forked from openfheorg/openfhe-logreg-training-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.cpp
499 lines (436 loc) · 16.7 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2023, Duality Technologies Inc.
//
// All rights reserved.
//
// Author TPOC: [email protected]
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
///////////////////////////////////////////////////////////////////
// support functions added by DBC
#include "utils.h"
#include "utils/debug.h"
#include "parameters.h"
//////////////////////////////////////////////////
usint NextPow2(const usint x) {
return pow(2, ceil(log(double(x)) / log(2.0)));
};
//////////////////////////////////////////////////
bool IsPow2(usint x) {
if (x > 0) {
while (x % 2 == 0) {
x /= 2;
}
if (x == 1) {
return true;
}
}
if (x == 0 || x != 1) {
return false;
}
return false;
}
/////////////////////////////////
std::pair<usint, usint> ComputePaddedDimensions(const usint numRows, const usint numCols, const usint numSlots) {
auto rowSize = NextPow2(numCols);
auto colSize = numSlots/rowSize;
return std::make_pair(colSize, rowSize);
}
/////////////////////////////////
Vec Mat2MatRowMajorVec(const Mat &inMat) {
//matrix row major { row 0, row 1, etc}
//verified
usint numRows = inMat.size();
usint numCols = inMat[0].size();
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUGEXP(numRows);
OPENFHE_DEBUGEXP(numCols);
Vec outVec;
//yes this is slow...
for (usint i = 0; i < numRows; i++) {
for (usint j = 0; j < numCols; j++) {
outVec.push_back(inMat[i][j]);
OPENFHE_DEBUGEXP(inMat[i][j]);
}
}
return outVec;
}
/////////////////////////////////
Vec OneDMat2Vec(const Mat &inMat) {
//matrix row major { row 0, row 1, etc}
OPENFHE_DEBUG_FLAG(false);
usint numRows = inMat.size();
usint numCols = inMat[0].size();
OPENFHE_DEBUGEXP(numRows);
OPENFHE_DEBUGEXP(numCols);
OPENFHE_DEBUG("in OneDMat2Vec");
// if (dbg_flag) {
// PrintMatrix(inMat);
// }
if ((numCols != 1) && (numRows != 1))
OPENFHE_THROW(lbcrypto::config_error,
__FILE__ + std::string(" ") +
__FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input Mat is not a row or column vector"));
//This function will unravel a Mat with a single row or column into a single vector
//no zero padding
Vec outVec = Mat2MatRowMajorVec(inMat);
OPENFHE_DEBUGEXP(outVec.size());
return outVec;
}
///////////////////////////////////////////////////////////
CT OneDMat2CtVCC(CC &cc, const Mat &inMat, const int rowSize, const int numSlots, const KeyPair &keys) {
//verifired
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUG("in OneDMat2CtVCC");
// input is currently a Mat (row vector) use Mat2Vec to make it a vector
auto inVec = OneDMat2Vec(inMat);
int origLargestSize = inVec.size();
OPENFHE_DEBUGEXP(origLargestSize);
auto colSize = numSlots / rowSize;
OPENFHE_DEBUGEXP(rowSize);
OPENFHE_DEBUGEXP(colSize);
if (origLargestSize > colSize) {
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input vector largest dimension exceeds colSize"));
}
// zero pad out to colSize
for (auto i = origLargestSize; i < colSize; i++) {
inVec.push_back(0.0);
}
OPENFHE_DEBUG("after zero pad");
if (!IsPow2(inVec.size())) {
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input vector non power of two"));
}
// inVecCC is VEC_COL_CLONED (and zero padded)
Vec inVecCC;
GetVecColCloned<double>(inVec, numSlots, 0.0, inVecCC);
OPENFHE_DEBUG("after GetVecColCloned");
