-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_temporal.py
460 lines (405 loc) · 27 KB
/
train_temporal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, l2_loss, ssim, compute_depth_loss, compute_flow_loss
from gaussian_renderer.temporal_render import temporal_render
from gaussian_renderer import network_gui
import sys
from scene.temporal_scene import TemporalScene
from scene.temporal_gaussian_model import TemporalGaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments.temporal import ModelParams, PipelineParams, OptimizationParams
import imutils
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from torch.utils.data import DataLoader
from scene.dataset import FourDGSdataset
from utils.flow_viz import flow_to_image
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint,
disable_adaptive, disable_adaopa, disable_offscale, disable_offopa, disable_morph, multiply_offopa, enable_offsh, separate_offopa, separate_offsh, regularize_opacity, enable_static, init_mode_gaussian, stop_gradient, use_skips,
new_deform, shrink_lr, use_nte, use_SE, anneal_band, anneal_band_time, mult_quaternion, rotate_sh, dynamic_sep,
use_ResFields, ewa_prune):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = TemporalGaussianModel(dataset.sh_degree, enable_offsh=enable_offsh, separate_offopa=separate_offopa, separate_offsh=separate_offsh, enable_static=enable_static, init_mode_gaussian=init_mode_gaussian,
stop_gradient=stop_gradient, use_skips=use_skips,
new_deform=new_deform, shrink_lr=shrink_lr, use_nte=use_nte, use_SE=use_SE,
anneal_band=anneal_band, anneal_band_time=anneal_band_time, anneal_band_steps=dataset.anneal_band_steps,
mult_quaternion=mult_quaternion, rotate_sh=rotate_sh,
posbase_pe=dataset.posbase_pe, timebase_pe=dataset.timebase_pe,
defor_depth=dataset.defor_depth, net_width=dataset.net_width,
dynamic_sep=dynamic_sep,
use_ResFields=use_ResFields, ResField_mode=dataset.ResField_mode,
capacity=dataset.capacity, ewa_prune=ewa_prune)
scene = TemporalScene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
#dataset.white_background = white_background
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
need_abandon = False
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.do_shs_python, pipe.do_cov_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = temporal_render(custom_cam, gaussians, pipe, background, scaling_modifer, disable_offscale=disable_offscale, disable_offopa=disable_offopa, disable_morph=disable_morph, multiply_offopa=multiply_offopa,
anneal_band_iteration=iteration if (anneal_band or anneal_band_time) else None)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
#if not viewpoint_stack:
# viewpoint_stack = scene.getTrainCameras().copy()
#viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# logic to load dataset
# if fourdgsdatset, means the very beginning of training
# means need the
# else means either very beginning or finished a loop
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras()
if isinstance(viewpoint_stack, FourDGSdataset):
# at the very beginning, use a coarse filter
viewpoint_stack.reset_kernel_size(args.kernel_size[0])
batch_size = 1
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,shuffle=True,num_workers=0,collate_fn=list)
loader = iter(viewpoint_stack_loader)
else:
viewpoint_stack = viewpoint_stack.copy()
#assert False, [args.fine_iter_start, args.kernel_size]
# if fourdgsdataset (hypernerf/nerfies/dycheck) and reaches the iteration of fine stage starts
if (iteration in args.fine_iter_start) and (viewpoint_stack is not None) and isinstance(viewpoint_stack, FourDGSdataset):
print("Start Fine Iteration")
# only needs to set this once
viewpoint_stack = scene.getTrainCameras()
viewpoint_stack.reset_kernel_size(args.kernel_size[args.fine_iter_start.index(iteration)+1])
batch_size = 1
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,shuffle=True,num_workers=0,collate_fn=list)
loader = iter(viewpoint_stack_loader)
# logic to iterate over dataset
if isinstance(viewpoint_stack, FourDGSdataset):
try:
viewpoint_cam = next(loader)[0]
except StopIteration:
