forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgin_rummy_dqn.py
101 lines (78 loc) · 3.08 KB
/
gin_rummy_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
'''
File name: rlcard.examples.gin_rummy_dqn.py
Author: William Hale
Date created: 2/12/2020
An example of learning a Deep-Q Agent on GinRummy
'''
import tensorflow as tf
import os
import rlcard
from rlcard.agents import DQNAgent
from rlcard.agents import RandomAgent
from rlcard.utils import set_global_seed, tournament
from rlcard.utils import Logger
# Make environment
env = rlcard.make('gin-rummy', config={'seed': 0})
eval_env = rlcard.make('gin-rummy', config={'seed': 0})
env.game.settings.print_settings()
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 100
evaluate_num = 100 # mahjong_dqn has 1000
episode_num = 1000 # mahjong_dqn has 100000
# The initial memory size
memory_init_size = 1000
# Train the agent every X steps
train_every = 1
# The paths for saving the logs and learning curves
log_dir = './experiments/gin_rummy_dqn_result/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_size=20000,
replay_memory_init_size=memory_init_size,
train_every=train_every,
state_shape=env.state_shape,
mlp_layers=[512, 512])
random_agent = RandomAgent(action_num=eval_env.action_num)
sess.run(tf.global_variables_initializer())
env.set_agents([agent, random_agent])
eval_env.set_agents([agent, random_agent])
# Init a Logger to plot the learning curve
logger = Logger(log_dir)
for episode in range(episode_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=True)
# Feed transitions into agent memory, and train the agent
for ts in trajectories[0]:
agent.feed(ts)
# extra logging
if episode % evaluate_every == 0:
reward = 0
reward2 = 0
for eval_episode in range(evaluate_num):
_, payoffs = eval_env.run(is_training=False)
reward += payoffs[0]
reward2 += payoffs[1]
logger.log("\n\n########## Evaluation {} ##########".format(episode))
reward_text = "{}".format(float(reward)/evaluate_num)
reward2_text = "{}".format(float(reward2)/evaluate_num)
info = "Timestep: {} Average reward is {}, reward2 is {}".format(env.timestep, reward_text, reward2_text)
logger.log(info)
# Evaluate the performance. Play with random agents.
if episode % evaluate_every == 0:
logger.log_performance(env.timestep, tournament(eval_env, evaluate_num)[0])
# Close files in the logger
logger.close_files()
# Plot the learning curve
logger.plot('DQN')
# Save model
save_dir = 'models/gin_rummy_dqn'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
saver = tf.train.Saver()
saver.save(sess, os.path.join(save_dir, 'model'))