// if (dbg_flag) {
// PrintVecColCloned(inVecCC, colSize);
// }
// make plaintext
PT inVecCCPT = cc->MakeCKKSPackedPlaintext(inVecCC); // encode cloned vector
//encrypt
CT ctin = cc->Encrypt(keys.publicKey, inVecCCPT);
return ctin;
}
//CT OneDMat2CtVRC(CC &cc, const Mat &inMat, const int rowSize, const int numSlots, const KeyPair &keys) {
Vec cloneVecRc(const Mat &inMat, const int rowSize, const int numSlots){
//verifired
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUG("in OneDMat2CtVRC");
// input is currently a Mat s use Mat2Vec to make it a vector
auto inVec = OneDMat2Vec(inMat);
int origNumRow = inVec.size();
OPENFHE_DEBUGEXP(origNumRow);
// auto colSize = numSlots / rowSize;
OPENFHE_DEBUGEXP(rowSize);
// OPENFHE_DEBUGEXP(colSize);
if (origNumRow > rowSize) {
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input vector # rows exceeds rowSize"));
}
// zero pad out to rowSize
for (auto i = origNumRow; i < rowSize; i++) {
inVec.push_back(0.0);
}
OPENFHE_DEBUG("after zero pad");
OPENFHE_DEBUGEXP(inVec.size());
if (!IsPow2(inVec.size())) {
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input vector non power of two"));
}
// inVecRC is VEC_ROW_CLONED (and Zeropadded)
Vec inVecRC;
GetVecRowCloned<double>(inVec, numSlots, 0.0, inVecRC);
// if (dbg_flag) {
// PrintVecRowCloned(inVecRC, rowSize); // note number of rows needed here.
// }
return inVecRC;
}
CT collateOneDMats2CtVRC(CC &cc, const Mat &inMat, const Mat &inMat2, const int rowSize, const int numSlots, const KeyPair &keys) {
if (inMat2.size() != inMat.size() || inMat2[0].size() != inMat[0].size()){
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: 1D-Matrices to collate are not of the same size!"));
}
Vec inVecRc = cloneVecRc(inMat, rowSize, numSlots);
Vec inVecRc2 = cloneVecRc(inMat2, rowSize, numSlots);
Vec collated(numSlots);
for (auto i=0; i < numSlots; i++){
if ((i / rowSize) % 2 == 0){
collated[i] = inVecRc[i];
} else {
collated[i] = inVecRc2[i];
}
}
// make plaintext
PT inVecRCPT = cc->MakeCKKSPackedPlaintext(collated);
//encrypt
CT ctin = cc->Encrypt(keys.publicKey, inVecRCPT);
return ctin;
}
///////////////////////////////////////////////////////////
CT Mat2CtMRM(CC &cc, const Mat &inMat, const int rowSize, const int numSlots, const KeyPair &keys) {
// inMat is to be used in a MatrixVectorProductRow so needs to be encrypted as MAT_ROW_MAJOR nfp x nsp
// inMat is currently a Mat: vector nrows long of vectors (ncol long)
// so this storage requirement is differnt, instead of rowSize as a limit this packed with colSize as the width limit.
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUG("in Mat2CtMRM");
int origNumRows = inMat.size(); //n_samp (note transposed)
int origNumCols = inMat[0].size(); //n_feat (including the intecept column)
auto numCols = rowSize; //note this is the bigger dimension
auto numRows = numSlots / numCols;
OPENFHE_DEBUGEXP(origNumRows);
OPENFHE_DEBUGEXP(origNumCols);
OPENFHE_DEBUGEXP(numRows);
OPENFHE_DEBUGEXP(numCols);
if (origNumRows > numRows) {
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input matrix # rows exceeds numRows"));
}
if (origNumCols > numCols) {
OPENFHE_THROW(lbcrypto::config_error, __FILE__ + std::string(" ") + __FUNCTION__ + std::string(":") +
std::to_string(__LINE__) +
std::string("Error: input matrix # cols exceeds numCols"));
}
// copy matrix to a new array, zero padding rows and columns out to rowSize and columnSize
