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Audience Poll: Challenges of Parallel Programming

How many of you have written parallel programs that suffer from:

Bad scaling?

Cores

Performance

Bad scaling?
Races, deadlocks, etc: gremlins of shared state?

Limited to shared memory? GPU? No sharing allowed?
Coded to match core count?
Independent tasks serialized or badly split across resources?
Application logic interwoven with parallelism optimizations?
Wasted energy?
Square-peg logic in round-hole framework abstractions?
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Charm++

Parallel ...

... programming model

... programming framework

... runtime system
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Charm++

Parallel ...

... programming model

... programming framework

... runtime system

General-purpose

Macro Dataflow

Unified data and task parallelism

Unified handling of shared and distributed memory

Parallel algorithm independent of available processors

Seamless parallel composability of modular components
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Charm++

Parallel ...

... programming model

... programming framework

... runtime system

Code generation, Base classes, utility functions and other API

Multi-paradigm parallel code (procedural, object oriented, generic)

Rich ecosystem of tools

Separation of roles and concerns
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Charm++

Parallel ...

... programming model

... programming framework

... runtime system

Managed parallel execution

Measurement-based performance introspection

Adaptive response for better performance
I Fault tolerance
I Dynamic load balancing
I Energy management
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Charm++: Portability

Environments

Embedded ARM: CARMA dev
boards, cell phones

Commodity x86: servers, desktops,
laptops, tablets

Clusters: commodity, with a network

Supercomputers: IBM Blue Gene
and POWER, Cray

Operating Systems

Linux

Mac OS X

Windows

Proprietary Cray & IBM

Compilers

GCC

Clang

Microsoft VC++

IBM XL

Intel

Portland Group (PGI)

Cray

Fujitsu
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Charm++: Pedigree

1987: Chare Kernel arose from parallel Prolog work

1992: Initial C++-based Charm++

1994-1996: NAMD developed

1997: Application-facing abstractions reach near-current form

1997: Adaptive MPI (AMPI) built atop Charm++

2000-present: More applications developed, runtime facilities
extended, scaling with new machines

Award-winning
Gordon Bell award in 2002
HPC Challenge award in 2011
Sidney Fernbach award for Kalé in 2012

several best papers
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D

C

K

P

M
N

Express parallel algo independent of processors

Use units natural to domain

matrix block

tile of an image

slice of a computation’s work

volume of simulation space

partition of a graph, tree or other data structures
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Data decomposition: via an object collection

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]
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Multiple data parallel collections

S[2]

J[1]

S[1]J[2]

S[0]
J[0]
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Work decomposition: also via objects / collections

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

sequential fib(3) sequential fib(2)

sequential fib(3)
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Functional decomposition: via multiple classes

S[2]

J[1]

S[1]J[2]

S[0]
J[0]

B[0] B[1]

G[1]

B[2]

G[0] G[2]
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App logic: via classes and object collections

D

C

K

P

M
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J[1]

S[1]J[2]

S[0]
J[0]

A[0]
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Concurrency requires placing objects on all processors

Processor 0 Processor 1 Processor p...
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However, do not burden programmer with this view

Processor 0 Processor 1 Processor p...
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Elevate some objects to global visibility

Processor 0 Processor 1 Processor p...

Globally Visible Object Space
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Globally visible objects = chares
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Globally visible object collections = chare arrays
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Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 15 / 86



Annotating classes to enable global visibility

In foo.ci

module foo module {
array [2D] Foo {
// . . .
};
}

In foo.h

#include ”foo module.decl
.h”

class Foo : public
CBase Foo {

// . . .
};

In foo.C

#include ”foo.h”

// . . .

