-
Notifications
You must be signed in to change notification settings - Fork 10
/
evaluate_dream_gpt.py
455 lines (423 loc) · 19.4 KB
/
evaluate_dream_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (2024) Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import ast
import time
from typing import List, Dict
from tqdm import tqdm
from pathos.multiprocessing import ProcessingPool as Pool
import func_timeout
from func_timeout import func_set_timeout
from tools.gpt_api import azure_gpt4_client
import re
import os
from copy import deepcopy
from traceback import format_exc
def count_f1(r, p):
return 2*r*p/(r+p)
@func_set_timeout(60)
def call_azure_gpt_api(events, reference, prediction, model):
if len(events) == 0:
events = [reference.replace('\n', ' ')]
completion = azure_gpt4_client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content":
"Given a video description and a list of events. For each event, classify the relationship between the video description and the event into three classes: entailment, neutral, contradiction.\n"
"- \"entailment\" means that the video description entails the event.\n"
"- \"contradiction\" means that some detail in the video description contradicts with the event.\n"
"- \"neutral\" means that the relationship is neither \"entailment\" or \"contradiction\".\n\n"
f"Video Description:\n{prediction}\n\n"
f"Events: {events}\n"
"Output a JSON formed as:\n"
"{\n"
" \"events\": [\n"
" {\"event\": \"copy an event here\", \"relationship\": \"put class name here\", \"reason\": \"give your reason here\"},\n"
" ...\n"
" ]\n"
"}\n\n"
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only output the JSON. Output:"
}
]
)
return json.loads(completion.model_dump_json())['choices'][0]['message']['content']
@func_set_timeout(60)
def call_azure_gpt_api_for_events(caption, model):
completion = azure_gpt4_client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content":
"Bellow is a description of a video clip:\n"
f"Video Description: {caption}\n\n"
"Extract at most 10 key events from the above video description paragraph. Requirements\n:"
"- An event must include an action, motion or movement (NOT STATIC INFORMATION). DON'T repeat same events.\n"
"- Every event is represented by a brief sentence within 10 words, with a subject, a predicate and optionally an object, avoid unnecessary appearance descriptions.\n"
"- Every event must be atomic, meaning that it cannot be further split into multiple events.\n"
"- Scene cuts and camera motions are NOT events.\n"
"- Substitute pronouns by the nouns they refer to.\n\n"
"Please generate the response in the form of a Python dictionary string with keys \"events\". The value of \"events\" is a List(str), of which each item is an event. "
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {\"events\": [event1, event2, ...]}"
}
]
)
return json.loads(completion.model_dump_json())['choices'][0]['message']['content']
def try_call_api_for_eval(events, answer, prediction, model, verbose=False, max_retry=-1):
retry_exceptions = [
"qpm limit, you can apply for expansion on the platform",
"reach token limit, you can apply for expansion on the platform",
"Request timed out",
"The service is temporarily unable to process your request.",
"upstream failed to respond",
"502 Bad Gateway",
"429 Too Many Requests",
"Retrying request to"
]
retry = 0
while True and (retry<max_retry or max_retry<0):
retry += 1
try:
gpt_q = call_azure_gpt_api(events, answer, prediction, model)
gpt_q = gpt_q.strip()
gpt_q = re.sub(r'\n+', '\n', gpt_q)
gpt_q = re.sub(r'\s+', ' ', gpt_q)
if gpt_q.startswith("```json"):
gpt_q = gpt_q.replace("```json", "").replace("```", "").strip()
elif gpt_q.startswith("```python"):
gpt_q = gpt_q.replace("```python", "").replace("```", "").strip()
if not gpt_q.startswith('{'):
gpt_q = '{' + gpt_q
if not gpt_q.endswith('}'):