loader = iter(viewpoint_stack_loader)
else:
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
render_pkg = temporal_render(viewpoint_cam, gaussians, pipe, background, disable_offscale=disable_offscale, disable_offopa=disable_offopa, disable_morph=disable_morph, multiply_offopa=multiply_offopa, disable_deform=iteration < opt.fix_until_iter,
return_sep=((iteration >= opt.fix_until_iter) and ((opt.lambda_sep > 0) or (opt.lambda_prefer_static > 0))),
return_depth=(opt.lambda_reg_depth > 0),
return_flow=((iteration >= opt.fix_until_iter) and (opt.lambda_reg_flow > 0)),
anneal_band_iteration=iteration if (anneal_band or anneal_band_time) else None,
sf_reg=opt.lambda_sf_sm > 0 or opt.lambda_sf_st > 0,
motion_gap=opt.motion_gap)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
motion_tensor = render_pkg["motion_tensor"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()[:3]
if iteration < opt.l1_l2_switch:
Ll1 = l2_loss(image, gt_image)
else:
Ll1 = l1_loss(image, gt_image)
# the case when no adpative policy is applied, use regualizer on loss
#if not disable_adaptive:
# loss +=
# if iteration < opt.densify_until_iter:
#loss += opt.lambda_opacity * torch.mean(gaussians.opacity_activation(gaussians._opacity))
# density_cond = iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0
# reset_cond = not disable_adaopa and (iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter))
# need_abandon = need_abandon or density_cond or reset_cond
#if need_abandon:
# gaussians.optimizer.zero_grad(set_to_none = True)
# need_abandon = False
#assert False, [Ll1.shape, torch.mean(gaussians._opacity).shape]
#loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) + opt.lambda_opacity * torch.mean(gaussians.opacity_activation(gaussians._opacity))
#print(need_abandon)
#if need_abandon: # need this line to prevent loss shape mismatch with previous due to adaptive gaussian
# gaussians.optimizer.step()
# gaussians.optimizer.zero_grad(set_to_none = True)
# need_abandon = False
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) #+ opt.lambda_opacity * torch.mean(gaussians.opacity_activation(gaussians._opacity))
#print(need_abandon)
if regularize_opacity:
loss += opt.lambda_opacity * torch.mean(gaussians.opacity_activation(gaussians._opacity))
if need_abandon: # need this line to prevent loss shape mismatch with previous due to adaptive gaussian
gaussians.optimizer.step()
#gaussians.defor_optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
#gaussians.defor_optimizer.zero_grad()
need_abandon = False
if opt.lambda_reg_depth > 0:
coeff_depth = opt.lambda_reg_depth * (1. - iteration/ float(opt.iterations))
loss += coeff_depth * compute_depth_loss(render_pkg["rendered_depth"], viewpoint_cam.depth.cuda())
if iteration > opt.fix_until_iter and opt.lambda_reg_flow > 0.:
if viewpoint_cam.fwd_flow is not None and viewpoint_cam.bwd_flow is not None:
# makes training three times slower!
coeff_flow = opt.lambda_reg_flow * (1. - iteration/ float(opt.iterations))
loss += coeff_flow * compute_flow_loss(
render_pkg["rendered_flow_fwd"], render_pkg["rendered_flow_bwd"],
viewpoint_cam.fwd_flow.cuda(), viewpoint_cam.bwd_flow.cuda(),
viewpoint_cam.fwd_flow_mask.cuda(), viewpoint_cam.bwd_flow_mask.cuda()
)
if opt.lambda_reg_canon > 0:
assert not gaussians.separate_offsh and not gaussians.enable_offsh
#disable_offopa=disable_offopa, disable_morph=disable_morph, multiply_offopa=multiply_offopa, disable_deform=iteration < opt.fix_until_iter,
means3D, opacity, scales, rotations, _, _, _ = gaussians.get_deformed(0.5, disable_offscale, disable_offopa, disable_morph, multiply_offopa, anneal_band_iteration=iteration if (anneal_band or anneal_band_time) else None)
loss += opt.lambda_reg_canon * (torch.mean(torch.square((means3D-gaussians.get_xyz) * gaussians._isstatic)) +\
torch.mean(torch.square((opacity-gaussians.get_opacity) * gaussians._isstatic)) +\
torch.mean(torch.square((scales-gaussians.get_scaling) * gaussians._isstatic)) +\
torch.mean(torch.square((rotations-gaussians.get_rotation) * gaussians._isstatic)))
if opt.lambda_sf_sm > 0:
loss += opt.lambda_sf_sm * render_pkg["sm_loss"]
