Dataset
##################################################
class EYTHDataset(Dataset):
"""
EgoYouTubeHands dataset from https://drive.google.com/file/d/1EwjJx-V-Gq7NZtfiT6LZPLGXD2HN--qT/view.
Images and masks of dims [216, 384]
"""
def __init__(self, data_base_path, partition, image_transform=None,
mask_transform=None):
super(EYTHDataset, self).__init__()
self.data_base_path = data_base_path
self.partition = partition
self.image_transform = image_transform
self.mask_transform = mask_transform
self.image_paths, self.mask_paths = self._get_paths()
def _get_paths(self):
image_paths = []
mask_paths = []
if self.partition in ['train', 'training']:
split_filename = 'train.txt'
elif self.partition in ['val', 'validation', 'validating']:
split_filename = 'val.txt'
elif self.partition in ['test', 'testing']:
split_filename = 'test.txt'
else:
raise Exception(f'Error. Partition "{self.partition}" is not supported.')
with open(os.path.join(self.data_base_path, 'train-val-test-split', split_filename), 'r') as f:
for l in f.readlines():
l = l.strip()
image_paths += [os.path.join(self.data_base_path, 'images', l)]
mask_paths += [os.path.join(self.data_base_path, 'masks', l.replace('.jpg', '.png'))]
return image_paths, mask_paths
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# Load image and mask
image = Image.open(self.image_paths[idx])
mask = Image.open(self.mask_paths[idx])
# Transforms
if self.image_transform is not None:
image = self.image_transform(image)
if self.mask_transform is not None:
mask = self.mask_transform(mask)
return image, mask
##################################################
# GTEA Dataset
##################################################
class GTEADataset(Dataset):
"""
GTEA dataset from http://cbs.ic.gatech.edu/fpv.
Images and masks of dims:
- GTEA: [405, 720]
- GTEA_GAZE_PLUS: [720, 960]
"""
def __init__(self, data_base_path, partition, image_transform=None,
mask_transform=None, seed=1234):
super(GTEADataset, self).__init__()
self.data_base_path = data_base_path
self.partition = partition
self.image_transform = image_transform
self.mask_transform = mask_transform
self.seed = seed
self.image_paths, self.mask_paths = self._get_paths()
def _get_paths(self):
# Image paths
image_paths = []
# GTEA
image_names = sorted(os.listdir(os.path.join(self.data_base_path, 'GTEA', 'Images')))
image_paths = image_paths + [os.path.join(self.data_base_path, 'GTEA', 'Images', f) for f in image_names]
# GTEA_GAZE_PLUS
for folder in sorted(os.listdir(os.path.join(self.data_base_path, 'GTEA_GAZE_PLUS', 'Images'))):
image_names = sorted(os.listdir(os.path.join(self.data_base_path, 'GTEA_GAZE_PLUS', 'Images', folder)))
image_paths = image_paths + [os.path.join(self.data_base_path, 'GTEA_GAZE_PLUS', 'Images', folder, f) for f in image_names]
# Mask paths
mask_paths = [f.replace('Images', 'Masks').replace('.jpg', '.png') for f in image_paths]
# Split data
num_samples = len(image_paths)
num_train = int(np.round(0.6 * num_samples))
num_validation = int(np.round(0.2 * num_samples))
num_test = int(np.round(0.2 * num_samples))
idxs = np.arange(num_samples)
np.random.seed(self.seed)
np.random.shuffle(idxs)
idxs_train = idxs[:num_train]
idxs_validation = idxs[num_train:num_train + num_validation]
idxs_test = idxs[-num_test:]
if self.partition in ['train', 'training']:
image_paths = [image_paths[i] for i in idxs_train]
mask_paths = [mask_paths[i] for i in idxs_train]
elif self.partition in ['val', 'validation', 'validating']:
image_paths = [image_paths[i] for i in idxs_validation]
mask_paths = [mask_paths[i] for i in idxs_validation]
elif self.partition in ['test', 'testing']:
image_paths = [image_paths[i] for i in idxs_test]
mask_paths = [mask_paths[i] for i in idxs_test]
else:
raise Exception(f'Error. Partition "{self.partition}" is not supported.')
return image_paths, mask_paths
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# Load image and mask
image = Image.open(self.image_paths[idx])
mask = Image.open(self.mask_paths[idx])
# Transforms
if self.image_transform is not None:
image = self.image_transform(image)
if self.mask_transform is not None:
mask = self.mask_transform(mask)
return image, mask
##################################################
# HandOverFace dataset
##################################################
class HOFDataset(Dataset):
"""
HandOverFace dataset from https://drive.google.com/file/d/1hHUvINGICvOGcaDgA5zMbzAIUv7ewDd3/view?usp=drive_open.
