forked from hvcl-old/hetero13
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmp4.cu
94 lines (69 loc) · 3.21 KB
/
mp4.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// MP 4 Reduction
// Given a list (lst) of length n
// Output its sum = lst[0] + lst[1] + ... + lst[n-1];
#include <wb.h>
#define BLOCK_SIZE 512 //@@ You can change this
#define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
return -1; \
} \
} while(0)
__global__ void total(float * input, float * output, int len) {
//@@ Load a segment of the input vector into shared memory
//@@ Traverse the reduction tree
//@@ Write the computed sum of the block to the output vector at the
//@@ correct index
}
int main(int argc, char ** argv) {
int ii;
wbArg_t args;
float * hostInput; // The input 1D list
float * hostOutput; // The output list
float * deviceInput;
float * deviceOutput;
int numInputElements; // number of elements in the input list
int numOutputElements; // number of elements in the output list
args = wbArg_read(argc, argv);
wbTime_start(Generic, "Importing data and creating memory on host");
hostInput = (float *) wbImport(wbArg_getInputFile(args, 0), &numInputElements);
numOutputElements = numInputElements / (BLOCK_SIZE<<1);
if (numInputElements % (BLOCK_SIZE<<1)) {
numOutputElements++;
}
hostOutput = (float*) malloc(numOutputElements * sizeof(float));
wbTime_stop(Generic, "Importing data and creating memory on host");
wbLog(TRACE, "The number of input elements in the input is ", numInputElements);
wbLog(TRACE, "The number of output elements in the input is ", numOutputElements);
wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
wbTime_stop(GPU, "Allocating GPU memory.");
wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
cudaDeviceSynchronize();
wbTime_stop(Compute, "Performing CUDA computation");
wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
wbTime_stop(Copy, "Copying output memory to the CPU");
/********************************************************************
* Reduce output vector on the host
* NOTE: One could also perform the reduction of the output vector
* recursively and support any size input. For simplicity, we do not
* require that for this lab.
********************************************************************/
for (ii = 1; ii < numOutputElements; ii++) {
hostOutput[0] += hostOutput[ii];
}
wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
wbTime_stop(GPU, "Freeing GPU Memory");
wbSolution(args, hostOutput, 1);
free(hostInput);
free(hostOutput);
return 0;
}