if opt.lambda_sf_st > 0:
loss += opt.lambda_sf_st * render_pkg["st_loss"]
# regularizer for static branch
if (iteration >= opt.fix_until_iter) and ((opt.lambda_sep > 0) or (opt.lambda_prefer_static > 0)):
pout = render_pkg["rendered_sep"].clamp(1e-6, 1.-1e-6)
pout = torch.pow(pout, opt.entropy_k)
#assert False, entropy_last_loss.shape
if opt.lambda_sep > 0:
entropy_last_loss = -(pout*torch.log(pout) + (1-pout)*torch.log(1-pout)).mean()
loss += opt.lambda_sep * entropy_last_loss
if opt.lambda_prefer_static > 0:
loss += opt.lambda_prefer_static * pout.mean()
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, temporal_render,
(pipe, background, disable_offscale, disable_offopa, disable_morph, multiply_offopa, iteration < opt.fix_until_iter, True,
1.0, None, False, False, False, iteration if (anneal_band or anneal_band_time) else None))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if disable_adaptive:
pass
elif iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
#if gaussians.ewa_prune:
# max_scaling = render_pkg["scaling_tensor"][visibility_filter]
# gaussians.max_scaling[visibility_filter] = torch.max(gaussians.max_scaling[visibility_filter], max_scaling)
if gaussians.dynamic_sep and iteration > opt.fix_until_iter:
gaussians.add_densification_stats_motion(viewspace_point_tensor, visibility_filter, motion_tensor,
opacity_tensor=render_pkg["opacity_tensor"], scaling_tensor=render_pkg["scaling_tensor"])
else:
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter,
opacity_tensor=render_pkg["opacity_tensor"], scaling_tensor=render_pkg["scaling_tensor"])
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold,
(iteration % opt.densification_motion_interval == 0) and (iteration>(opt.densify_motion_from_iter + opt.fix_until_iter)), opt.densify_min_motion)
need_abandon = True
if disable_adaopa:
pass
elif iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
#need_abandon = True
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
#gaussians.optimizer.step()
#gaussians.defor_optimizer.step()
#gaussians.optimizer.zero_grad(set_to_none = True)
#gaussians.defor_optimizer.zero_grad()
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : TemporalScene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
#validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
# {'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
if isinstance(scene.getTestCameras(), FourDGSdataset):
validation_configs = ({'name': 'test', 'cameras' : [scene.getTestCameras()[idx % len(scene.getTestCameras())] for idx in range(10, 5000, 299)]},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(10, 5000, 299)]})
else:
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
#print(renderArgs)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
image, image_canon, depth = render_pkg["render"], render_pkg["rendered_canon"], render_pkg["rendered_depth"]
image = torch.clamp(image, 0.0, 1.0)
image_canon = torch.clamp(image_canon, 0.0, 1.0)
#print(torch.any(image != imafge_canon))
depth = imutils.np2png_d( [depth[0, ...].cpu().numpy()], None, colormap="jet")
depth = torch.from_numpy(depth).permute(2, 0, 1)
gt_image = torch.clamp(viewpoint.original_image[:3].to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/depth".format(viewpoint.image_name), depth[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/render_canon".format(viewpoint.image_name), image_canon[None], global_step=iteration)
image_motion = render_pkg["rendered_motion"]
image_motion = torch.clamp(image_motion, 0.0, 1.0)
tb_writer.add_images(config['name'] + "_view_{}/render_motion".format(viewpoint.image_name), image_motion[None], global_step=iteration)
rendered_flow_fwd = render_pkg["rendered_flow_fwd"][:2, ...].permute(1, 2, 0).cpu().numpy()
rendered_flow_bwd = render_pkg["rendered_flow_bwd"][:2, ...].permute(1, 2, 0).cpu().numpy()
try:
rendered_flow_fwd = flow_to_image(rendered_flow_fwd)
rendered_flow_bwd = flow_to_image(rendered_flow_bwd)
rendered_flow_fwd = torch.from_numpy(rendered_flow_fwd).permute(2, 0, 1) / 255.
rendered_flow_bwd = torch.from_numpy(rendered_flow_bwd).permute(2, 0, 1) / 255.