Images and masks of dims [384, 216]
"""
def __init__(self, data_base_path, partition, image_transform=None,
mask_transform=None, seed=1234):
super(HOFDataset, self).__init__()
self.data_base_path = data_base_path
self.partition = partition
self.image_transform = image_transform
self.mask_transform = mask_transform
self.seed = seed
self.image_paths, self.mask_paths = self._get_paths()
def _get_paths(self):
# Image paths
image_names = sorted(os.listdir(os.path.join(self.data_base_path, 'images_resized')))
image_paths = [os.path.join(self.data_base_path, 'images_resized', f) for f in image_names]
# Mask paths
mask_paths = [f.replace('images_resized', 'masks').replace('.jpg', '.png') for f in image_paths]
# Split data
num_samples = len(image_paths)
num_train = int(np.round(0.6 * num_samples))
num_validation = int(np.round(0.2 * num_samples))
num_test = int(np.round(0.2 * num_samples))
idxs = np.arange(num_samples)
np.random.seed(self.seed)
np.random.shuffle(idxs)
idxs_train = idxs[:num_train]
idxs_validation = idxs[num_train:num_train + num_validation]
idxs_test = idxs[-num_test:]
if self.partition in ['train', 'training']:
image_paths = [image_paths[i] for i in idxs_train]
mask_paths = [mask_paths[i] for i in idxs_train]
elif self.partition in ['val', 'validation', 'validating']:
image_paths = [image_paths[i] for i in idxs_validation]
mask_paths = [mask_paths[i] for i in idxs_validation]
elif self.partition in ['test', 'testing']:
image_paths = [image_paths[i] for i in idxs_test]
mask_paths = [mask_paths[i] for i in idxs_test]
else:
raise Exception(f'Error. Partition "{self.partition}" is not supported.')
return image_paths, mask_paths
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# Load image and mask
image = Image.open(self.image_paths[idx])
mask = Image.open(self.mask_paths[idx])
# Transforms
if self.image_transform is not None:
image = self.image_transform(image)
if self.mask_transform is not None:
mask = self.mask_transform(mask)
return image, mask
##################################################
# EgoHands Dataset
##################################################
class EgoHandsDataset(Dataset):
"""
EgoHands dataset from http://vision.soic.indiana.edu/projects/egohands.
Images and masks of dims [720, 1280].
"""
def __init__(self, data_base_path, partition, image_transform=None,
mask_transform=None, seed=1234, frame_tmpl='frame_{:04d}.jpg',
mask_shape=None):
super(EgoHandsDataset, self).__init__()
self.data_base_path = data_base_path
self.partition = partition
self.image_transform = image_transform
self.mask_transform = mask_transform
self.seed = seed
self.frame_tmpl = frame_tmpl
self.metadata = scipy.io.loadmat(os.path.join(self.data_base_path, 'metadata.mat'))
self.mask_shape = mask_shape
self.image_paths, self.mask_poly = self._get_paths()
def _compute_mask(self, polygons, height, width):
mask = Image.new('L', (width, height), 0)
for poly in polygons:
ImageDraw.Draw(mask).polygon(poly, outline=255, fill=255)
return mask
def _get_paths(self):
annotations = self.metadata['video'][0] # 48 annotations (of the 48 videos)
image_paths = []
masks_poly = []
for x in annotations:
x = list(x)
video_id, _, _, _, _, _, labeled_frames = x # more info the readme
video_id = video_id[0]
labeled_frames = labeled_frames[0]
# Get frame annotation
for frame_ann in labeled_frames:
frame_id = frame_ann[0].reshape(-1)[0]
polygons = []
for idx, ll in enumerate(frame_ann):
if (idx > 0) and len(ll) > 0:
p = [tuple(pp) for pp in ll]
polygons += [p]
masks_poly += [polygons]
image_path = os.path.join(self.data_base_path, '_LABELLED_SAMPLES', video_id, self.frame_tmpl.format(frame_id))
image_paths += [image_path]
# Split data
num_samples = len(image_paths)
num_train = int(np.round(0.6 * num_samples))
num_validation = int(np.round(0.2 * num_samples))
num_test = int(np.round(0.2 * num_samples))
idxs = np.arange(num_samples)
np.random.seed(self.seed)
np.random.shuffle(idxs)
idxs_train = idxs[:num_train]
idxs_validation = idxs[num_train:num_train + num_validation]
idxs_test = idxs[-num_test:]
if self.partition in ['train', 'training']:
image_paths = [image_paths[i] for i in idxs_train]
masks_poly = [masks_poly[i] for i in idxs_train]
elif self.partition in ['val', 'validation', 'validating']:
image_paths = [image_paths[i] for i in idxs_validation]
masks_poly = [masks_poly[i] for i in idxs_validation]
elif self.partition in ['test', 'testing']:
image_paths = [image_paths[i] for i in idxs_test]
masks_poly = [masks_poly[i] for i in idxs_test]
else:
raise Exception(f'Error. Partition "{self.partition}" is not supported.')
