forked from awjuliani/DeepRL-Agents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
A3C-Doom.py
378 lines (320 loc) · 17.1 KB
/
A3C-Doom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# coding: utf-8
# # Simple Reinforcement Learning with Tensorflow Part 8: Asynchronus Advantage Actor-Critic (A3C)
#
# This iPython notebook includes an implementation of the [A3C algorithm](https://arxiv.org/pdf/1602.01783.pdf). In it we use A3C to solve a simple 3D Doom challenge using the [VizDoom engine](http://vizdoom.cs.put.edu.pl/). For more information on A3C, see the accompanying [Medium post](https://medium.com/p/c88f72a5e9f2/edit).
#
# This tutorial requires that VizDoom is installed. It can be easily obtained with:
#
# `pip install vizdoom`
#
# We also require `basic.wad` and `helper.py`, both of which are available from the [DeepRL-Agents github repo](https://github.com/awjuliani/DeepRL-Agents).
#
# While training is taking place, statistics on agent performance are available from Tensorboard. To launch it use:
#
# `tensorboard --logdir=worker_0:'./train_0',worker_1:'./train_1',worker_2:'./train_2',worker_3:'./train_3'`
# In[ ]:
import threading
import multiprocessing
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.contrib.slim as slim
import scipy.signal
#get_ipython().magic(u'matplotlib inline')
# TODO: rm import *
from helper import *
from vizdoom import *
from random import choice
from time import sleep
from time import time
# ### Helper Functions
# In[ ]:
# Copies one set of variables to another.
# Used to set worker network parameters to those of global network.
def update_target_graph(from_scope,to_scope):
from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, from_scope)
to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)
op_holder = []
for from_var,to_var in zip(from_vars,to_vars):
op_holder.append(to_var.assign(from_var))
return op_holder
# Processes Doom screen image to produce cropped and resized image.
def process_frame(frame):
s = frame[10:-10,30:-30]
s = scipy.misc.imresize(s,[84,84])
s = np.reshape(s,[np.prod(s.shape)]) / 255.0
return s
# Discounting function used to calculate discounted returns.
def discount(x, gamma):
return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
#Used to initialize weights for policy and value output layers
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
# ### Actor-Critic Network
# In[ ]:
class AC_Network():
def __init__(self,s_size,a_size,scope,trainer):
with tf.variable_scope(scope):
#Input and visual encoding layers
self.inputs = tf.placeholder(shape=[None,s_size],dtype=tf.float32)
self.imageIn = tf.reshape(self.inputs,shape=[-1,84,84,1])
self.conv1 = slim.conv2d(activation_fn=tf.nn.elu,
inputs=self.imageIn,num_outputs=16,
kernel_size=[8,8],stride=[4,4],padding='VALID')
self.conv2 = slim.conv2d(activation_fn=tf.nn.elu,
inputs=self.conv1,num_outputs=32,
kernel_size=[4,4],stride=[2,2],padding='VALID')
hidden = slim.fully_connected(slim.flatten(self.conv2),256,activation_fn=tf.nn.elu)
#Recurrent network for temporal dependencies
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(256,state_is_tuple=True)
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
self.state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
self.state_in = (c_in, h_in)
rnn_in = tf.expand_dims(hidden, [0])
step_size = tf.shape(self.imageIn)[:1]
state_in = tf.nn.rnn_cell.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
self.state_out = (lstm_c[:1, :], lstm_h[:1, :])
rnn_out = tf.reshape(lstm_outputs, [-1, 256])
#Output layers for policy and value estimations
self.policy = slim.fully_connected(rnn_out,a_size,
activation_fn=tf.nn.softmax,
weights_initializer=normalized_columns_initializer(0.01),
biases_initializer=None)
self.value = slim.fully_connected(rnn_out,1,
activation_fn=None,
weights_initializer=normalized_columns_initializer(1.0),
biases_initializer=None)
#Only the worker network need ops for loss functions and gradient updating.
