Skip to content

Latest commit

 

History

History
217 lines (198 loc) · 11 KB

README_cn.md

File metadata and controls

217 lines (198 loc) · 11 KB

(简体中文|English)

声纹识别

介绍

声纹识别是一项用计算机程序自动提取说话人特征的技术。

这个 demo 是从一个给定音频文件中提取说话人特征,它可以通过使用 PaddleSpeech 的单个命令或 python 中的几行代码来实现。

使用方法

1. 安装

请看安装文档

你可以从easy medium,hard 三种方式中选择一种方式安装。

2. 准备输入

声纹cli demo 的输入应该是一个 WAV 文件(.wav),并且采样率必须与模型的采样率相同。

可以下载此 demo 的示例音频:

# 该音频的内容是数字串 85236145389
wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav

3. 使用方法

  • 命令行 (推荐使用)

    paddlespeech vector --task spk --input 85236145389.wav
    
    echo -e "demo1 85236145389.wav" > vec.job
    paddlespeech vector --task spk --input vec.job
    
    echo -e "demo2 85236145389.wav \n demo3 85236145389.wav" | paddlespeech vector --task spk
    
    paddlespeech vector --task score --input "./85236145389.wav ./123456789.wav"
    
    echo -e "demo4 85236145389.wav 85236145389.wav \n demo5 85236145389.wav 123456789.wav" > vec.job
    paddlespeech vector --task score --input vec.job

    使用方法:

    paddlespeech vector --help

    参数:

    • input(必须输入):用于识别的音频文件。
    • task (必须输入): 用于指定 vector 处理的具体任务,默认是 spk
    • model:声纹任务的模型,默认值:ecapatdnn_voxceleb12
    • sample_rate:音频采样率,默认值:16000
    • config:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:None
    • ckpt_path:模型参数文件,若不设置则下载预训练模型使用,默认值:None
    • device:执行预测的设备,默认值:当前系统下 paddlepaddle 的默认 device。

    输出:

      [ -1.3251206    7.8606825   -4.620626     0.3000721    2.2648535
      -1.1931441    3.0647137    7.673595    -6.0044727  -12.02426
      -1.9496069    3.1269536    1.618838    -7.6383104   -1.2299773
    -12.338331     2.1373026   -5.3957124    9.717328     5.6752305
      3.7805123    3.0597172    3.429692     8.97601     13.174125
      -0.53132284   8.9424715    4.46511     -4.4262476   -9.726503
      8.399328     7.2239175   -7.435854     2.9441683   -4.3430395
    -13.886965    -1.6346735  -10.9027405   -5.311245     3.8007221
      3.8976038   -2.1230774   -2.3521194    4.151031    -7.4048667
      0.13911647   2.4626107    4.9664545    0.9897574    5.4839754
      -3.3574002   10.1340065   -0.6120171  -10.403095     4.6007543
      16.00935     -7.7836914   -4.1945305   -6.9368606    1.1789556
      11.490801     4.2380238    9.550931     8.375046     7.5089145
      -0.65707296  -0.30051577   2.8406055    3.0828028    0.730817
      6.148354     0.13766119 -13.424735    -7.7461405   -2.3227983
      -8.305252     2.9879124  -10.995229     0.15211068  -2.3820348
      -1.7984174    8.495629    -5.8522367   -3.755498     0.6989711
      -5.2702994   -2.6188622   -1.8828466   -4.64665     14.078544
      -0.5495333   10.579158    -3.2160501    9.349004    -4.381078
    -11.675817    -2.8630207    4.5721755    2.246612    -4.574342
      1.8610188    2.3767874    5.6257877   -9.784078     0.64967257
      -1.4579505    0.4263264   -4.9211264   -2.454784     3.4869802
      -0.42654222   8.341269     1.356552     7.0966883  -13.102829
      8.016734    -7.1159344    1.8699781    0.208721    14.699384
      -1.025278    -2.6107233   -2.5082312    8.427193     6.9138527
      -6.2912464    0.6157366    2.489688    -3.4668267    9.921763
      11.200815    -0.1966403    7.4916005   -0.62312716  -0.25848144
      -9.947997    -0.9611041    1.1649219   -2.1907122   -1.5028487
      -0.51926106  15.165954     2.4649463   -0.9980445    7.4416637
      -2.0768049    3.5896823   -7.3055434   -7.5620847    4.323335
      0.0804418   -6.56401     -2.3148053   -1.7642345   -2.4708817
      -7.675618    -9.548878    -1.0177554    0.16986446   2.5877135
      -1.8752296   -0.36614323  -6.0493784   -2.3965611   -5.9453387
      0.9424033  -13.155974    -7.457801     0.14658108  -3.742797
      5.8414927   -1.2872906    5.5694313   12.57059      1.0939219
      2.2142086    1.9181576    6.9914207   -5.888139     3.1409824
      -2.003628     2.4434285    9.973139     5.03668      2.0051203
      2.8615603    5.860224     2.9176188   -1.6311141    2.0292206
      -4.070415    -6.831437  ]
  • Python API

