-
Notifications
You must be signed in to change notification settings - Fork 28
/
pycodeagi-gpt4.py
236 lines (205 loc) · 9.1 KB
/
pycodeagi-gpt4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import ast
import configparser
import os
import re
from typing import List, Dict, Any
from langchain import LLMChain
from langchain.chains.base import Chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.prompts.prompt import PromptTemplate
from pydantic import BaseModel
# Read API keys from config file
config = configparser.ConfigParser()
config.read('config.ini')
os.environ["OPENAI_API_KEY"] = config.get('API_KEYS', 'OPENAI-API_KEY')
output_file = "output_steps.txt"
code_file = "app.py"
class GeneratePyCodeChain(LLMChain):
"""
The main LLM Chain class that runs every step.
"""
@classmethod
def create_chain(cls, verbose: bool = False) -> LLMChain:
system_template = ("""
You are code generation AI proficient in Python and Streamlit.\n
Your goal is to build a Python app.\n
You will use Streamlit for building the app user interface.\n
Assume all required libraries are installed.\n
{instructions}.""")
system_prompt_template = PromptTemplate(template=system_template, input_variables=["instructions"])
system_message_prompt = SystemMessagePromptTemplate(prompt=system_prompt_template)
user_template = "{tasks}"
user_prompt_template = PromptTemplate(template=user_template, input_variables=["tasks"])
user_message_prompt = HumanMessagePromptTemplate(prompt=user_prompt_template)
prompt = ChatPromptTemplate.from_messages([system_message_prompt, user_message_prompt])
llm = ChatOpenAI(model_name="gpt-4",
temperature=0.35,
request_timeout=240)
chain_instance = cls(prompt=prompt, llm=llm)
return chain_instance
class PyCodeAGI(Chain, BaseModel):
"""
Our AGI that performs the MAGIC!
"""
llm_chain: GeneratePyCodeChain
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
return ["objective"]
@property
def output_keys(self) -> List[str]:
return []
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
objective = inputs["objective"]
print("\n" + "\033[93m" + "\n" + "*****OBJECTIVE*****" + "\033[0m")
print(objective.strip())
with open(output_file, "a") as f:
f.write(f"Objective: \n {objective.strip()}\n\n")
print("\033[93m" + "*****DESCRIPTION*****" + "\033[0m")
instructions = f"Users will interact with the web app built using Streamlit and Python."
tasks = f"""
Create a concise description for the Python app: {objective}\n
Use your expertise to envision the app's purpose and functionality.
"""
self.llm_chain.llm.max_tokens = 200
description = self.llm_chain.run(instructions=instructions, tasks=tasks)
print(description.strip())
with open(output_file, "a") as f:
f.write(f"Description: \n {description.strip()}\n\n")
print("\033[93m" + "*****ARCHITECTURE*****" + "\033[0m")
instructions = f"""
You are given the app name and description.\n
App Name:\n
{objective}\n
Description: \n
{description}
"""
tasks = f"""
Create a concise app architecture you can use to build the UX flow.\n
Outline the components and structure of the code.\n
Present the app architecture in an ordered list.
"""
self.llm_chain.llm.max_tokens = 350
architecture = self.llm_chain.run(instructions=instructions, tasks=tasks)
print(architecture.strip())
with open(output_file, "a") as f:
f.write(f"Architecture: \n {architecture.strip()}\n\n")
print("\033[93m" + "*****UX FLOW*****" + "\033[0m")
instructions = f"""
You are given the app name, description and architecture.\n
App Name:\n
{objective}\n
Description: \n
{description}\n
Architecture:\n
{architecture}
"""
tasks = f"""
Create a concise UX flow that you can use to build code flow.\n
Present the UX flow an ordered list.
"""
self.llm_chain.llm.max_tokens = 700
uxflow = self.llm_chain.run(instructions=instructions, tasks=tasks)
print(uxflow.strip())
with open(output_file, "a") as f:
f.write(f"UX Flow: \n {uxflow.strip()}\n\n")
print("\033[93m" + "*****CODE FLOW*****" + "\033[0m")
instructions = f"""
You are given the app name, description, architecture and UX flow.\n
App Name:\n
{objective}\n
Description: \n
{description}\n
Architecture:\n
{architecture}\n
UX Flow:\n
{uxflow}
"""
tasks = f"""
Create a concise code flow you can use to write code.\n
Outline the code components and structure.\n
Present the code flow in an ordered list.
"""
self.llm_chain.llm.max_tokens = 700
codeflow = self.llm_chain.run(instructions=instructions, tasks=tasks)
print(codeflow.strip())
with open(output_file, "a") as f:
f.write(f"Code Flow: \n {codeflow.strip()}\n\n")
print("\033[93m" + "*****APP CODE*****" + "\033[0m")
instructions = f"""
You are given the app name, description, architecture, UX flow and code flow.\n
App Name:\n
{objective}\n
Description: \n
{description}\n
Architecture:\n
{architecture}\n
UX Flow:\n
{uxflow}
Code Flow:\n
{codeflow}
"""
# GPT4 may not follow some coding guidelines and may hallucinate.
# Instruct the model specific guidelines to follow.
tasks = f"""
Write the Python code for the app in a single python file.\n
Use SQLite python module for data storage .\n
Exclude environment setup, testing, debugging, and deployment tasks.\n
Build sample datasets with at least five items.\n
Follow these coding guidelines:
- Check and create database tables first in the main function.\n
- Use pd.loc to append new rows to the DataFrame.\n
---Example: event_data.loc[len(event_data)] = sample_events.loc[0]\n
- When building date sliders:\n
---First Convert dates using to_pydatetime()
---Then use their min and max values in st.slider
- Use pd.to_datetime() on selected date ranges when filtering calendar events.
- Save all data in a SQLite database.
"""
self.llm_chain.llm.max_tokens = 5000
appcode = self.llm_chain.run(instructions=instructions, tasks=tasks)
print(appcode.strip())
with open(output_file, "a") as f:
f.write(f"App Code: \n {appcode.strip()}")
print("\033[93m" + "\n*****SAVING CODE TO FILE*****\n" + "\033[0m")
code_match = re.search(r'```python(.*?)```', appcode.strip(), re.DOTALL)
code_content = code_match.group(1).strip()
try:
ast.parse(code_content)
print("Generated code is AWESOME!")
with open(code_file, "w") as f:
f.write(code_content)
print(f"Code saved to {code_file}.")
except SyntaxError as e:
print("OOPS! Something wrong with the code")
print(f"\nSyntax Error: {e}\n")
print("Try running the code generator again!")
print("\033[93m" + "\n*****THANK YOU*****\n" + "\033[0m")
return {}
@classmethod
def create_llm_chain(cls, verbose: bool = False) -> "PyCodeAGI":
llm_chain = GeneratePyCodeChain.create_chain(verbose=verbose)
return cls(llm_chain=llm_chain)
if __name__ == "__main__":
# Delete output files
if os.path.exists(output_file):
os.remove(output_file)
if os.path.exists(code_file):
os.remove(code_file)
# Get the user input
print("\n" + "\033[93m" + "\n" + "Welcome to pyCodeAGI" + "\033[0m")
print("\nA simple agent that builds a Python app for you!\n")
print("The agent will use Streamlit to turn your Python app into a web app!\n")
print(u'\u2193' + " Lets get started " + u'\u2193' + "\n")
objective = input(f"What app do you want me to build: ")
# Initialize our agent
pycode_agi = PyCodeAGI.create_llm_chain()
# Run the agent and witness the MAGIC!
pycode_agi({"objective": objective})