return image_paths, masks_poly
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# Load image and mask
image = Image.open(self.image_paths[idx])
if self.mask_shape is None:
w, h = image.size
else:
h, w = self.mask_shape
mask = self._compute_mask(self.mask_poly[idx], h, w)
# Transforms
if self.image_transform is not None:
image = self.image_transform(image)
if self.mask_transform is not None:
mask = self.mask_transform(mask)
return image, mask
def get_dataloader(data_base_path, partition, datasets, image_transform=None,
mask_transform=None, batch_size=32, num_workers=0, pin_memory=True, shuffle=False):
"""
Get the dataloader.
Args:
data_base_path: string where the data are stored.
partition: string in ['train', 'validation', 'test'].
datasets: list of strings for selecting the sounrce of the data.
image_transforms: transform applied to the image.
mask_transform: transform applied to the mask.
batch_size: integer that specifies the batch size.
num_workers: the number of workers.
pin_memory: boolean.
Output:
dl: the dataloader (PyTorch DataLoader).
"""
ds_list = []
if 'eyth' in datasets:
tranform = transforms.ToTensor()
ds_eyth = EYTHDataset(
data_base_path=os.path.join(data_base_path, 'eyth_dataset'),
partition=partition,
image_transform=tranform if image_transform is None else image_transform,
mask_transform=tranform if mask_transform is None else mask_transform,
)
ds_list += [ds_eyth]
if 'eh' in datasets:
tranform = transforms.ToTensor()
ds_eh = EgoHandsDataset(
data_base_path=os.path.join(data_base_path, 'egohands_data'),
partition=partition,
image_transform=tranform if image_transform is None else image_transform,
mask_transform=tranform if mask_transform is None else mask_transform,
)
ds_list += [ds_eh]
if 'hof' in datasets:
tranform = transforms.ToTensor()
ds_hof = HOFDataset(
data_base_path=os.path.join(data_base_path, 'hand_over_face'),
partition=partition,
image_transform=tranform if image_transform is None else image_transform,
mask_transform=tranform if mask_transform is None else mask_transform,
)
ds_list += [ds_hof]
if 'gtea' in datasets:
tranform = transforms.Compose([
transforms.Resize((405, 720)),
transforms.ToTensor(),
])
ds_gtea = GTEADataset(
data_base_path=os.path.join(data_base_path, 'hand2K_dataset'),
partition=partition,
image_transform=tranform if image_transform is None else image_transform,
mask_transform=tranform if mask_transform is None else mask_transform,
)
ds_list += [ds_gtea]
# Concatenate datasets
ds_cat = ConcatDataset(ds_list)
dl = DataLoader(ds_cat, batch_size=batch_size, pin_memory=pin_memory, num_workers=num_workers, shuffle=shuffle)
return dl
##################################################
# Debug
##################################################
if __name__ == '__main__':
image_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
mask_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
lambda m: torch.where(m > 0, torch.ones_like(m), torch.zeros_like(m))
])
dl_args = {
'data_base_path': 'data',
'partition': 'validation',
'datasets': ['eyth', 'eh', 'hof', 'gtea'],
'image_transform': image_transform,
'mask_transform': mask_transform,
'batch_size': 32,
}
dl = get_dataloader(**dl_args)