Vec inRMZP(numSlots, 0.0); //row major zero padded Note full vector created set to zeros
auto k = 0; //index into vector to write
auto i = 0;
for (; i < origNumRows; i++) {
auto j = 0;
for (; j < origNumCols; j++) {
inRMZP[k] = inMat[i][j]; //fill in a row with data
k++;
}
for (; j < numCols; j++) { // fill in rest of row with zeros
k++;
}
}
for (; i < numRows; i++) { //fill in zero rows
for (auto j = 0; j < numCols; j++) {
inRMZP[k] = 0.0; //fill in a row with data
k++;
}
}
OPENFHE_DEBUGEXP(inRMZP.size());
//convert that that out into inRMZP
OPENFHE_DEBUG("inRMZP in row major zero pad");
// if (dbg_flag) {
// PrintMatRowMajor(inRMZP, numCols); //need to verify
// }
PT inPT = cc->MakeCKKSPackedPlaintext(inRMZP); // encode inPT plaintext matrix
auto ctin = cc->Encrypt(keys.publicKey, inPT); //ciphertext in
return ctin;
}
void populateData(
Parameters ¶ms,
CC &cc,
KeyPair &keys,
Mat &NegXt,
Mat &beta,
Mat &X,
Mat &y,
Mat &testX,
Mat &testY,
PT &ptExtractThetaMask,
PT &ptExtractPhiMask,
float lrGamma
){
usint numSlots = cc->GetEncodingParams()->GetBatchSize();
/////////////////////////////////////////////////////////
// Load inputs and set up the problem
/////////////////////////////////////////////////////////
// Read training data and labels from CSV file
// - X, our Data matrix size numSamp x n_features (nrow x ncol)
// - y, our result vector size numSamp x 1 (col vector)
// Note all plaintext matricies and vectors are of type Mat for simlicity
// i.e. vector is Mat with one singleton dimension
std::vector<std::string> featureNames;
std::vector<std::string> labelNames;
bool normalizeFlag(false); //should this be a command line parameter?
LoadDataFile(params.trainXFile, X, featureNames, params.rowsToRead, normalizeFlag);
LoadDataFile(params.testXFile, testX, featureNames, params.rowsToRead, normalizeFlag);
// We never normalize the labels.
LoadDataFile(params.trainYFile, y, labelNames, params.rowsToRead, false);
LoadDataFile(params.testYFile, testY, labelNames, params.rowsToRead, false);
//determine dimensions for matrix encryptions
usint originalNumSamp = X.size(); //n_samp
usint originalNumFeat = X[0].size(); //n_feat (including the intecept column
if (X.size() != y.size() || testX.size() != testY.size()) {
std::cerr << " X and y dimension mismatch!" << std::endl;
exit(EXIT_FAILURE);
}
#ifdef ENABLE_DEBUG
std::cout << "Original Training data set size (r x c): "
<< originalNumSamp << " x " << originalNumFeat << std::endl;
std::cout << "First row of training set (for sanity check): " << std::endl;
SimplePrintVec("SMALL_SCALE: First X: ", X[0]);
std::cout << std::endl;
std::cout << "Training labels size " << y.size() << " x 1" << std::endl;
std::cout << "First label of training set (for sanity check): " << std::endl;
SimplePrintVec("SMALL_SCALE: First y: ", y[0]);
std::cout << std::endl;
#endif // ENABLE_DEBUG
//////////////////////////////////////////////////////
// Encode and encrypt input data
// note encrypted matrix code uses rowSize and colSize instead of numRows and numCols
/*
rowSize == num features O(10) rounded up to power of two
colSize = num samples O(1024) or O(64) depending on encoding
beta: nf x 1 column vector
X = ns x nf matrix
-X' = nf x ns matrix
y = ns x 1 column vector
mu, lr constant scalars
*/
//Encoding notes
// numSlots came from encryption scheme paramters.
