-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides_uni_koeln.html
483 lines (329 loc) · 10.3 KB
/
slides_uni_koeln.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Interpreting uncertainty in differential expression with DESeq2</title>
<meta charset="utf-8" />
<meta name="author" content="Martin Modrák Institute of Microbiology of the Czech Academy of Sciences" />
<script src="libs/header-attrs/header-attrs.js"></script>
<link href="libs/remark-css/hygge.css" rel="stylesheet" />
<link href="libs/remark-css/middlebury-fonts.css" rel="stylesheet" />
<link href="libs/remark-css/ninjutsu.css" rel="stylesheet" />
<link rel="stylesheet" href="elixir.css" type="text/css" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
.title[
# Interpreting uncertainty in differential expression with DESeq2
]
.author[
### Martin Modrák
Institute of Microbiology of the Czech Academy of Sciences
]
---
class: center, middle, inverse
# Background - Biology
---
background-image: url("img-cc/Pair_of_mandarin_ducks.jpg")
background-position: center
background-size: cover
class: inverse
# Differential expression
.img_credit[
Image by By Francis C. Franklin, Wikimedia Commons CC-BY-SA 3.0
]
---
# Differential expression
.large_fig[
<img src="slides_uni_koeln_files/figure-html/diffexpexample-1.png" width="400px" />
]
---
# DESeq2
$$
`\begin{align}
y_{g,s} &\sim \mathrm{NegBinomial\_2}(\mu_{g,s} r_s, \frac{1}{\tau_g}) \\
\log(\mu_{g,s}) &= \alpha_g + X_s \beta_g \\
\log \tau_g &\sim \mathrm{N} \left(\frac{a}{\mu_{g}} + b, \sigma_\tau \right) \\
\end{align}`
$$
--
Primary output: p-values for interval hypotheses
???
Bunch of other methods to share dispersion
---
class: center, middle, inverse
# Background - Statistics
---
# Why confidence intervals?
DESeq2 does a good job with interval hypothesis
--
We might want to order genes by LFC
--
.mid_fig[

]
---
# Frequentist calibration of CIs
In x% of repetitions of the exact same experiment, x% confidence interval will contain the true value.
???
Assuming the model is correct. Needs to hold for any parameters! -> Worst case, asymptotic results, bounds
---
# The secret frequentists don't want you to know
1) Define likelihood
2) Maximize likelihood
3) ????
4) Profit!
---
# The secret frequentists don't want you to know
1) Define likelihood
2) Maximize likelihood
3) ~~????~~ Compute Hessian
4) ~~Profit!~~ Assume normality
--
5) Publish!
---
# Bayesian calibration
Averaged over the prior, x% credible interval will contain the true value x% of the time.
???
Assuming the model is correct. Can be exact.
---
# Simulation-based calibration
--
1. Simulate data _exactly_ according to the model
--
1. Fit the model to simulated data and draw `\(M\)` samples from the posterior.
--
2. Take the rank of the true value within the samples
- Rank: no. of samples < true value
--
3. Across many simulations, this rank should be uniformly distributed between `\(0\)` and `\(M\)`
---
class: center, middle, inverse
# What I did
---
# Bayesian interpretation of DESeq2
Frequentist models `\(\simeq\)` Bayesian models
--
- Flat priors
- Posterior is normal
???
DESeq2 was intended as Empirical Bayes
Note that this is the same assumption as before!
---
# Priors for the DESeq2 model
$$
`\begin{align}
y_{g,s} &\sim \mathrm{NegBinomial\_2}(\mu_{g,s} r_s, \frac{1}{\tau_g}) \\
\log(\mu_{g,s}) &= \alpha_g + X_s \beta_g \\
\log \tau_g &\sim \mathrm{N} \left(\frac{a}{\mu_{g}} + b, \sigma_\tau \right) \\
\end{align}`
$$
--
$$
\alpha \sim N(4,2);
\beta \sim \mathrm{N}(0,1)
$$
$$
\sigma_\tau \sim \mathrm{HalfN(0, 1)} ; a \sim \Gamma(3, 6) ; b \sim \Gamma(4, 2.3)
$$
???
Note that we are in between estimating dispersion and known dispersion
## Sampling from DESeq2
DESeq2 provides standard error (via Hessian)
1. Use normal approximation
2. Use T approximation with
---
class: center, middle, inverse
# Results
???
Only showing some settings, but results broadly consistent
---
# 3 replicates, default settings
- I.e. using the `apeglm` Student's T shrinkage
.large_fig[

]
---
# 3 replicates, default settings
Coverage of 95% CI: 91%
.large_fig[

]
---
# 3 replicates, no shrinkage
Coverage of 95% CI: 94%
.large_fig[

]
???
We are kind to the frequentist, because we are not testing all possible values.
---
# 3 replicates, T
Coverage of 95% CI: 98%
.large_fig[