gpt_q = gpt_q + '}'
gpt_q = gpt_q.replace("True", "true").replace("False", "false")
gpt_q = gpt_q.replace("} {", "}, {").replace("}{", "}, {")
gpt_q = gpt_q.replace(",\n}", "\n}").replace(", \n}", "\n}").replace(", }", "}").replace(",}", "}")
gpt_q = gpt_q.replace(",\n]", "\n]").replace(", \n]", "\n]").replace(", ]", "]").replace(",]", "]")
gpt_q = gpt_q.replace("[Placeholder]", "null")
gpt_q = gpt_q.replace("{Events:", "").strip()
return gpt_q, True
except func_timeout.exceptions.FunctionTimedOut as e:
if verbose:
print(e)
except Exception as e:
e = str(e)
if verbose:
print(e)
hit = any([x in e for x in retry_exceptions])
if hit:
time.sleep(5)
else:
return e, False
return f"Exceed max try: {max_retry}", False
def try_call_api_for_events(caption, model, verbose=False):
retry_exceptions = [
"qpm limit, you can apply for expansion on the platform",
"reach token limit, you can apply for expansion on the platform",
"Request timed out",
"The service is temporarily unable to process your request.",
"upstream failed to respond",
"502 Bad Gateway",
"429 Too Many Requests",
"Retrying request to"
]
while True:
try:
gpt_q = call_azure_gpt_api_for_events(caption, model)
if gpt_q.startswith("```json"):
gpt_q = gpt_q.replace("```json", "").replace("```", "").strip()
elif gpt_q.startswith("```python"):
gpt_q = gpt_q.replace("```python", "").replace("```", "").strip()
return gpt_q, True
except func_timeout.exceptions.FunctionTimedOut as e:
if verbose:
print(e)
except Exception as e:
e = str(e)
if verbose:
print(e)
hit = any([x in e for x in retry_exceptions])
if hit:
time.sleep(5)
else:
return e, False
def extract_events(inputs, is_pred=False, max_retry=10):
data, model, verbose = inputs
if is_pred:
caption = data['prediction'].lower()
else:
caption = data['response'].lower()
caption = caption.replace("\"", "\'")
retry = 0
while True and (retry<max_retry or max_retry<0):
retry += 1
result, success = try_call_api_for_events(caption, model, verbose)
if not success:
print(f"[error]: try_call_api_for_events failed!", flush=True)
continue
try:
result = ast.literal_eval(result)
events = result['events']
if verbose:
print("pred_events=" if is_pred else "gt events=", events, ":", caption)
assert isinstance(events, list) and (len(events)==0 or isinstance(events[0], str))
return events
except Exception as e:
print(format_exc(), flush=True)
continue
print("[error]: Exceed max_retry!", flush=True)
raise ValueError("[error]: Exceed max_retry!")
def evaluate_one_sample(events, response, prediction, model, verbose, return_hit_num=False, is_recall=False, max_retry=10):
retry = 0
while True and (retry<max_retry or max_retry<0):
retry += 1
try:
assert isinstance(events, list)
result = None
result, success = try_call_api_for_eval(events, response, prediction, model, verbose)
if not success:
print("[error]: try_call_api_for_eval failed!", flush=True)
continue
try:
events_filled = json.loads(result)
events_filled = events_filled['events']
except Exception as e:
print("load json failed:", result)
continue
assert len(events) == len(events_filled) or (len(events) == 0 and len(events_filled) == 1)
num_matched_events = 0
try:
for event in events_filled:
pred = event['relationship'].strip().lower()
assert pred in ['entailment', 'neutral', 'contradiction']
pos_classes = ['entailment'] if is_recall else ['entailment', 'neutral']
if pred in pos_classes:
num_matched_events += 1
except Exception as e:
print(f"Invalid response: {events_filled}")
continue
if len(events) == 0:
motion_score = 1.0
else:
motion_score = num_matched_events / len(events)
if return_hit_num:
return motion_score, events_filled, f"hit: {num_matched_events} / {len(events)}"
return motion_score
except Exception as e:
print(format_exc(), flush=True)
continue
print("[error]: Exceed max_retry!", flush=True)
raise ValueError(f"[error]: Exceed max_retry!")