#include ”foo module.def.h”
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Indexing into Object Collections

In foo.ci

module foo module {
array [2D] Foo {
// . . .
};
}

multidimensional, integer (1D .. 6D)
I Dense
I Sparse

anything hashable (strings, bitvectors)

Static

Dynamic (elements come and go)
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Quantum Chemistry: OpenAtom

GSpace
PairCalculator

RealSpace

RhoR

Density

Ortho

Transpose

Transpose

Reduction

Multicast

RhoRHartRhoG

RhoGHart

I

VI

II

V

III IV

VII

VIII
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Quantum Chemistry: OpenAtom
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Object collections maketh not a parallel program
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Object interactions
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Object interactions ... via remote method invocations
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1. Not every object is remotely invocable
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2. Not every method is remotely invocable
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3. Remote methods are of void return type

What happens if an object waits for a return value from a method
invocation?

Instance A

Instance B

B.m1()

execute m1()

idle waiting for B

B.m1() returns

kernelA()

Performance

Latency

Reasoning about correctness
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3. Remote methods are of void return type

Instance A

Instance B

B.m1()

execute m1()

idle

A.m2() response

kernelA()

Hence, method invocations should be asynchronous
I No return values

Computations are driven by the incoming data
I Initiated by the sender or method caller
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Asynchronous, non-blocking remote method invocations on chares
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Entry Methods

Asynchronous, non-blocking remote method invocations on chares

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 27 / 86



Globally visible entry methods

In foo.ci

array [2D] Foo {
entry Foo(int c, double d);
entry void compute(int count, double[count] data);
};

In foo.h

class Foo : public CBase Foo {
int c ; double d ;

public:
Foo(int c, double d);
void compute(int count, double ∗ data);
};

In foo.C

Foo::Foo(int c, double d) : c (c), d (d) { }
void Foo::compute(int count, double ∗ data)
{ /∗ . . . ∗/ }

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 28 / 86



Calling Entry Methods: Proxy Objects

// Construct a 10∗10 array of Foo chares, each initialized with {42, 2.7}
CProxy Foo f = CProxy Foo::ckNew(10, 10, 42, 2.7);

double d[7] = {0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6};

// Call Foo::compute(7, d) on the object at (1, 2) in the collection
f(1, 2).compute(7, d);

Tenet: Do not hide locality information from developer

Many RMI implementations try to hide remote-ness.
Ours draws attention to potential expense of non-local operations.
Proxy objects are explicitly visible to client code. Any invocations via
proxies are potentially remote.
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How do you get return values
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Method invocation on object collections

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 31 / 86



Method invocation on object collections

Processor 0 Processor 1 Processor p...

Globally Visible Object Space

D

C

K

P

M
N S[2]

J[1]

S[1]J[2]

S[0]
J[0]

A[0]

A[1]

A[5]

A[3]

A[6]

A[2]

A[4]

B[0] B[1]

G[1]

B[2]

G[0] G[2]

B.m3()

A[3:5].m2

A[0].m1()

A[1].f6()

A[3].m1()
P.f1() S[0].f2()

A[6].m4()

M.f3()

D.m0()B[1].m6()

G[0].getX()

J[2].calcX()
G[1].useX()

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 31 / 86



Entry methods and Dataflow

void return types imply one-way information transfer

signal application’s intent to perform (possibly) remote task

carry required input data for remote task

express parallel dependencies
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Biomolecular Physics: NAMD
Parallel decomposition and dependencies
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Biomolecular Physics: NAMD
Chromatophore vesicle in purple bacteria
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Biomolecular Physics: NAMD
ApoA1 on IBM BlueGene P/Q (Intrepid/Mira)

794 us / step
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Biomolecular Physics: NAMD
100M atom STMV on Cray XK6 (Titan)
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RMI → Messages
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Remember the void return types?

void return types imply one-way information transfer

signal application’s intent to perform (possibly) remote task

carry required input data for remote task

express parallel dependencies

Entry methods express when something can execute.
Not when something should execute.
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Message queues
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Scheduler
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Charm++

objects = fundamental unit of state / functionality

methods = fundamental unit of execution

Entry Methods ...

are scheduled for execution

are not preempted

are not reentrant

have unspecified delivery order

do not require threading / locking mechanisms (typically)
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Prioritized Execution
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Cosmology: ChaNGa