]
---
# 20 replicates, default settings
Coverage of 95% CI: 93.5%
.large_fig[

]
---
# Multiple comparisons
Correction for multiple comparisons applies also to CIs!
--
E.g., for the 3 replicates without shrinkage:
95% CI coverage: 94%
95% CI coverage when p < 0.1: 67%
---
# DESeq - conclusions
- The CIs of DESeq2 can be slightly miscalibrated
--
- Especially with few replicates
--
- p-values still valid
--
- Bayesian interpretation of DESeq2 results is _somewhat_ possible
--
- Correct CIs for multiple comparisons
---
# Thank you - Questions?
https://github.com/cas-bioinf/SBCDESeq2
Talts et al. 2020 (http://www.stat.columbia.edu/~gelman/research/unpublished/sbc.pdf)
`SBC` R package
https://github.com/hyunjimoon/SBC/
This work was supported by ELIXIR CZ research infrastructure project (MEYS Grant No: LM2018131) including access to computing and storage facilities.
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"highlightStyle": "github",
"highlightLines": true,
"countIncrementalSlides": false
});
if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
window.dispatchEvent(new Event('resize'));
});
(function(d) {
var s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
if (!r) return;
s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
d.head.appendChild(s);
})(document);
(function(d) {
var el = d.getElementsByClassName("remark-slides-area");
if (!el) return;
var slide, slides = slideshow.getSlides(), els = el[0].children;
for (var i = 1; i < slides.length; i++) {
slide = slides[i];
if (slide.properties.continued === "true" || slide.properties.count === "false") {
els[i - 1].className += ' has-continuation';
}
}
var s = d.createElement("style");
s.type = "text/css"; s.innerHTML = "@media print { .has-continuation { display: none; } }";
d.head.appendChild(s);
})(document);
// delete the temporary CSS (for displaying all slides initially) when the user
// starts to view slides
(function() {
var deleted = false;
slideshow.on('beforeShowSlide', function(slide) {
if (deleted) return;
var sheets = document.styleSheets, node;
for (var i = 0; i < sheets.length; i++) {
node = sheets[i].ownerNode;
if (node.dataset["target"] !== "print-only") continue;
node.parentNode.removeChild(node);
}
deleted = true;
});
})();
// add `data-at-shortcutkeys` attribute to <body> to resolve conflicts with JAWS
// screen reader (see PR #262)
(function(d) {
let res = {};
d.querySelectorAll('.remark-help-content table tr').forEach(tr => {
const t = tr.querySelector('td:nth-child(2)').innerText;
tr.querySelectorAll('td:first-child .key').forEach(key => {
const k = key.innerText;
if (/^[a-z]$/.test(k)) res[k] = t; // must be a single letter (key)
});
});
d.body.setAttribute('data-at-shortcutkeys', JSON.stringify(res));
})(document);
(function() {
"use strict"
// Replace <script> tags in slides area to make them executable
var scripts = document.querySelectorAll(
'.remark-slides-area .remark-slide-container script'
);
if (!scripts.length) return;
for (var i = 0; i < scripts.length; i++) {
var s = document.createElement('script');
var code = document.createTextNode(scripts[i].textContent);
s.appendChild(code);
var scriptAttrs = scripts[i].attributes;
for (var j = 0; j < scriptAttrs.length; j++) {
s.setAttribute(scriptAttrs[j].name, scriptAttrs[j].value);
}
scripts[i].parentElement.replaceChild(s, scripts[i]);
}
})();
(function() {
var links = document.getElementsByTagName('a');
for (var i = 0; i < links.length; i++) {
if (/^(https?:)?\/\//.test(links[i].getAttribute('href'))) {
links[i].target = '_blank';
}
}
})();
// adds .remark-code-has-line-highlighted class to <pre> parent elements
// of code chunks containing highlighted lines with class .remark-code-line-highlighted
(function(d) {
const hlines = d.querySelectorAll('.remark-code-line-highlighted');
const preParents = [];
const findPreParent = function(line, p = 0) {
if (p > 1) return null; // traverse up no further than grandparent
const el = line.parentElement;
return el.tagName === "PRE" ? el : findPreParent(el, ++p);
};
for (let line of hlines) {
let pre = findPreParent(line);
if (pre && !preParents.includes(pre)) preParents.push(pre);
}
preParents.forEach(p => p.classList.add("remark-code-has-line-highlighted"));
})(document);</script>
<script>
slideshow._releaseMath = function(el) {
var i, text, code, codes = el.getElementsByTagName('code');
for (i = 0; i < codes.length;) {
code = codes[i];
if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
text = code.textContent;
if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
/^\$\$(.|\s)+\$\$$/.test(text) ||
/^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
code.outerHTML = code.innerHTML; // remove <code></code>
continue;
}
}
i++;
}
};
slideshow._releaseMath(document);
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
if (location.protocol !== 'file:' && /^https?:/.test(script.src))
script.src = script.src.replace(/^https?:/, '');
document.getElementsByTagName('head')[0].appendChild(script);
})();
</script>
</body>
</html>