-
Notifications
You must be signed in to change notification settings - Fork 14
/
research_buddy_app.py
297 lines (234 loc) · 12.7 KB
/
research_buddy_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from llama_index import Document
from llama_index.chat_engine import CondenseQuestionChatEngine
from llama_index.indices.vector_store import VectorIndexRetriever
from llama_index.node_parser import SimpleNodeParser
from llama_index import LangchainEmbedding, ServiceContext
from llama_index import VectorStoreIndex
from llama_index import StorageContext, load_index_from_storage
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.response_synthesizers import TreeSummarize,get_response_synthesizer
from llama_index.llms import ChatMessage
from langchain.llms import Clarifai
from langchain.embeddings import ClarifaiEmbeddings
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
import uuid
import streamlit as st
import modal
CLARIFAI_PAT = st.secrets.CLARIFAI_PAT
MODERATION_THRESHOLD = st.secrets.MODERATION_THRESHOLD
st.set_page_config(page_title="Research Buddy: Insights and Q&A on AI Research Papers using GPT and Nougat", page_icon="🧐", layout="centered", initial_sidebar_state="auto", menu_items=None)
st.title(body="AI Research Buddy: Nougat + GPT Powered Paper Insights 📚🤖")
st.info("""This Application currently only works with arxiv and acl anthology web links which belong to the format:-
1) Arxiv:- https://arxiv.org/abs/paper_unique_identifier
2) ACL Anthology:- https://aclanthology.org/paper_unique_identifier/
This Application uses the recently released Meta Nougat Visual Transformer for processing Papers""", icon="ℹ️")
user_input = st.text_input("Enter the arxiv or acl anthology url of the paper", "https://aclanthology.org/2023.semeval-1.266/")
def initialize_session_state():
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "messages" not in st.session_state.keys():
st.session_state.messages = [
{"role": "assistant", "content": "Ask me a question about the research paper"}
]
if "paper_content" not in st.session_state:
st.session_state.paper_content = None
if "paper_insights" not in st.session_state:
st.session_state.paper_insights = None
initialize_session_state()
st.write("This App has been currently disabled as I am out of the credits for LLM model vendors. Also I am working out on a better way to extract insights from research papers and Scientific Q&A, will restart this in some time.")
# Uncomment the below code if you are trying to build something similar to my app
# def get_paper_content(url: str) -> str:
# with st.spinner(text="Using Nougat(https://facebookresearch.github.io/nougat/) to read the paper contents and get the markdown representation of the paper"):
# f = modal.Function.lookup("streamlit-hack", "main")
# output = f.call(url)
# st.session_state.paper_content = output
# return output
# def index_paper_content(content: str):
# with st.spinner(text="Indexing the paper – hang tight! This should take 3-5 minutes"):
# try:
# LLM_USER_ID = 'openai'
# LLM_APP_ID = 'chat-completion'
# # Change these to whatever model and text URL you want to use
# LLM_MODEL_ID = 'GPT-3_5-turbo'
# llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID)
# documents = [Document(text=content)]
# parser = SimpleNodeParser.from_defaults()
# nodes = parser.get_nodes_from_documents(documents)
# USER_ID = 'openai'
# APP_ID = 'embed'
# # Change these to whatever model and text URL you want to use
# MODEL_ID = 'text-embedding-ada'
# embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
# embed_model = LangchainEmbedding(embeddings)
# service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
# index = VectorStoreIndex(nodes, service_context=service_context)
# persist_dir = uuid.uuid4().hex
# st.session_state.vector_store = persist_dir
# index.storage_context.persist(persist_dir=persist_dir)
# return "Paper has been Indexed"
# except Exception as e:
# print(str(e))
# return "Unable to Index the Research Paper"
# def generate_insights():
# with st.spinner(text="Generating insights on the paper and preparing the Chatbot"):
# try:
# LLM_USER_ID = 'openai'
# LLM_APP_ID = 'chat-completion'
# # Change these to whatever model and text URL you want to use
# LLM_MODEL_ID = 'GPT-3_5-turbo'
# llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID)
# USER_ID = 'openai'
# APP_ID = 'embed'
# # Change these to whatever model and text URL you want to use
# MODEL_ID = 'text-embedding-ada'
# embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
# embed_model = LangchainEmbedding(embeddings)
# service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
# index = load_index_from_storage(
# StorageContext.from_defaults(persist_dir=st.session_state.vector_store),
# service_context=service_context
# )
# retriever = VectorIndexRetriever(
# index=index,
# similarity_top_k=2,
# )
# # configure response synthesizer
# response_synthesizer = get_response_synthesizer(
# response_mode="simple_summarize", service_context=service_context
# )
# # assemble query engine
# query_engine = RetrieverQueryEngine(
# retriever=retriever,
# response_synthesizer=response_synthesizer,
# )
# response_key_insights = query_engine.query("Generate core crux insights, contributions and results of the paper as Key Topics and thier content in markdown format where each Key Topic