-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsr_tutorial.py
177 lines (156 loc) · 5.88 KB
/
sr_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
import torchvision
import torchvision.models as models
from torchvision import transforms
from PIL import Image
from time import time
import matplotlib.pyplot as plt
import os
import numpy as np
import sys
import cv2
#=================================================
# HYPERPARAMETERS HERE...
img_transforms = transforms.Compose([
transforms.Resize((224,224)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomRotation(45)
])
target_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] )
])
input_transform = transforms.Compose([
transforms.Resize((56, 56)),#((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] )
])
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
loss_func = torch.nn.SmoothL1Loss()
epochs = 150
batch_size=4
lr = 0.001
datapath = 'catdog/srgan_datatrain'
train_data = os.listdir(datapath)
#=================================================
# CLASS AND FUNCTION HERE...
def read_batch(datapath, imgname):
imginput = []
imgtarget = []
for i in range(len(imgname)):
img = Image.open(os.path.join(datapath, imgname[i]))
img = img_transforms(img)
imgtgt = target_transform(img)
imgtarget.append(imgtgt)
img = input_transform(img)
imginput.append(img)
imginput = torch.stack([x for x in imginput], dim=0).to(device)
imgtarget = torch.stack([x for x in imgtarget], dim=0).to(device)
# print('imginput.size(): ', imginput.size())
# print('imgtarget.size(): ', imgtarget.size())
return imginput, imgtarget
# here comes the training function!
def train(model, optimizer, loss_fn, train_data, datapath=None, batch_size = 5, epochs=20, device="cpu"):
lowest_train_loss = 1e+6
train_num = np.arange(len(train_data))
train_data = np.array(train_data)
print('=======================')
print('Training data number: ', len(train_data))
print('Start Training...')
for epoch in range(epochs):
training_loss = 0.0
valid_loss = 0.0
start = time()
model.train()
np.random.shuffle(train_num)
ctr = batch_size
start = time()
for b in range(0, len(train_num), batch_size):
batch_data = train_data[train_num[b:b+ctr]]
ctr += b
optimizer.zero_grad()
inputs, targets = read_batch(datapath, batch_data)
inputs = inputs.to(device)
targets = targets.to(device)
output = model(inputs)
loss = loss_fn(output, targets)
loss.backward()
optimizer.step()
training_loss += loss.data.item() * inputs.size(0)
training_loss /= len(train_num)
print('Epoch: {}, time: {:.2f}s, Lowest train loss: {:.2f}, Training Loss: {:.2f}'.format(epoch,
time()-start, lowest_train_loss, training_loss))
if training_loss < lowest_train_loss:
lowest_train_loss = training_loss
if epochs > 10:
torch.save(model.state_dict(), r'D:\pytorch_tutorial\catdog\srgan_trained.pth')
class OurFirstSRNet(nn.Module):
def __init__(self):
super(OurFirstSRNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=8, stride=2, padding=3),
nn.ReLU(inplace=True),
nn.Conv2d(64, 192, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(192, 256, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.upsample = nn.Sequential(
nn.ConvTranspose2d(256,256,kernel_size=2, stride=2, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256,192,kernel_size=2, stride=2, padding=0),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(192,128,kernel_size=2, stride=2, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128,64,kernel_size=2, stride=2, padding=0),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64,3, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.features(x)
x = self.upsample(x)
return x
# test image transform
img = Image.open(os.path.join(datapath, train_data[0]))
img = img_transforms(img)
img = input_transform(img).unsqueeze(0).to(device)
# test forward propagation
model = OurFirstSRNet()
model.to(device)
print('=======================')
print('Example input-output...')
print('input: ', img.size())
output = model(img)
print('output:', output.size())
# define Backprop Optimizer
optimizer = optim.Adam(model.parameters(), lr=lr)
model.load_state_dict(torch.load( r'catdog/srgan_trained.pth') )
# training
if sys.argv[1] == 'training':
print('...You pick mode training...')
train(model, optimizer, loss_func, train_data, datapath=datapath,
batch_size = batch_size, epochs=epochs, device=device)
# testing
if sys.argv[1] == 'detecting':
print('...You pick mode detecting...')
model.load_state_dict(torch.load( r'catdog/srgan_trained.pth') )
model.eval()
with torch.no_grad():
output = model(img).cpu().squeeze(0).numpy()
print('output:', output.shape)
# cv2.imwrite('output.png', output[...,::-1].astype(np.uint8))