auto dims = ComputePaddedDimensions(originalNumSamp, originalNumFeat, numSlots);
usint colSize = dims.first;
usint rowSize = dims.second;
int signedRowSize = (int) rowSize;
std::vector<int> rotationIndices = {-signedRowSize, signedRowSize};
std::cout << "\tEvalRotate keys" << std::endl;
cc->EvalRotateKeyGen(keys.secretKey, rotationIndices);
std::cout << "colSize x rowSize = " << colSize << " * " << rowSize << " = " << colSize * rowSize << std::endl;
if (colSize * rowSize != numSlots) {
std::cerr << "numSlots exceeded " << numSlots << std::endl;
exit(EXIT_FAILURE);
}
// generate -X' and r (starts as zeros)
// generate CT for X
#ifdef ENABLE_DEBUG
std::cout << "beta:" << std::endl;
PrintMatrix(beta);
usint nrow2print(4); //print 4 rows or columns for sanity
std::cout << "Initialized data: " << std::endl;
std::cout << "X (showing only " << nrow2print << " rows): " << std::endl;
PrintSubmatrix(X, nrow2print, X[0].size());
std::cout << "NegXt (showing only " << nrow2print << " col): " << std::endl;
PrintSubmatrix(NegXt, X.size(), nrow2print);
std::cout << "beta: " << std::endl;
PrintMatrix(beta);
std::cout << std::endl;
#endif // ENABLE_DEBUG
/////////////////////////////////////////////////////////////////
//Setup dataset and learning parameters
/////////////////////////////////////////////////////////////////
// X will be used in a MatrixVectorProductRow so needs to be encrypted as MAT_ROW_MAJOR rowSize x colSize
// negXt will be used in MatrixVectorPRoductCol, but since it is transpose of X we can use
// negX in MAT_ROW_MAJOR because that is the same as negX' in MAT_COL_MAJOR
// both use the same packing.
// - Weight vector beta n_features x 1 (col vector)
beta = Mat(originalNumFeat, Vec(1, 0.0));
{
Vec thetaMask = Vec(numSlots, 0);
Vec phiMask = Vec(numSlots, 0);
for (uint i = 0; i < numSlots; i++) {
if ((i / rowSize) % 2 == 0) {
thetaMask[i] = 1;
} else {
phiMask[i] = 1;
}
}
ptExtractThetaMask = cc->MakeCKKSPackedPlaintext(thetaMask);
ptExtractPhiMask = cc->MakeCKKSPackedPlaintext(phiMask);
}
NegXt = InitializeLogReg(X, y, lrGamma / y.size());
}
////////////////////////////////////////////////////////////////////
// Utility print functinons
void PrintVecRowCloned(const Vec &z, const int rowSize) {
Vec firstSet;
for (auto j = 0; j < rowSize; j++) {
firstSet.push_back(z[j]);
}
SimplePrintVec("First clone: ", firstSet);
bool good = true;
for (auto i = 0U; i < z.size(); i += rowSize) {
for (auto j = 0; j < rowSize; j++) {
if (firstSet[j] != z[i + j]) {
std::cout << "!";
good &= false;
}
}
if (!good) break;
}
std::cout << std::endl;
if (good) {
std::cout << " all clones match" << std::endl;
} else {
std::cout << " some clones do not match" << std::endl;
SimplePrintVec("Input vector: ", z);
}
}
void PrintVecColCloned(const Vec &z, const int rowSize) {
OPENFHE_DEBUG_FLAG(false);
OPENFHE_DEBUG("in PrintVecColCloned");
OPENFHE_DEBUGEXP(rowSize);
Vec firstSet;
for (auto i = 0U; i < z.size(); i += rowSize) {
firstSet.push_back(z[i]);
}
OPENFHE_DEBUGEXP(z.size());
OPENFHE_DEBUGEXP(firstSet.size());
SimplePrintVec("First entry of each clone: ", firstSet);
bool good = true;
unsigned int k(0);
for (auto i = 0U; i < z.size(); i += rowSize) {
for (auto j = 0; j < rowSize; j++) {
if (firstSet[k] != z[i + j]) {
std::cout << "! " << i << ", " << j << ", " << k << ": " << firstSet[k] << " != " << z[i + j] << std::endl;
good &= false;
}
}
if (!good) break;
k++;
}
std::cout << std::endl;
if (good) {
std::cout << " all clones match" << std::endl;
} else {
std::cout << " some clones do not match" << std::endl;
SimplePrintVec("Input vector: ", z);
}
}
void PrintMatRowMajor(const Vec &z, const int rowSize) {
for (auto i = 0U; i < z.size(); i += rowSize) {
std::cout << "row " << i << ": [";
for (auto j = 0; j < rowSize; j++) {
std::cout << z[i + j] << ",";
}
std::cout << "]" << std::endl;
}
}