is in bold and has a markdown heading format followed by its content in bullets list form")
# except Exception as e:
# print(str(e))
# response_key_insights = "Error While Generating Insights"
# st.session_state.paper_insights = response_key_insights.response
# if st.button("Read and Index Paper"):
# paper_content = get_paper_content(url=user_input)
# if st.session_state.paper_content is not None:
# with st.expander("See Paper Contents"):
# st.markdown(paper_content)
# result = index_paper_content(content=paper_content)
# st.write(result)
# generate_insights()
# if st.session_state.paper_content is not None:
# with st.expander("See Paper Contents"):
# st.markdown(st.session_state.paper_content)
# if st.session_state.paper_insights is not None:
# st.sidebar.title("# 🚀 Illuminating Research Insights 📜💡")
# st.sidebar.write(st.session_state.paper_insights)
# def reset_conversation():
# st.session_state.messages = [
# {"role": "assistant", "content": "Ask me a question about the research paper"}
# ]
# def moderate_text(text: str) -> tuple:
# MODERATION_USER_ID = 'clarifai'
# MODERATION_APP_ID = 'main'
# # Change these to whatever model and text URL you want to use
# MODERATION_MODEL_ID = 'moderation-multilingual-text-classification'
# MODERATION_MODEL_VERSION_ID = '79c2248564b0465bb96265e0c239352b'
# channel = ClarifaiChannel.get_grpc_channel()
# stub = service_pb2_grpc.V2Stub(channel)
# metadata = (('authorization', 'Key ' + CLARIFAI_PAT),)
# userDataObject = resources_pb2.UserAppIDSet(user_id=MODERATION_USER_ID, app_id=MODERATION_APP_ID)
# # To use a local text file, uncomment the following lines
# # with open(TEXT_FILE_LOCATION, "rb") as f:
# # file_bytes = f.read()
# post_model_outputs_response = stub.PostModelOutputs(
# service_pb2.PostModelOutputsRequest(
# user_app_id=userDataObject,
# # The userDataObject is created in the overview and is required when using a PAT
# model_id=MODERATION_MODEL_ID,
# version_id=MODERATION_MODEL_VERSION_ID, # This is optional. Defaults to the latest model version
# inputs=[
# resources_pb2.Input(
# data=resources_pb2.Data(
# text=resources_pb2.Text(
# raw=text
# )
# )
# )
# ]
# ),
# metadata=metadata
# )
# if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
# print(post_model_outputs_response.status)
# raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
# # Since we have one input, one output will exist here
# output = post_model_outputs_response.outputs[0]
# moderation_reasons = ""
# intervention_required = False
# for concept in output.data.concepts:
# if concept.value > MODERATION_THRESHOLD:
# moderation_reasons += concept.name + ","
# intervention_required = True
# return moderation_reasons, intervention_required
# if st.session_state.vector_store is not None:
# LLM_USER_ID = 'openai'
# LLM_APP_ID = 'chat-completion'
# # Change these to whatever model and text URL you want to use
# LLM_MODEL_ID = 'GPT-3_5-turbo'
# llm = Clarifai(pat=CLARIFAI_PAT, user_id=LLM_USER_ID, app_id=LLM_APP_ID, model_id=LLM_MODEL_ID)
# USER_ID = 'openai'
# APP_ID = 'embed'
# # Change these to whatever model and text URL you want to use
# MODEL_ID = 'text-embedding-ada'
# embeddings = ClarifaiEmbeddings(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
# embed_model = LangchainEmbedding(embeddings)
# service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
# index = load_index_from_storage(
# StorageContext.from_defaults(persist_dir=st.session_state.vector_store),
# service_context=service_context
# )
# retriever = VectorIndexRetriever(
# index=index,
# similarity_top_k=2,
# )
# # configure response synthesizer
# response_synthesizer = get_response_synthesizer(
# response_mode="simple_summarize", service_context=service_context
# )
# # assemble query engine
# query_engine = RetrieverQueryEngine(
# retriever=retriever,
# response_synthesizer=response_synthesizer,
# )
# custom_chat_history = []
# for message in st.session_state.messages:
# custom_message = ChatMessage(role=message["role"], content=message["content"])
# custom_chat_history.append(custom_message)
# chat_engine = CondenseQuestionChatEngine.from_defaults(service_context=service_context, query_engine=query_engine,
# verbose=True,
# chat_history=custom_chat_history)
# if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
# st.session_state.messages.append({"role": "user", "content": prompt})
# st.button('Reset Chat', on_click=reset_conversation)
# for message in st.session_state.messages: # Display the prior chat messages
# with st.chat_message(message["role"]):
# st.write(message["content"])
# # If last message is not from assistant, generate a new response
# if st.session_state.messages[-1]["role"] != "assistant":
# with st.chat_message("assistant"):
# with st.spinner("Thinking..."):
# try:
# reason, intervene = moderate_text(prompt)
# except Exception as e:
# print(str(e))
# reason = ''
# intervene = False
# if not intervene:
# response = chat_engine.chat(prompt)
# st.write(response.response)
# message = {"role": "assistant", "content": response.response}
# st.session_state.messages.append(message) # Add response to message history
# else:
# response = f"This query cannot be processed as it has been detected to be {reason}"
# st.write(response)
# message = {"role": "assistant", "content": response}
# st.session_state.messages.append(message)