except:
rendered_flow_fwd = torch.zeros_like(image_motion)
rendered_flow_bwd = torch.zeros_like(image_motion)
tb_writer.add_images(config['name'] + '_view_{}/render_flow_fwd'.format(viewpoint.image_name), rendered_flow_fwd[None], global_step=iteration)
tb_writer.add_images(config['name'] + '_view_{}/render_flow_bwd'.format(viewpoint.image_name), rendered_flow_bwd[None], global_step=iteration)
if render_pkg["rendered_stat"] is not None:
image_sep, image_dy, image_stat = render_pkg["rendered_sep"], render_pkg["rendered_dy"], render_pkg["rendered_stat"]
image_dy = torch.clamp(image_dy, 0.0, 1.0)
image_stat = torch.clamp(image_stat, 0.0, 1.0)
image_sep = torch.clamp(image_sep, 0.0, 1.0)
#if scene.gaussians.enable_static:
tb_writer.add_images(config['name'] + "_view_{}/render_dy".format(viewpoint.image_name), image_dy[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/render_stat".format(viewpoint.image_name), image_stat[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/render_sep".format(viewpoint.image_name), image_sep[None], global_step=iteration)
#if iteration == testing_iterations[0] or iteration in fine_iter_start:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_scalar('dynamic_points', torch.sum(scene.gaussians._isstatic).float(), iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--test_iterations", nargs="+", type=int, default=[100, 500, 1000, 2900, 3100, 5000, 5900, 6100, 7_000, 8900, 9100, 10000, 11900, 12100, 14900, 15100, 17900, 18100, 20000, 25000, 30_000, 35_000, 40_000,
45_000, 50_000, 55_000, 60_000, 70_000, 75_000, 80_000, 85_000, 90_000, 100_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--disable_adaptive", action="store_true")
parser.add_argument("--disable_adaopa", action="store_true")
parser.add_argument("--disable_offscale", action="store_true")
parser.add_argument("--disable_offopa", action="store_true")
parser.add_argument("--disable_morph", action="store_true")
parser.add_argument("--multiply_offopa", action="store_true")
parser.add_argument("--enable_offsh", action="store_true")
parser.add_argument("--separate_offopa", action="store_true")
parser.add_argument("--separate_offsh", action="store_true")
parser.add_argument("--regularize_opacity", action="store_true")
parser.add_argument("--enable_static", action="store_true")
parser.add_argument("--init_mode_gaussian", action="store_true")
parser.add_argument("--stop_gradient", action="store_true")
parser.add_argument("--use_skips", action="store_true")
parser.add_argument("--new_deform", action="store_true")
parser.add_argument("--shrink_lr", action="store_true")
parser.add_argument("--use_nte", action="store_true")
parser.add_argument("--use_SE", action="store_true")
parser.add_argument("--anneal_band", action="store_true")
parser.add_argument("--anneal_band_time", action="store_true")
parser.add_argument("--mult_quaternion", action="store_true")
parser.add_argument("--rotate_sh", action="store_true")
parser.add_argument("--dynamic_sep", action="store_true")
parser.add_argument("--use_ResFields", action="store_true")
parser.add_argument("--ewa_prune", action="store_true")
parser.add_argument("--fine_iter_start", nargs="*", default=[], type=int)
parser.add_argument("--kernel_size", nargs="*", default=[1.], type=float)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
if args.separate_offopa:
assert not args.disable_offopa and not args.multiply_offopa, "Already using separate offopa network!"
if args.separate_offsh:
assert not args.enable_offsh, "Already using separate offsh network!"
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint,
args.disable_adaptive, args.disable_adaopa, args.disable_offscale, args.disable_offopa, args.disable_morph, args.multiply_offopa, args.enable_offsh, args.separate_offopa, args.separate_offsh, args.regularize_opacity,
args.enable_static, args.init_mode_gaussian, args.stop_gradient, args.use_skips, args.new_deform, args.shrink_lr, args.use_nte, args.use_SE, args.anneal_band, args.anneal_band_time,
args.mult_quaternion, args.rotate_sh, args.dynamic_sep, args.use_ResFields, args.ewa_prune)
# All done
print("\nTraining complete.")