-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatchup.py
39 lines (30 loc) · 1.29 KB
/
matchup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
def load_skills(file_path):
skills_df = pd.read_csv(file_path)
return skills_df['skill'].values.tolist()
def load_resources(file_path):
resources_df = pd.read_csv(file_path)
return resources_df[['title', 'description']].values.tolist()
def match_skills(resources, skills):
model = SentenceTransformer('all-MiniLM-L6-v2')
results = []
for title, description in resources:
content = f"{title} {description}"
content_embedding = model.encode([content])
skills_embeddings = model.encode(skills)
cosine_similarities = cosine_similarity(content_embedding, skills_embeddings).flatten()
related_skills_indices = cosine_similarities.argsort()[:-4:-1]
for i in related_skills_indices:
results.append({
"resource title": title,
"resource description": description,
"skill": skills[i],
"score": cosine_similarities[i]
})
results_df = pd.DataFrame(results)
results_df.to_csv('matches.csv', index=False)
skills = load_skills('skills.csv')
resources = load_resources('resources.csv')
match_skills(resources, skills)