-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze.py
executable file
·271 lines (239 loc) · 9.48 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
import os
import lxml
import re
import sys
import nltk
import csv
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from collections import defaultdict
from difflib import SequenceMatcher
from nltk import word_tokenize
class Analyze(object):
TEMPLATE = "%11s"
def __init__(self):
self._tasks = {}
self.sid = SentimentIntensityAnalyzer()
def add_row(self, row):
task_id = row['id'].rsplit("_", 1)[0]
if task_id not in self._tasks:
self._tasks[task_id] = Task(task_id)
self._tasks[task_id].append(row)
def summarize(self):
func_map = {
"REPE": self._repeated_by_system,
"REPE2": self._repeated_by_system_two,
"SIGH": self._sigh_by_system,
"ASR": self._asr_by_system,
"SENT_COMP": self._sentiment_by_system,
"SENT_POS": self._pos_by_system,
"SENT_NEG": self._neg_by_system,
"TURNS": self._turns_by_system,
"LEN_SYS": self._system_len_by_system,
"LEN_USR": self._usr_len_by_system,
}
print "Total: ", len(self._tasks)
heading = sorted(func_map.iterkeys())
print " SYS TOTAL",
for head in heading:
print self.TEMPLATE % (head),
print ""
for year in ("2000", "2001"):
print "Year: %s" % (year)
for system in sorted(self._systems, key=self._systems.get, reverse=True):
total = self._systems[system][year]
print "%5s: %5d" % (system, total),
for att in heading:
func = func_map.get(att)
out = func(system, total, year=year)
print self.TEMPLATE % (out),
print ""
def _repeated_by_system(self, system, total, year=None):
count = self._by_system(system, "_have_repeated", year=year)
if total == 0 and count == 0:
return ""
return "%5d(%.2f)" % (count, float(count)/float(total))
def _repeated_by_system_two(self, system, total, year=None):
count = self._by_system(system, "_have_repeated_two", year=year)
if total == 0 and count == 0:
return ""
return "%5d(%.2f)" % (count, float(count)/float(total))
def _sigh_by_system(self, system, total, year=None):
count = self._by_system(system, "_have_sigh", year=year)
if total == 0 and count == 0:
return ""
return "%5d (%.2f)" % (count, float(count)/float(total))
def _by_system(self, system, key, year=None):
count = 0
for task in filter(lambda t: t.system == system and t.year == year,
self._tasks.itervalues()):
if getattr(task, key):
count += 1
return count
def _value_by_system(self, system, key, year=None):
s = []
for task in filter(lambda t: t.system == system and t.year == year,
self._tasks.itervalues()):
s.append(getattr(task, key))
return s
def _asr_by_system(self, system, count, year=None):
s = self._value_by_system(system, "_asr_score", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%.2f" % ret)
def _system_len_by_system(self, system, count, year=None):
s = self._value_by_system(system, "_system_len", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%.1f" % ret)
def _usr_len_by_system(self, system, count, year=None):
s = self._value_by_system(system, "_usr_len", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%.1f" % ret)
def _sentiment_by_system(self, system, count, year=None):
s = self._value_by_system(system, "_compound", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%.2f" % ret)
def _pos_by_system(self, system, count, year=None):
s = self._value_by_system(system, "_pos", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%.2f" % ret)
def _neg_by_system(self, system, count, year=None):
s = self._value_by_system(system, "_neg", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%.2f" % ret)
def _turns_by_system(self, system, count, year=None):
"""Calculate the average number of turns by system"""
s = self._value_by_system(system, "_turns", year=year)
if count == 0 and len(s) == 0:
return ""
ret = sum(s)/float(len(s))
return self.TEMPLATE % ("%d" % ret)
def analyze(self):
self._systems = defaultdict(lambda: defaultdict(int))
for task in self._tasks.itervalues():
self._systems[task.system][task.year] += 1
task.analyze(self)
class Sentence(object):
def __init__(self, row):
self.id = row['id']
self.system = row['question']
self.asr = row['response_asr']
self.transcribed = row['response_transcription']
self.filtered = []
self._compound = 0.0
self.transcribed_tokens = []
(self.transcribed_tokens, self.filtered) = self.filter_bracket(word_tokenize(self.transcribed))
self.transcribed_sanitized = " ".join(self.transcribed_tokens)
self.system_tokens = word_tokenize(self.system)
self._system_len = len(self.system_tokens)
self._usr_len = len(self.transcribed_tokens)
# print self.id, self.filtered, self.transcribed_sanitized
def filter_bracket(self, tokens):
ret = []
filtered = []
bracket = 0
for t in tokens:
if t == ']': bracket -= 1
elif t == '[': bracket += 1
if bracket > 0 or t == ']':
if t not in ["[", "]"]:
filtered.append(t)
continue
ret.append(t)
return (ret, filtered)
class Task(object):
def __init__(self, task_id):
self.id = task_id
self._sentences = []
task_id_chunks = task_id.split("_")
self.system = task_id_chunks[-2]
self.year = task_id_chunks[0]
# attributes
self._have_repeated = False
self._have_repeated_two = False
self._have_sigh = False
self._compound = 0.0
self._asr_score = 0.0
self._turns = 0
def append(self, row):
self._sentences.append(Sentence(row))
def _similarity(self, s1, s2):
s = SequenceMatcher(lambda x: x==" ", s1, s2)
return s.ratio()
def _analyze_repeated_questions(self):
"""Analyze for repeated questions. If similarity score > 0.9 then true."""
for i in range(1, len(self._sentences)):
score = self._similarity(self._sentences[i-1].system,
self._sentences[i].system)
if score >= 0.95:
self._have_repeated = True
if i >= 2:
score_2 = self._similarity(self._sentences[i-2].system,
self._sentences[i].system)
if score_2 >= 0.95:
self._have_repeated_two = True
break
def _analyze_asr(self):
"""Compare the similarity of the transcribed_sanitized, and asr."""
scores = []
for i in range(len(self._sentences)):
score = self._similarity(self._sentences[i].transcribed_sanitized.lower(),
self._sentences[i].asr.lower())
scores.append(score)
self._asr_score = sum(scores)/float(len(scores))
def _analyze_sentiment(self, parent):
"""Look for [sigh] in the transcribed text. Calculate the "compound" sentiment
in the transcribed_sanitized text"""
for s in self._sentences:
if 'sigh' in s.filtered:
self._have_sigh = True
break
d = {
'_compound': [],
'_neg': [],
'_pos': [],
}
for s in self._sentences:
ss = parent.sid.polarity_scores(s.transcribed_sanitized)
s._compound = ss.get('compound')
for key in ('compound', 'pos', 'neg'):
v = ss.get(key)
k = "_" + key
setattr(s, k, v)
d[k].append(v)
for k in d.iterkeys():
if len(d[k]) > 0:
setattr(self, k, sum(d[k])/float(len(d[k])))
else:
setattr(self, k, 0.0)
def analyze(self, parent):
self._turns = len(self._sentences)
self._system_len = sum([s._system_len for s in self._sentences])/self._turns
self._usr_len = sum([s._usr_len for s in self._sentences])/self._turns
self._analyze_repeated_questions()
self._analyze_sentiment(parent)
self._analyze_asr()
def main(argv=sys.argv):
filepath = "raw.csv"
if len(argv) > 1:
filepath = argv[1]
a = Analyze()
with open('raw.csv', 'rb') as csvfile:
raw_reader = csv.DictReader(csvfile)
for row in raw_reader:
a.add_row(row)
a.analyze()
a.summarize()
if __name__ == "__main__":
main()