-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
65 lines (47 loc) · 2.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import time
from Dataset import create_dataset
from Models import create_model
from Options.train_options import TrainOptions
if __name__ == '__main__':
opt = TrainOptions().parse()
dataset = create_dataset(opt)
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt)
model.setup(opt)
total_iters = 0
start_time = time.time() # time for all train
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1):
epoch_start_time = time.time() # time for entire epoch
iter_data_time = time.time() # time for data loading per iter
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
# every opt.print_freq size data, calculate t_data once.
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters() # forward() and calculate loss, update weight.
if total_iters % opt.save_loss_freq == 0:
model.plot_current_losses(total_iters // opt.save_loss_freq)
# every epoch save once
if i == 0:
model.save_images(epoch)
if total_iters % opt.print_freq == 0:
losses = model.get_current_losses()
print("epoch {}, epoch_iter {} loss: {}".format(epoch, epoch_iter, losses))
if total_iters % opt.save_latest_freq == 0:
print("save the latest model (epoch %d, total_iters %d)" % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
# cache model every <save_epoch_freq> epochs
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
# model.update_learning_rate()
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
print("Total time takn: %d sec" % (time.time() - start_time))