-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
252 lines (187 loc) · 7.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
from tqdm import tqdm
import os
import argparse
from models import *
from utils import progress_bar
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--sort', action='store_true', help='sort the dataset')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
def flatten(x):
return x.view(x.numel(), -1)
class SortingNetwork(nn.Module):
def __init__(self):
super(SortingNetwork, self).__init__()
self.vgg = models.vgg16(pretrained=True)
self.vgg.features = nn.Sequential(
*(self.vgg.features[i] for i in range(29)))
def forward(self, image):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
normalized_image = normalize(image.data)
feature_representation = self.vgg.features(Variable(normalized_image))
return flatten(feature_representation)
def __str__(self):
return str(self.vgg.features)
sorting_network = SortingNetwork()
if use_cuda:
sorting_network.cuda()
trainset = torchvision.datasets.CIFAR10(root='./data',
train=True,
download=True,
transform=transform_train)
def sorting_network_prediction(tensor):
variable_tensor = Variable(tensor)
if use_cuda:
variable_tensor = variable_tensor.cuda()
tensor_prediction = sorting_network(variable_tensor)
return tensor_prediction.data
def find_average_tensor(dataset):
print('Finding average tensor of dataset...')
temp_dataloader = torch.utils.data.DataLoader(trainset,
batch_size=1,
num_workers=1)
sum_tensor = torch.FloatTensor(torch.zeros(1, 512, 2, 2))
if use_cuda:
sum_tensor = sum_tensor.cuda()
dataset_size = len(temp_dataloader)
for batch_idx, (inputs, targets) in enumerate(tqdm(temp_dataloader)):
if use_cuda:
inputs = inputs.cuda()
input_prediction = sorting_network_prediction(inputs)
sum_tensor = input_prediction + flatten(sum_tensor)
average_tensor = sum_tensor / dataset_size
if use_cuda:
average_tensor = average_tensor.cpu()
return average_tensor
from scipy.spatial.distance import cosine
def key_function(dataset_sample, average_prediction):
prediction = sorting_network_prediction(torch.unsqueeze(dataset_sample[0], 0))
squeezed_prediction = torch.squeeze(prediction)
similarity = cosine(average_prediction.cpu().numpy(), squeezed_prediction.cpu().numpy())
return similarity
if args.sort:
average_prediction = find_average_tensor(trainset)
trainset = sorted(trainset, key=lambda x: key_function(x, average_prediction))[::-1]
# sorted(trainset, key=)
train_batch_size = 128
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=train_batch_size,
shuffle=False,
num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data',
train=False,
download=False,
transform=transform_test)
test_batch_size = 100
testloader = torch.utils.data.DataLoader(testset,
batch_size=test_batch_size,
shuffle=False,
num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7')
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
else:
print('==> Building model..')
# net = VGG('VGG19')
net = ResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100. * correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)