  

Gas
Stars

Dark Matter
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Cosmology: ChaNGa
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Cosmology: ChaNGa
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Parallel Decomposition
Recap

Data or Task parallelism encoded in objects

Object count independent of processors

How many objects, then? How big?
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Parallel Decomposition
Overdecomposition

Want several objects per processor

Increase chance that one will have work available

Overlap communication of one with computation of another

Important for later optimizations
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Parallel Decomposition
Overdecomposition Example: Weather Forecasting in BRAMS

BRAMS: Brazillian weather code (based on RAMS)

AMPI version (Eduardo Rodrigues, with C. Mendes and J. Panetta)
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Basic Virtualization of BRAMS
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Baseline: 64 objects on 64 processors
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Over-decomposition: 1024 objects on 64 processors
Benefits from communication/computation overlap
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Grain Size

Working Definition

The amount of computation per potentially parallel event (task creation,
enqueue/dequeue, messaging, locking, etc.)
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Modularity & Composability

Easy to write code separately and then run it separately
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Possible to write code for explicit paralllel composition, interleaving
multiple modules

Want seamless resource sharing by separate pieces of code
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Separation of Roles and Concerns

Different layers / components, different focus

Application logic

Parallel Algorithm

Performance related application code

Parallel runtime infrastructure

Different expertise, different focus

Domain specialists write domain logic

Performance experts specify tuning and optimizations

HPC and CS experts develop and deploy runtime services
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Different expertise, different focus: Object Mapping Code

/// Implement a mapping that tiles a 2D processor tile
/// in the 2D chare array
class LUMap : public CBase LUMap {
// . . .
int procNum(int arrayHdl, const CkArrayIndex &idx) {

const int ∗coor = idx.data();
int tileYIndex = coor[1] / peCols;
int XwithinPEtile = (coor[0] + tileYIndex ∗ peRotate) % peRows;
int YwithinPEtile = coor[1] % (peCols / peStride);
int subtileY = (coor[1] % peCols) / (peCols / peStride);
int peNum = XwithinPEtile ∗ peStride +

YwithinPEtile ∗ peStride ∗ peRows + subtileY;
return peNum;
}
};
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Different expertise, different focus
Mapping Example: Quantum Chemistry with OpenAtom
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Different expertise, different focus
Mapping Example: Quantum Chemistry with OpenAtom
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Different expertise, different focus
Mapping Example: Quantum Chemistry with OpenAtom
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Separation of Concerns

Layered responsibility

Application worries about what, runtime system worries about how

What data to send, vs. message allocation and packing

Who to talk to, vs. where they live
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Separation of Concerns
Example: Object location services

Possible solutions to “Where does object X live?”
I Name is location-specific
I Object creator specifies location, passes along with name
I Fixed mapping from names to locations
I Dynamic lookup

Charm++approach
I Mapping scheme defines home location – default location, and

responsible for knowing current location
I Cache of last known locations on each processor
I Messages sent to cached location, or home if none known

Application is mostly oblivioous

Fire off message, runtime delivers
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Separation of Concerns
Example: Object location services
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Separation of Concerns: Object Migration

Why migrate?

Fault tolerance

Communication locality

Load balance

Power, Energy, and Heat management

Application provides serialization routines, runtime can do the rest!
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Object Serialization

class MyChare : public
CBase MyChare {

int a; float b; char c;
float localArray[LOCAL SIZE];
int heapArraySize;
float∗ heapArray;
MyClass ∗pointer;
// . . .
};

void MyChare::pup(PUP::er &p) {
CBase MyChare::pup(p);
p | a; p | b; p | c;
p(localArray, LOCAL SIZE);
p | heapArraySize;
if (p.isUnpacking()) {

heapArray =
new float[heapArraySize];

}
p(heapArray, heapArraySize);
bool isNull = pointer==NULL;
p | isNull;
if (!isNull) {

if (p.isUnpacking())
pointer = new MyClass();

p | ∗pointer;
}

}
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Introspective, Adaptive Runtime System

All about execution resources: processors, network, nodes, etc.

