This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
/
Copy pathtrain_imagenet_multi.py
217 lines (182 loc) · 7.46 KB
/
train_imagenet_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from __future__ import division
import argparse
import multiprocessing
import numpy as np
import chainer
from chainer import iterators
from chainer.links import Classifier
from chainer.optimizer import WeightDecay
from chainer.optimizers import CorrectedMomentumSGD
from chainer import training
from chainer.training import extensions
from chainercv.chainer_experimental.datasets.sliceable import TransformDataset
from chainercv.datasets import directory_parsing_label_names
from chainercv.datasets import DirectoryParsingLabelDataset
from chainercv.transforms import center_crop
from chainercv.transforms import random_flip
from chainercv.transforms import random_sized_crop
from chainercv.transforms import resize
from chainercv.transforms import scale
from chainercv.chainer_experimental.training.extensions import make_shift
from chainercv.links.model.resnet import Bottleneck
from chainercv.links import ResNet101
from chainercv.links import ResNet152
from chainercv.links import ResNet50
import chainermn
# https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator
try:
import cv2
cv2.setNumThreads(0)
except ImportError:
pass
class TrainTransform(object):
def __init__(self, mean):
self.mean = mean
def __call__(self, in_data):
img, label = in_data
img = random_sized_crop(img)
img = resize(img, (224, 224))
img = random_flip(img, x_random=True)
img -= self.mean
return img, label
class ValTransform(object):
def __init__(self, mean):
self.mean = mean
def __call__(self, in_data):
img, label = in_data
img = scale(img, 256)
img = center_crop(img, (224, 224))
img -= self.mean
return img, label
def main():
model_cfgs = {
'resnet50': {'class': ResNet50, 'score_layer_name': 'fc6',
'kwargs': {'arch': 'fb'}},
'resnet101': {'class': ResNet101, 'score_layer_name': 'fc6',
'kwargs': {'arch': 'fb'}},
'resnet152': {'class': ResNet152, 'score_layer_name': 'fc6',
'kwargs': {'arch': 'fb'}}
}
parser = argparse.ArgumentParser(
description='Learning convnet from ILSVRC2012 dataset')
parser.add_argument('train', help='Path to root of the train dataset')
parser.add_argument('val', help='Path to root of the validation dataset')
parser.add_argument('--model',
'-m', choices=model_cfgs.keys(), default='resnet50',
help='Convnet models')
parser.add_argument('--communicator', type=str,
default='pure_nccl', help='Type of communicator')
parser.add_argument('--loaderjob', type=int, default=4)
parser.add_argument('--batchsize', type=int, default=32,
help='Batch size for each worker')
parser.add_argument('--lr', type=float)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=0.0001)
parser.add_argument('--out', type=str, default='result')
parser.add_argument('--epoch', type=int, default=90)
args = parser.parse_args()
# https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator
if hasattr(multiprocessing, 'set_start_method'):
multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()
comm = chainermn.create_communicator(args.communicator)
device = comm.intra_rank
if args.lr is not None:
lr = args.lr
else:
lr = 0.1 * (args.batchsize * comm.size) / 256
if comm.rank == 0:
print('lr={}: lr is selected based on the linear '
'scaling rule'.format(lr))
label_names = directory_parsing_label_names(args.train)
model_cfg = model_cfgs[args.model]
extractor = model_cfg['class'](
n_class=len(label_names), **model_cfg['kwargs'])
extractor.pick = model_cfg['score_layer_name']
model = Classifier(extractor)
# Following https://arxiv.org/pdf/1706.02677.pdf,
# the gamma of the last BN of each resblock is initialized by zeros.
for l in model.links():
if isinstance(l, Bottleneck):
l.conv3.bn.gamma.data[:] = 0
train_data = DirectoryParsingLabelDataset(args.train)
val_data = DirectoryParsingLabelDataset(args.val)
train_data = TransformDataset(
train_data, ('img', 'label'), TrainTransform(extractor.mean))
val_data = TransformDataset(
val_data, ('img', 'label'), ValTransform(extractor.mean))
print('finished loading dataset')
if comm.rank == 0:
train_indices = np.arange(len(train_data))
val_indices = np.arange(len(val_data))
else:
train_indices = None
val_indices = None
train_indices = chainermn.scatter_dataset(
train_indices, comm, shuffle=True)
val_indices = chainermn.scatter_dataset(val_indices, comm, shuffle=True)
train_data = train_data.slice[train_indices]
val_data = val_data.slice[val_indices]
train_iter = chainer.iterators.MultiprocessIterator(
train_data, args.batchsize, n_processes=args.loaderjob)
val_iter = iterators.MultiprocessIterator(
val_data, args.batchsize,
repeat=False, shuffle=False, n_processes=args.loaderjob)
optimizer = chainermn.create_multi_node_optimizer(
CorrectedMomentumSGD(lr=lr, momentum=args.momentum), comm)
optimizer.setup(model)
for param in model.params():
if param.name not in ('beta', 'gamma'):
param.update_rule.add_hook(WeightDecay(args.weight_decay))
if device >= 0:
chainer.cuda.get_device(device).use()
model.to_gpu()
updater = chainer.training.StandardUpdater(
train_iter, optimizer, device=device)
trainer = training.Trainer(
updater, (args.epoch, 'epoch'), out=args.out)
@make_shift('lr')
def warmup_and_exponential_shift(trainer):
epoch = trainer.updater.epoch_detail
warmup_epoch = 5
if epoch < warmup_epoch:
if lr > 0.1:
warmup_rate = 0.1 / lr
rate = warmup_rate \
+ (1 - warmup_rate) * epoch / warmup_epoch
else:
rate = 1
elif epoch < 30:
rate = 1
elif epoch < 60:
rate = 0.1
elif epoch < 80:
rate = 0.01
else:
rate = 0.001
return rate * lr
trainer.extend(warmup_and_exponential_shift)
evaluator = chainermn.create_multi_node_evaluator(
extensions.Evaluator(val_iter, model, device=device), comm)
trainer.extend(evaluator, trigger=(1, 'epoch'))
log_interval = 0.1, 'epoch'
print_interval = 0.1, 'epoch'
if comm.rank == 0:
trainer.extend(chainer.training.extensions.observe_lr(),
trigger=log_interval)
trainer.extend(
extensions.snapshot_object(
extractor, 'snapshot_model_{.updater.epoch}.npz'),
trigger=(args.epoch, 'epoch'))
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport(
['iteration', 'epoch', 'elapsed_time', 'lr',
'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']
), trigger=print_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.run()
if __name__ == '__main__':
main()