-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_metrics.py
209 lines (192 loc) · 9.77 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# python3.7
"""Test metrics.
NOTE: This file can be used as an example for distributed inference/evaluation.
This file only supports testing GAN related metrics (including FID, IS, KID,
GAN precision-recall, saving snapshot, and equivariance) by loading a
pre-trained generator. To test more metrics, please customize your own script.
"""
import argparse
import torch
from datasets import build_dataset
from models import build_model
from metrics import build_metric
from utils.loggers import build_logger
from utils.parsing_utils import parse_bool
from utils.parsing_utils import parse_json
from utils.dist_utils import init_dist
from utils.dist_utils import exit_dist
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(description='Run metric test.')
parser.add_argument('--dataset', type=str, required=True,
help='Path to the dataset used for metric computation.')
parser.add_argument('--model', type=str, required=True,
help='Path to the pre-trained model weights.')
parser.add_argument('--G_kwargs', type=parse_json, default={},
help='Runtime keyword arguments for generator. Please '
'wrap the argument into single quotes with '
'keywords in double quotes. Beside, remove any '
'whitespace to avoid mis-parsing. For example, to '
'turn on truncation with probability 0.5 on 2 '
'layers, pass `--G_kwargs \'{"trunc_psi":0.5,'
'"trunc_layers":2}\'`. (default: %(default)s)')
parser.add_argument('--work_dir', type=str,
default='work_dirs/metric_tests',
help='Working directory for metric test. (default: '
'%(default)s)')
parser.add_argument('--real_num', type=int, default=-1,
help='Number of real data used for testing. Negative '
'means using all data. (default: %(default)s)')
parser.add_argument('--fake_num', type=int, default=1000,
help='Number of fake data used for testing. (default: '
'%(default)s)')
parser.add_argument('--batch_size', type=int, default=16,
help='Batch size used for metric computation. '
'(default: %(default)s)')
parser.add_argument('--test_fid', type=parse_bool, default=False,
help='Whether to test FID. (default: %(default)s)')
parser.add_argument('--test_is', type=parse_bool, default=False,
help='Whether to test IS. (default: %(default)s)')
parser.add_argument('--test_kid', type=parse_bool, default=False,
help='Whether to test KID. (default: %(default)s)')
parser.add_argument('--test_gan_pr', type=parse_bool, default=False,
help='Whether to test GAN precision-recall. '
'(default: %(default)s)')
parser.add_argument('--test_snapshot', type=parse_bool, default=False,
help='Whether to test saving snapshot. '
'(default: %(default)s)')
parser.add_argument('--test_equivariance', type=parse_bool, default=False,
help='Whether to test GAN Equivariance. '
'(default: %(default)s)')
parser.add_argument('--launcher', type=str, default='pytorch',
choices=['pytorch', 'slurm'],
help='Distributed launcher. (default: %(default)s)')
parser.add_argument('--backend', type=str, default='nccl',
choices=['nccl', 'gloo', 'mpi'],
help='Distributed backend. (default: %(default)s)')
parser.add_argument('--local_rank', type=int, default=0,
help='Replica rank on the current node. This field is '
'required by `torch.distributed.launch`. '
'(default: %(default)s)')
return parser.parse_args()
def main():
"""Main function."""
args = parse_args()
# Initialize distributed environment.
init_dist(launcher=args.launcher, backend=args.backend)
# CUDNN settings.
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
state = torch.load(args.model)
G = build_model(**state['model_kwargs_init']['generator_smooth'])
G.load_state_dict(state['models']['generator_smooth'])
G.eval().cuda()
data_transform_kwargs = dict(
image_size=G.resolution, image_channels=G.image_channels)
dataset_kwargs = dict(dataset_type='ImageDataset',
root_dir=args.dataset,
annotation_path=None,
annotation_meta=None,
max_samples=args.real_num,
mirror=False,
transform_kwargs=data_transform_kwargs)
data_loader_kwargs = dict(data_loader_type='iter',
repeat=1,
num_workers=4,
prefetch_factor=2,
pin_memory=True)
data_loader = build_dataset(for_training=False,
batch_size=args.batch_size,
dataset_kwargs=dataset_kwargs,
data_loader_kwargs=data_loader_kwargs)
if torch.distributed.get_rank() == 0:
logger = build_logger('normal', logfile=None, verbose_log=True)
else:
logger = build_logger('dummy')
real_num = (len(data_loader.dataset)
if args.real_num < 0 else args.real_num)
if args.test_fid:
logger.info('========== Test FID ==========')
metric = build_metric('FID',
name=f'fid{args.fake_num}_real{real_num}',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
real_num=args.real_num,
fake_num=args.fake_num)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_is:
logger.info('========== Test IS ==========')
metric = build_metric('IS',
name=f'is{args.fake_num}',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
latent_num=args.fake_num)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_kid:
logger.info('========== Test KID ==========')
metric = build_metric('KID',
name=f'kid{args.fake_num}_real{real_num}',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
real_num=args.real_num,
fake_num=args.fake_num)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_gan_pr:
logger.info('========== Test GAN PR ==========')
metric = build_metric('GANPR',
name=f'pr{args.fake_num}_real{real_num}',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
real_num=args.real_num,
fake_num=args.fake_num)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_snapshot:
logger.info('========== Test GAN Snapshot ==========')
metric = build_metric('GANSnapshot',
name='snapshot',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
latent_num=min(args.fake_num, 50))
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
if args.test_equivariance:
logger.info('========== Test GAN Equivariance ==========')
metric = build_metric('Equivariance',
name='equivariance',
work_dir=args.work_dir,
logger=logger,
batch_size=args.batch_size,
latent_dim=G.latent_dim,
label_dim=G.label_dim,
latent_num=args.fake_num,
test_eqt=True,
test_eqt_frac=True,
test_eqr=True)
result = metric.evaluate(data_loader, G, args.G_kwargs)
metric.save(result)
# Exit distributed environment.
exit_dist()
if __name__ == '__main__':
main()