Watch how each object and method uses resources: time running,
bytes/messages sent & received, CPU frequency sensitivity,
performance counters

Record instrumented data for other components to use

Invoke adaptation mechanisms at appropriate intervals

Adjust system configuration accordingly
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Load Imbalance

Performance limited by difference between most-loaded processor and
overall average.

Causes vary in severity, time scale, nature

Response must suit causes, other application concerns, system scale
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With Load Balancing: 1024 objects on 64 processors

No overdecomp (64 threads): 4988 sec
Overdecomp into 1024 threads: 3713 sec

Load balancing (1024 threads): 3367 sec
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Load Balancing Adaptive Mesh Refinement for solving
PDEs

{
{ { {

P0 PnP1 P2
. . .

Load changes gradually and incrementally, suggesting localized strategies
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Load Balancing Adaptive Mesh Refinement for solving
PDEs
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Load Imbalance: Crack Propagation

As computation progresses, crack
propagates, and new elements are
added, leading to more complex
computations in some chunks
Picture: S. Breitenfeld and P. Geubelle
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Load Imbalance: Crack Propagation

Sudden, severe shift in load suggests comprehensive rebalancing

Link-time: -balancer GreedyLB or -balancer MetisLB

Run-time: +balancer FooLB
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Load Imbalance: Adaptive Response

When to run load balancer?

When imbalance hurts (worse than the
cost)!

How to activate?

./pgm argsA argsB argsC +MetaLB
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Load Imbalance: Adaptive Response

When to run load balancer? When imbalance hurts (worse than the
cost)!

When to allow migration?

When imbalance hurts (worse than the
cost)!
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Load Imbalance: Adaptive Response

When to run load balancer? When imbalance hurts (worse than the
cost)!

When to allow migration? When imbalance hurts (worse than the
cost)!
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Power, Energy, and Heat
Motivations

Reduce direct costs of execution - cumulative machine energy, cooling
energy from start to finish

Reduce capital costs - transformers, chillers

Improve reliability

Improve user experience - fan noise, ambient heat, battery life
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Power, Energy, and Heat

Established Technique

Set temperature threshold, periodic DVFS to enforce

Slower clocks can hurt performance

Load balance to compensate
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Upcoming Technique

Set power threshold on newer Intel CPUs, load balance as overloads appear
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Upcoming Technique

Set power threshold on newer Intel CPUs, load balance as overloads appear
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Contagion and Information Spread: CharmEpiSimDemics

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 74 / 86



Contagion and Information Spread: CharmEpiSimDemics
Full US population simulations on Cray XE6 (Blue Waters)

 0.1

 1

 10

 100

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Si
m

ul
at

io
n 

tim
e 

pe
r 

da
y 

(s
)

Number of core-modules

Strong scaling of EpiSimdemics on Blue Waters

RR
RR splitLoc

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 75 / 86



kd-tree construction on multicores
4 socket, 40 core intel xeon E7-4860 at 2.27GHz
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kd-tree construction on multicores
4 socket, 40 core intel xeon E7-4860 at 2.27GHz
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Numerical Linear Algebra: Dense LU Factorization
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Performance Analysis Using Projections

Instrumentation and measurement during program execution

Easy setup: just modify link options

Easy setup: data is generated automatically during run

User events can be easily inserted as needed

Visualization and analysis client

Scalable: analyze execution traces for 100s of thousands of cores

Rich feature set: time profile, time lines, usage profile, histograms,
outliers etc

Detect performance problems: load imbalance, grain size,
communication bottleneck, etc

Phil and Ram (PPL, UIUC) Parallelism with Charm++ May 14, 2012 78 / 86



Time Profile
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Extrema Tool for Least Idle Processors
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Time Lines with Message Back Tracing
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Communication over Time for all Processors
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Debugging Charm++applications using CharmDebug
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Debugging Charm++applications using CharmDebug
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Recap
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Questions?
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