if scope != 'global':
self.actions = tf.placeholder(shape=[None],dtype=tf.int32)
self.actions_onehot = tf.one_hot(self.actions,a_size,dtype=tf.float32)
self.target_v = tf.placeholder(shape=[None],dtype=tf.float32)
self.advantages = tf.placeholder(shape=[None],dtype=tf.float32)
self.responsible_outputs = tf.reduce_sum(self.policy * self.actions_onehot, [1])
#Loss functions
self.value_loss = 0.5 * tf.reduce_sum(tf.square(self.target_v - tf.reshape(self.value,[-1])))
self.entropy = - tf.reduce_sum(self.policy * tf.log(self.policy))
self.policy_loss = -tf.reduce_sum(tf.log(self.responsible_outputs)*self.advantages)
self.loss = 0.5 * self.value_loss + self.policy_loss - self.entropy * 0.01
#Get gradients from local network using local losses
local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
self.gradients = tf.gradients(self.loss,local_vars)
self.var_norms = tf.global_norm(local_vars)
grads,self.grad_norms = tf.clip_by_global_norm(self.gradients,40.0)
#Apply local gradients to global network
global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'global')
self.apply_grads = trainer.apply_gradients(zip(grads,global_vars))
# ### Worker Agent
# In[ ]:
class Worker():
def __init__(self,game,name,s_size,a_size,trainer,model_path,global_episodes):
self.name = "worker_" + str(name)
self.number = name
self.model_path = model_path
self.trainer = trainer
self.global_episodes = global_episodes
self.increment = self.global_episodes.assign_add(1)
self.episode_rewards = []
self.episode_lengths = []
self.episode_mean_values = []
self.summary_writer = tf.summary.FileWriter("train_"+str(self.number))
#Create the local copy of the network and the tensorflow op to copy global paramters to local network
self.local_AC = AC_Network(s_size,a_size,self.name,trainer)
self.update_local_ops = update_target_graph('global',self.name)
#The Below code is related to setting up the Doom environment
game.set_doom_scenario_path("basic.wad") #This corresponds to the simple task we will pose our agent
game.set_doom_map("map01")
game.set_screen_resolution(ScreenResolution.RES_160X120)
game.set_screen_format(ScreenFormat.GRAY8)
game.set_render_hud(False)
game.set_render_crosshair(False)
game.set_render_weapon(True)
game.set_render_decals(False)
game.set_render_particles(False)
game.add_available_button(Button.MOVE_LEFT)
game.add_available_button(Button.MOVE_RIGHT)
game.add_available_button(Button.ATTACK)
game.add_available_game_variable(GameVariable.AMMO2)
game.add_available_game_variable(GameVariable.POSITION_X)
game.add_available_game_variable(GameVariable.POSITION_Y)
game.set_episode_timeout(300)
game.set_episode_start_time(10)
game.set_window_visible(False)
game.set_sound_enabled(False)
game.set_living_reward(-1)
game.set_mode(Mode.PLAYER)
game.init()
self.actions = [[True,False,False],[False,True,False],[False,False,True]]
#End Doom set-up
self.env = game
def train(self,rollout,sess,gamma,bootstrap_value):
rollout = np.array(rollout)
observations = rollout[:,0]
actions = rollout[:,1]
rewards = rollout[:,2]
next_observations = rollout[:,3]
values = rollout[:,5]
# Here we take the rewards and values from the rollout, and use them to
# generate the advantage and discounted returns.
# The advantage function uses "Generalized Advantage Estimation"
self.rewards_plus = np.asarray(rewards.tolist() + [bootstrap_value])
discounted_rewards = discount(self.rewards_plus,gamma)[:-1]
self.value_plus = np.asarray(values.tolist() + [bootstrap_value])
advantages = rewards + gamma * self.value_plus[1:] - self.value_plus[:-1]
advantages = discount(advantages,gamma)
# Update the global network using gradients from loss
# Generate network statistics to periodically save
rnn_state = self.local_AC.state_init
feed_dict = {self.local_AC.target_v:discounted_rewards,
self.local_AC.inputs:np.vstack(observations),
self.local_AC.actions:actions,
self.local_AC.advantages:advantages,
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]}
v_l,p_l,e_l,g_n,v_n,_ = sess.run([self.local_AC.value_loss,
self.local_AC.policy_loss,
self.local_AC.entropy,
self.local_AC.grad_norms,
self.local_AC.var_norms,
self.local_AC.apply_grads],
feed_dict=feed_dict)
return v_l / len(rollout),p_l / len(rollout),e_l / len(rollout), g_n,v_n
def work(self,max_episode_length,gamma,sess,coord,saver):
episode_count = sess.run(self.global_episodes)
total_steps = 0
print "Starting worker " + str(self.number)
with sess.as_default(), sess.graph.as_default():
while not coord.should_stop():
sess.run(self.update_local_ops)
episode_buffer = []
episode_values = []
episode_frames = []
episode_reward = 0
episode_step_count = 0
d = False
self.env.new_episode()
s = self.env.get_state().screen_buffer
episode_frames.append(s)
s = process_frame(s)
rnn_state = self.local_AC.state_init
while self.env.is_episode_finished() == False:
#Take an action using probabilities from policy network output.
