-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtest_denoiser.py
130 lines (85 loc) · 4.28 KB
/
test_denoiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import os
import argparse
from tqdm import tqdm
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import scipy.io as sio
from networks.MIRNet_model import MIRNet
from networks.MPRNet import MPRNet
from networks.RIDNet.ridnet import RIDNET
from dataloaders.data_rgb import get_validation_data_real
import utils
from skimage import img_as_ubyte
parser = argparse.ArgumentParser(description='noise_removal')
## --------------- input dir ----------------------------
# parser.add_argument('--input_dir', default='./datasets/SIDD/',
# type=str, help='Directory of validation images')
# parser.add_argument('--input_dir', default='./datasets/Nam/',
# type=str, help='Directory of validation images')
parser.add_argument('--input_dir', default='./datasets/PolyU/',
type=str, help='Directory of validation images')
# --------------------- selected method -----------------------
parser.add_argument('--method', default='no_model',
type=str, help='Model for testing')
# ----------------------- output dir ---------------------------
# parser.add_argument('--result_dir', default='./results/SIDD/noise_removal/',
# type=str, help='Directory for results')
# parser.add_argument('--result_dir', default='./results/Nam/noise_removal/',
# type=str, help='Directory for results')
parser.add_argument('--result_dir', default='./results/PolyU/noise_removal/',
type=str, help='Directory for results')
# ------------------------ weights dir ----------------------------
# parser.add_argument('--weights', default='./checkpoints_MIRNet/model_best.pth',
# type=str, help='Path to weights')
# parser.add_argument('--weights', default='/data/hxw/MIRNet_Codes/checkpoints_RIDNet_Nam/Denoising/models/RIDNet/model_best.pth',
# type=str, help='Path to weights')
parser.add_argument('--weights', default='./pre-trained/MIRNet_polyu.pth',
type=str, help='Path to weights')
# parser.add_argument('--weights', default='/data/hxw/MIRNet_Codes/checkpoints_finetune_MIRNet_official/Denoising/models/MIRNet/model_best.pth',
# type=str, help='Path to weights')
parser.add_argument('--gpus', default='0', type=str, help='CUDA_VISIBLE_DEVICES')
parser.add_argument('--bs', default=1, type=int, help='Batch size for dataloader')
parser.add_argument('--save_images', default=1, action='store_true', help='Save denoised images in result directory')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
utils.mkdir(args.result_dir)
test_dataset = get_validation_data_real(args.input_dir)
test_loader = DataLoader(dataset=test_dataset, batch_size=args.bs, shuffle=False, num_workers=12, drop_last=False)
# model_restoration = SIMNet()
if args.method == 'mirnet':
model_restoration = MIRNet()
if args.method == 'ridnet':
model_restoration = RIDNET()
# model_restoration = RIDNET()
utils.load_checkpoint(model_restoration,args.weights)
print("===>Testing using weights: ", args.weights)
model_restoration.cuda()
model_restoration=nn.DataParallel(model_restoration)
model_restoration.eval()
with torch.no_grad():
psnr_val_rgb = []
ssim_val_rgb = []
for ii, data_test in enumerate(tqdm(test_loader), 0):
rgb_gt = data_test[0].cuda()
rgb_noisy = data_test[1].cuda()
filenames = data_test[2]
rgb_restored = model_restoration(rgb_noisy)
# rgb_restored = rgb_restored[0] # for MPRNet
rgb_restored = torch.clamp(rgb_restored,0,1)
psnr_val_rgb.append(utils.batch_PSNR(rgb_restored, rgb_gt, 1.))
ssim_val_rgb.append(utils.batch_SSIM(rgb_restored, rgb_gt))
rgb_gt = rgb_gt.permute(0, 2, 3, 1).cpu().detach().numpy()
rgb_noisy = rgb_noisy.permute(0, 2, 3, 1).cpu().detach().numpy()
rgb_restored = rgb_restored.permute(0, 2, 3, 1).cpu().detach().numpy()
if args.save_images:
for batch in range(len(rgb_gt)):
denoised_img = img_as_ubyte(rgb_restored[batch])
utils.save_img(args.result_dir + filenames[batch][:-4] + '.png', denoised_img)
psnr_val_rgb = sum(psnr_val_rgb)/len(psnr_val_rgb)
ssim_val_rgb = sum(ssim_val_rgb)/len(ssim_val_rgb)
print("PSNR: %.2f " %(psnr_val_rgb))
print("SSIM: %.3f " %(ssim_val_rgb))