    import paddle
    from paddlespeech.cli.vector import VectorExecutor
    
    vector_executor = VectorExecutor()
    audio_emb = vector_executor(
        model='ecapatdnn_voxceleb12',
        sample_rate=16000,
        config=None,  # Set `config` and `ckpt_path` to None to use pretrained model.
        ckpt_path=None,
        audio_file='./85236145389.wav',
        device=paddle.get_device())
    print('Audio embedding Result: \n{}'.format(audio_emb))
    
    test_emb = vector_executor(
        model='ecapatdnn_voxceleb12',
        sample_rate=16000,
        config=None,  # Set `config` and `ckpt_path` to None to use pretrained model.
        ckpt_path=None,
        audio_file='./123456789.wav',
        device=paddle.get_device())
    print('Test embedding Result: \n{}'.format(test_emb))
    
    # score range [0, 1]
    score = vector_executor.get_embeddings_score(audio_emb, test_emb)
    print(f"Eembeddings Score: {score}")

    输出:

    # Vector Result:
     Audio embedding Result:
      [ -1.3251206    7.8606825   -4.620626     0.3000721    2.2648535
        -1.1931441    3.0647137    7.673595    -6.0044727  -12.02426
        -1.9496069    3.1269536    1.618838    -7.6383104   -1.2299773
      -12.338331     2.1373026   -5.3957124    9.717328     5.6752305
        3.7805123    3.0597172    3.429692     8.97601     13.174125
        -0.53132284   8.9424715    4.46511     -4.4262476   -9.726503
        8.399328     7.2239175   -7.435854     2.9441683   -4.3430395
      -13.886965    -1.6346735  -10.9027405   -5.311245     3.8007221
        3.8976038   -2.1230774   -2.3521194    4.151031    -7.4048667
        0.13911647   2.4626107    4.9664545    0.9897574    5.4839754
        -3.3574002   10.1340065   -0.6120171  -10.403095     4.6007543
        16.00935     -7.7836914   -4.1945305   -6.9368606    1.1789556
        11.490801     4.2380238    9.550931     8.375046     7.5089145
        -0.65707296  -0.30051577   2.8406055    3.0828028    0.730817
        6.148354     0.13766119 -13.424735    -7.7461405   -2.3227983
        -8.305252     2.9879124  -10.995229     0.15211068  -2.3820348
        -1.7984174    8.495629    -5.8522367   -3.755498     0.6989711
        -5.2702994   -2.6188622   -1.8828466   -4.64665     14.078544
        -0.5495333   10.579158    -3.2160501    9.349004    -4.381078
      -11.675817    -2.8630207    4.5721755    2.246612    -4.574342
        1.8610188    2.3767874    5.6257877   -9.784078     0.64967257
        -1.4579505    0.4263264   -4.9211264   -2.454784     3.4869802
        -0.42654222   8.341269     1.356552     7.0966883  -13.102829
        8.016734    -7.1159344    1.8699781    0.208721    14.699384
        -1.025278    -2.6107233   -2.5082312    8.427193     6.9138527
        -6.2912464    0.6157366    2.489688    -3.4668267    9.921763
        11.200815    -0.1966403    7.4916005   -0.62312716  -0.25848144
        -9.947997    -0.9611041    1.1649219   -2.1907122   -1.5028487
        -0.51926106  15.165954     2.4649463   -0.9980445    7.4416637
        -2.0768049    3.5896823   -7.3055434   -7.5620847    4.323335
        0.0804418   -6.56401     -2.3148053   -1.7642345   -2.4708817
        -7.675618    -9.548878    -1.0177554    0.16986446   2.5877135
        -1.8752296   -0.36614323  -6.0493784   -2.3965611   -5.9453387
