-
-
Notifications
You must be signed in to change notification settings - Fork 291
/
Copy pathauto_split.py
94 lines (85 loc) · 3.07 KB
/
auto_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from __future__ import annotations
import gc
import numpy as np
try:
from ncnn_vulkan import ncnn
use_gpu = True
except ImportError:
from ncnn import ncnn
use_gpu = False
from sanic.log import logger
from ...utils.utils import get_h_w_c
from ..image_utils import to_uint8
from ..upscale.auto_split import Split, Tiler, auto_split
def ncnn_auto_split(
img: np.ndarray,
net, # noqa: ANN001
input_name: str,
output_name: str,
blob_vkallocator, # noqa: ANN001
staging_vkallocator, # noqa: ANN001
tiler: Tiler,
) -> np.ndarray:
def upscale(img: np.ndarray, _: object):
ex = net.create_extractor()
if use_gpu:
ex.set_blob_vkallocator(blob_vkallocator)
ex.set_workspace_vkallocator(blob_vkallocator)
ex.set_staging_vkallocator(staging_vkallocator)
# ex.set_light_mode(True)
try:
lr_c = get_h_w_c(img)[2]
lr_img_fix = to_uint8(img)
if lr_c == 1:
pixel_type = ncnn.Mat.PixelType.PIXEL_GRAY
elif lr_c == 3:
pixel_type = ncnn.Mat.PixelType.PIXEL_RGB
else:
pixel_type = ncnn.Mat.PixelType.PIXEL_RGBA
mat_in = ncnn.Mat.from_pixels(
lr_img_fix,
pixel_type,
lr_img_fix.shape[1],
lr_img_fix.shape[0],
)
mean_vals = []
norm_vals = [1 / 255.0] * lr_c
mat_in.substract_mean_normalize(mean_vals, norm_vals)
ex.input(input_name, mat_in)
_, mat_out = ex.extract(output_name)
result = np.array(mat_out).transpose(1, 2, 0).astype(np.float32)
del ex, mat_in, mat_out
gc.collect()
if use_gpu:
# Clear VRAM
blob_vkallocator.clear()
staging_vkallocator.clear()
return result
except Exception as e:
if "vkQueueSubmit" in str(e):
ex = None
del ex
gc.collect()
if use_gpu:
blob_vkallocator.clear()
staging_vkallocator.clear()
# TODO: Have someone running into this issue enable this and see if it fixes anything
# ncnn.destroy_gpu_instance()
raise RuntimeError(
"A critical error has occurred. You may need to restart chaiNNer in order for NCNN upscaling to start working again."
) from e
# Check to see if its actually the NCNN out of memory error
if "failed" in str(e):
# clear VRAM
logger.debug("NCNN out of VRAM, clearing VRAM and splitting.")
ex = None
del ex
gc.collect()
if use_gpu:
blob_vkallocator.clear()
staging_vkallocator.clear()
return Split()
else:
# Re-raise the exception if not an OOM error
raise
return auto_split(img, upscale, tiler)