def process_one_sample(inputs):
data, model, verbose = inputs
response, prediction = data['response'].lower(), data['prediction'].lower()
result = None
try:
if isinstance(data.get('events', None), list):
gt_events = data['events']
else:
gt_events = extract_events(inputs, is_pred=False)
pred_events = extract_events(inputs, is_pred=True)
assert isinstance(gt_events, list) and isinstance(pred_events, list)
result = {}
motion_score_r, events_filled_r, hit_num_r = evaluate_one_sample(gt_events, response, prediction, model, verbose, return_hit_num=True, is_recall=True)
motion_score_p, events_filled_p, hit_num_p = evaluate_one_sample(pred_events, prediction, response, model, verbose, return_hit_num=True, is_recall=True)
result['score_r'] = motion_score_r
result['score_p'] = motion_score_p
result['eval_infos'] = {
'idx': data['idx'],
'gt': response,
'pred': prediction,
'events_gt': events_filled_r,
'hit_num_recall': hit_num_r,
'events_pred': events_filled_p,
"hit_num_precision": hit_num_p,
}
if 'extra_info' in data:
result['extra_info'] = data['extra_info']
except Exception as e:
if verbose:
print(e)
print(f'invalid GPT response: {result}')
result = None
return {'success': False, 'result': result, 'data': data}
return {'success': True, 'result': result, 'data': data}
class DREAMGPTMetric:
def __init__(self, dataset_name, verbose=False) -> None:
self.dataset_name = dataset_name
self.num_worker = 64
# self.model = 'gpt-35-turbo'
self.model = 'gpt-35-turbo-0125'
# self.model='gpt-4-1106-preview'
self.results = []
self.invalid_results = []
self.dataset = []
self.verbose = verbose
self.eval_infos = []
self.buckets = {
"subjects": {
'<=1': [], '==2': [], '==3': [], '>=4': []
},
"shots": {'<=1': [], '==2': [], '==3': [], '>=4': []
},
"events": {'<=3': [], 'in [4, 5]': [], 'in [6, 7]': [], '>=8': []
}
}
def add(self, data):
self.dataset.append(data)
def select_bucket(self, bucket_name, num):
for key in self.buckets[bucket_name]:
if eval(f"{num}{key}"):
return key
return ''
def add_to_bucket(self, bucket_name, data):
sub_bucket = self.select_bucket(bucket_name, data['result']['extra_info'][f'n_{bucket_name}'])
if sub_bucket:
self.buckets[bucket_name][sub_bucket].append(data)
def process(self, dataset: List[Dict]):
self._process_group_by_subtask(dataset)
def _process(self, dataset: List[Dict], subtask=None):
pool = Pool(processes = self.num_worker, )
inputs = [(d, self.model, self.verbose) for d in dataset]
results = pool.uimap(process_one_sample, inputs, chunksize = 1)
for result in tqdm(results, total = len(dataset), desc=f'eval {subtask}'):
if subtask:
result['subtask'] = subtask
self.update_metric(result)
pool.close()
pool.join()
pool.clear() # MUST
def _process_group_by_subtask(self, dataset: List[Dict]):
def _group_by_subtask(dataset):
subtasks = {}
for data in dataset:
if data['dataset'] not in subtasks:
subtasks[data['dataset']] = []
subtasks[data['dataset']].append(data)
return subtasks
subtasks = _group_by_subtask(dataset)
for subtask, subdata in subtasks.items():
self._process(subdata, subtask)
def update_metric(self, result):
if result['success']:
self.results.append(result)
else:
self.invalid_results.append(result)
def summarize_metric(self):
self._summarize_metric_by_subtask()
self._summarize_metric_by_bucket()
def _summarize_metric_by_subtask(self):
from prettytable import PrettyTable
self.table = PrettyTable(['Task', 'F1 Score', 'Action Recall', 'Action Precision', 'Success', 'Failed'])
def _group_by_subtask():
sub_results = {}
sub_invalid_results = {}
for data in self.results:
if data['subtask'] not in sub_results:
sub_results[data['subtask']] = []
sub_results[data['subtask']].append(data)
for data in self.invalid_results:
if data['subtask'] not in sub_invalid_results:
sub_invalid_results[data['subtask']] = []
sub_invalid_results[data['subtask']].append(data)
return sub_results, sub_invalid_results
sub_results, sub_invalid_results = _group_by_subtask()
overall_avg_recall = []
overall_avg_precision = []
subtasks = list(sub_results.keys())
subtasks.sort()
for subtask in subtasks:
sub_rsts = sub_results[subtask]
sub_in_rsts = sub_invalid_results.get(subtask, [])
recalls = []
precisions = []
for result in sub_rsts:
r, p, infos = result['result']['score_r'], result['result']['score_p'], result['result']['eval_infos']
recalls.append(r)
precisions.append(p)
self.eval_infos.append(infos)
avg_recall = np.average(recalls)
avg_precision = np.average(precisions)
f1 = count_f1(avg_recall, avg_precision)
overall_avg_recall.append(avg_recall)
overall_avg_precision.append(avg_precision)
task_name = subtask
self.table.add_row([task_name, round(f1, 3), round(avg_recall, 3), round(avg_precision, 3), len(sub_rsts), len(sub_in_rsts)])
overall_recall = np.average(overall_avg_recall)
overall_precision = np.average(overall_avg_precision)
overall_f1 = count_f1(overall_recall, overall_precision)
self.table.add_row(['OVERALL', round(overall_f1, 3), round(overall_recall, 3), round(overall_precision, 3), len(self.results), len(self.invalid_results)])
print(f'=====DREAM Evaluation Summary=====')
print(self.table)
def _summarize_metric_by_bucket(self):
from prettytable import PrettyTable
self.bucket_tables = []
for bucket in self.buckets:
table = PrettyTable(['Score'] + list(self.buckets[bucket].keys()))
for data in self.results:
self.add_to_bucket(bucket_name=bucket, data=data)
bucket_result = {}
for sub_bucket in self.buckets[bucket]:
recalls = []
precisions = []
for result in self.buckets[bucket][sub_bucket]:
r, p = result['result']['score_r'], result['result']['score_p']
recalls.append(r)
precisions.append(p)
avg_recall = np.average(recalls)
avg_precision = np.average(precisions)
f1 = count_f1(avg_recall, avg_precision)
bucket_result[sub_bucket] = (avg_recall, avg_precision, f1)
raw = []
scores = ['Recall', 'Precision', 'F1']
for i in range(len(scores)):
raw = [scores[i]]
for sub_bucket in bucket_result:
raw.append(round(bucket_result[sub_bucket][i], 3))
table.add_row(raw)
sample_num = ['Count']
for k in self.buckets[bucket]:
sample_num.append(len(self.buckets[bucket][k]))
table.add_row(sample_num)
bucket_info = f'\n=====DREAM Evaluation Split by Bucket #{bucket}====='
print(bucket_info)
print(table)
self.bucket_tables.append(bucket_info)
self.bucket_tables.append(deepcopy(table))
def save_results(self, pred_path):
if os.path.isdir(pred_path):
output_dir = os.path.join(pred_path, 'eval_records')
else:
output_dir = os.path.join(os.path.dirname(pred_path), 'eval_records')
os.makedirs(output_dir, exist_ok=True)
fout = open(os.path.join(output_dir, f'{self.dataset_name}_eval_result.txt'), 'w')
print(self.table, file=fout)
for bucket_info in self.bucket_tables:
print(bucket_info)
fout.close()
def save_eval_infos(self, pred_path):
if os.path.isdir(pred_path):
output_dir = os.path.join(pred_path, 'eval_records')
else:
output_dir = os.path.join(os.path.dirname(pred_path), 'eval_records')
os.makedirs(output_dir, exist_ok=True)
fout = open(os.path.join(output_dir, 'DREAM_eval_infos.jsonl'), 'w')
for info in self.eval_infos:
fout.write(json.dumps(info) +'\n')
fout.close()
print(f"DREAM evaluation information saved in: {os.path.join(output_dir, 'DREAM_eval_infos.jsonl')}", flush=True)