        0.9424033  -13.155974    -7.457801     0.14658108  -3.742797
        5.8414927   -1.2872906    5.5694313   12.57059      1.0939219
        2.2142086    1.9181576    6.9914207   -5.888139     3.1409824
        -2.003628     2.4434285    9.973139     5.03668      2.0051203
        2.8615603    5.860224     2.9176188   -1.6311141    2.0292206
        -4.070415    -6.831437  ]
      # get the test embedding
      Test embedding Result:
      [  2.5247195    5.119042    -4.335273     4.4583654    5.047907
        3.5059214    1.6159848    0.49364898 -11.6899185   -3.1014526
        -5.6589785   -0.42684984   2.674276   -11.937654     6.2248464
      -10.776924    -5.694543     1.112041     1.5709964    1.0961034
        1.3976512    2.324352     1.339981     5.279319    13.734659
        -2.5753925   13.651442    -2.2357535    5.1575427   -3.251567
        1.4023279    6.1191974   -6.0845175   -1.3646189   -2.6789894
      -15.220778     9.779349    -9.411551    -6.388947     6.8313975
        -9.245996     0.31196198   2.5509644   -4.413065     6.1649427
        6.793837     2.6328635    8.620976     3.4832475    0.52491665
        2.9115407    5.8392377    0.6702376   -3.2726715    2.6694255
        16.91701     -5.5811176    0.23362345  -4.5573606  -11.801059
        14.728292    -0.5198082   -3.999922     7.0927105   -7.0459595
        -5.4389      -0.46420583  -5.1085467   10.376568    -8.889225
        -0.37705845  -1.659806     2.6731026   -7.1909504    1.4608804
        -2.163136    -0.17949677   4.0241547    0.11319201   0.601279
        2.039692     3.1910992  -11.649526    -8.121584    -4.8707457
        0.3851982    1.4231744   -2.3321972    0.99332285  14.121717
        5.899413     0.7384519  -17.760096    10.555021     4.1366534
        -0.3391071   -0.20792882   3.208204     0.8847948   -8.721497
        -6.432868    13.006379     4.8956      -9.155822    -1.9441519
        5.7815638   -2.066733    10.425042    -0.8802383   -2.4314315
        -9.869258     0.35095334  -5.3549943    2.1076174   -8.290468
        8.4433365   -4.689333     9.334139    -2.172678    -3.0250976
        8.394216    -3.2110903   -7.93868      2.3960824   -2.3213403
        -1.4963245   -3.476059     4.132903   -10.893354     4.362673
        -0.45456508  10.258634    -1.1655927   -6.7799754    0.22885278
        -4.399287     2.333433    -4.84745     -4.2752337   -1.3577863
        -1.0685898    9.505196     7.3062205    0.08708266  12.927811
        -9.57974      1.3936648   -1.9444873    5.776769    15.251903
        10.6118355   -1.4903594   -9.535318    -3.6553776   -1.6699586
        -0.5933151    7.600357    -4.8815503   -8.698617   -15.855757
        0.25632986  -7.2235737    0.9506656    0.7128582   -9.051738
        8.74869     -1.6426028   -6.5762258    2.506905    -6.7431564
        5.129912   -12.189555    -3.6435068   12.068113    -6.0059533
        -2.3535995    2.9014351   22.3082      -1.5563312   13.193291
        2.7583609   -7.468798     1.3407065   -4.599617    -6.2345777
        10.7689295    7.137627     5.099476     0.3473359    9.647881
        -2.0484571   -5.8549366 ]
      # get the score between enroll and test
      Eembeddings Score: 0.45332613587379456

4.预训练模型

以下是 PaddleSpeech 提供的可以被命令行和 python API 使用的预训练模型列表:

模型 采样率
ecapatdnn_voxceleb12 16k