a_dist,v,rnn_state = sess.run([self.local_AC.policy,self.local_AC.value,self.local_AC.state_out],
feed_dict={self.local_AC.inputs:[s],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})
a = np.random.choice(a_dist[0],p=a_dist[0])
a = np.argmax(a_dist == a)
r = self.env.make_action(self.actions[a]) / 100.0
d = self.env.is_episode_finished()
if d == False:
s1 = self.env.get_state().screen_buffer
episode_frames.append(s1)
s1 = process_frame(s1)
else:
s1 = s
episode_buffer.append([s,a,r,s1,d,v[0,0]])
episode_values.append(v[0,0])
episode_reward += r
s = s1
total_steps += 1
episode_step_count += 1
# If the episode hasn't ended, but the experience buffer is full, then we
# make an update step using that experience rollout.
if len(episode_buffer) == 30 and d != True and episode_step_count != max_episode_length - 1:
# Since we don't know what the true final return is, we "bootstrap" from our current
# value estimation.
v1 = sess.run(self.local_AC.value,
feed_dict={self.local_AC.inputs:[s],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})[0,0]
v_l,p_l,e_l,g_n,v_n = self.train(episode_buffer,sess,gamma,v1)
episode_buffer = []
sess.run(self.update_local_ops)
if d == True:
break
self.episode_rewards.append(episode_reward)
self.episode_lengths.append(episode_step_count)
self.episode_mean_values.append(np.mean(episode_values))
# Update the network using the experience buffer at the end of the episode.
if len(episode_buffer) != 0:
v_l,p_l,e_l,g_n,v_n = self.train(episode_buffer,sess,gamma,0.0)
# Periodically save gifs of episodes, model parameters, and summary statistics.
if episode_count % 5 == 0 and episode_count != 0:
if self.name == 'worker_0' and episode_count % 25 == 0:
time_per_step = 0.05
images = np.array(episode_frames)
make_gif(images,'./frames/image'+str(episode_count)+'.gif',
duration=len(images)*time_per_step,true_image=True,salience=False)
if episode_count % 250 == 0 and self.name == 'worker_0':
saver.save(sess,self.model_path+'/model-'+str(episode_count)+'.cptk')
print "Saved Model"
mean_reward = np.mean(self.episode_rewards[-5:])
mean_length = np.mean(self.episode_lengths[-5:])
mean_value = np.mean(self.episode_mean_values[-5:])
summary = tf.Summary()
summary.value.add(tag='Perf/Reward', simple_value=float(mean_reward))
summary.value.add(tag='Perf/Length', simple_value=float(mean_length))
summary.value.add(tag='Perf/Value', simple_value=float(mean_value))
summary.value.add(tag='Losses/Value Loss', simple_value=float(v_l))
summary.value.add(tag='Losses/Policy Loss', simple_value=float(p_l))
summary.value.add(tag='Losses/Entropy', simple_value=float(e_l))
summary.value.add(tag='Losses/Grad Norm', simple_value=float(g_n))
summary.value.add(tag='Losses/Var Norm', simple_value=float(v_n))
self.summary_writer.add_summary(summary, episode_count)
self.summary_writer.flush()
if self.name == 'worker_0':
sess.run(self.increment)
episode_count += 1
# In[ ]:
max_episode_length = 300
gamma = .99 # discount rate for advantage estimation and reward discounting
s_size = 7056 # Observations are greyscale frames of 84 * 84 * 1
a_size = 3 # Agent can move Left, Right, or Fire
load_model = False
model_path = './model'
# In[ ]:
tf.reset_default_graph()
if not os.path.exists(model_path):
os.makedirs(model_path)
#Create a directory to save episode playback gifs to
if not os.path.exists('./frames'):
os.makedirs('./frames')
with tf.device("/cpu:0"):
global_episodes = tf.Variable(0,dtype=tf.int32,name='global_episodes',trainable=False)
trainer = tf.train.AdamOptimizer(learning_rate=1e-4)
master_network = AC_Network(s_size,a_size,'global',None) # Generate global network
num_workers = multiprocessing.cpu_count() # Set workers ot number of available CPU threads
workers = []
# Create worker classes
for i in range(num_workers):
workers.append(Worker(DoomGame(),i,s_size,a_size,trainer,model_path,global_episodes))
saver = tf.train.Saver(max_to_keep=5)
with tf.Session() as sess:
coord = tf.train.Coordinator()
if load_model == True:
print 'Loading Model...'
ckpt = tf.train.get_checkpoint_state(model_path)
saver.restore(sess,ckpt.model_checkpoint_path)
else:
sess.run(tf.global_variables_initializer())
# This is where the asynchronous magic happens.
# Start the "work" process for each worker in a separate threat.
worker_threads = []
for worker in workers:
worker_work = lambda: worker.work(max_episode_length,gamma,sess,coord,saver)
t = threading.Thread(target=(worker_work))
t.start()
worker_threads.append(t)
coord.join(worker_threads)