Parallel Programming with Charm++

Phil Miller, Ramprasad Venkataraman, Laxmikant Kalé

Parallel Programming Lab University of Illinois charmplusplus.org

May 14, 2012

Parallelism with Charm++

May 14, 2012 1 / 86

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?
- Limited to shared memory? GPU? No sharing allowed?

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?
- Limited to shared memory? GPU? No sharing allowed?
- Coded to match core count?

How many of you have written parallel programs that suffer from:

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?
- Limited to shared memory? GPU? No sharing allowed?
- Coded to match core count?
- Independent tasks serialized or badly split across resources?

nodule

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?
- Limited to shared memory? GPU? No sharing allowed?
- Coded to match core count?
- Independent tasks serialized or badly split across resources?
- Application logic interwoven with parallelism optimizations?

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?
- Limited to shared memory? GPU? No sharing allowed?
- Coded to match core count?
- Independent tasks serialized or badly split across resources?
- Application logic interwoven with parallelism optimizations?
- Wasted energy?

- Bad scaling?
- Races, deadlocks, etc: gremlins of shared state?
- Limited to shared memory? GPU? No sharing allowed?
- Coded to match core count?
- Independent tasks serialized or badly split across resources?
- Application logic interwoven with parallelism optimizations?
- Wasted energy?
- Square-peg logic in round-hole framework abstractions?

Parallel ...

- ... programming model
- ... programming framework
- ... runtime system

(日) (同) (三) (三)

Parallel ...

- ... programming model
- ... programming framework
- ... runtime system
- General-purpose
- Macro Dataflow
- Unified data and task parallelism
- Unified handling of shared and distributed memory
- Parallel algorithm independent of available processors
- Seamless parallel composability of modular components

Parallel ...

- ... programming model
- ... programming framework
- ... runtime system
- Code generation, Base classes, utility functions and other API
- Multi-paradigm parallel code (procedural, object oriented, generic)
- Rich ecosystem of tools
- Separation of roles and concerns

Parallel ...

- ... programming model
- ... programming framework
- ... runtime system
- Managed parallel execution
- Measurement-based performance introspection
- Adaptive response for better performance
 - Fault tolerance
 - Dynamic load balancing
 - Energy management

A E A

Environments

- Embedded ARM: CARMA dev boards, cell phones
- Commodity x86: servers, desktops, laptops, tablets

- Clusters: commodity, with a network
- Supercomputers: IBM Blue Gene and POWER, Cray

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 6 / 86

Environments

- Embedded ARM: CARMA dev boards, cell phones
- Commodity x86: servers, desktops, laptops, tablets

- Clusters: commodity, with a network
- Supercomputers: IBM Blue Gene and POWER, Cray

Operating Systems	
• Linux	Windows
Mac OS X	Proprietary Cray & IBM

Environments

- Embedded ARM: CARMA dev boards, cell phones
- Commodity x86: servers, desktops, laptops, tablets

• Clusters: commodity, with a network

(日) (同) (三) (三)

 Supercomputers: IBM Blue Gene and POWER, Cray

Operating Systems	
LinuxMac OS X	WindowsProprietary Cray & IBM
Network Interfaces	
TCP, UDPShared memoryMPI	 Infiniband Verbs IBM BlueGene P,Q (DCMF, PAMI) Cray Gemini and Aries (uGNI)

Environments

Phil and Ram (PPL, UIUC)

- Embedded ARM: CARMA dev boards, cell phones
- Commodity x86: servers, desktops, laptops, tablets

- Clusters: commodity, with a network
- Supercomputers: IBM Blue Gene and POWER, Cray

Operating Systems	
• Linux	Windows
Mac OS X	Proprietary Cray & IBM

Compilers • GCC • Intel • Clang • Portland Group (PGI) • Microsoft VC++ • Cray • IBM XL • Fujitsu

Parallelism with Charm++

Charm++: Pedigree

- 1987: Chare Kernel arose from parallel Prolog work
- 1992: Initial C++-based Charm++
- 1994-1996: NAMD developed
- 1997: Application-facing abstractions reach near-current form
- 1997: Adaptive MPI (AMPI) built atop Charm++
- 2000-present: More applications developed, runtime facilities extended, scaling with new machines

Charm++: Pedigree

- 1987: Chare Kernel arose from parallel Prolog work
- 1992: Initial C++-based Charm++
- 1994-1996: NAMD developed
- 1997: Application-facing abstractions reach near-current form
- 1997: Adaptive MPI (AMPI) built atop Charm++
- 2000-present: More applications developed, runtime facilities extended, scaling with new machines

Award-winning

Gordon Bell award in 2002 HPC Challenge award in 2011 Sidney Fernbach award for Kalé in 2012

several best papers

< 回 ト < 三 ト < 三 ト

Express parallel algo independent of processors

Use units natural to domain

- matrix block
- tile of an image
- slice of a computation's work
- volume of simulation space
- partition of a graph, tree or other data structures

Data decomposition: via an object collection

Multiple data parallel collections

Phil and Ram (PPL, UIUC)

May 14, 2012 10 / 86

Work decomposition: also via objects / collections

Phil and Ram	(PPL,	UIUC)
--------------	-------	-------

May 14, 2012 11 / 86

3

3

Functional decomposition: via multiple classes

May 14, 2012 12 / 86

App logic: via classes and object collections

Concurrency requires placing objects on all processors

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 14 / 86

However, do not burden programmer with this view

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 14 / 86

Elevate some objects to global visibility

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 15 / 86

Globally visible objects = chares

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 15 / 86

Globally visible object collections = chare arrays

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 15 / 86

Annotating classes to enable global visibility

ln foo.C

#include "foo.h"

// . . .

#include "foo_module.def.h"

ln foo.h

class Foo : public CBase_Foo { // . . .

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 16 / 86

▶ < 프 ► < 프 ►</p>

Annotating classes to enable global visibility

Indexing into Object Collections

- multidimensional, integer (1D .. 6D)
 - Dense
 - Sparse
- anything hashable (strings, bitvectors)
- Static
- Dynamic (elements come and go)

• • = • • = •

Quantum Chemistry: OpenAtom

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 19 / 86

э

イロト イヨト イヨト イヨト

Quantum Chemistry: OpenAtom

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

20 / 86
Object collections maketh not a parallel program

Parallelism with Charm++

May 14, 2012 21 / 86

Phil and Ram (PPL, UIUC)

Object interactions

May 14, 2012 22 / 86

Object interactions

May 14, 2012 22 / 86

Object interactions ... via remote method invocations

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 22 / 86

1. Not every object is remotely invocable

23 / 86

2. Not every method is remotely invocable

24 / 86

What happens if an object waits for a return value from a method invocation?

What happens if an object waits for a return value from a method invocation?

What happens if an object waits for a return value from a method invocation?

- Performance
- Latency
- Reasoning about correctness

• Hence, method invocations should be asynchronous

- No return values
- Computations are driven by the incoming data
 - Initiated by the sender or method caller

Globally Visible Object Space

Asynchronous, non-blocking remote method invocations on chares

27 / 86

Entry Methods

Asynchronous, non-blocking remote method invocations on chares

Globally visible entry methods

```
ln foo.ci
```

```
array [2D] Foo {
    entry Foo(int c, double d);
    entry void compute(int count, double[count] data);
};
```

ln foo.h

```
class Foo : public CBase_Foo {
    int c_; double d_;
public:
    Foo(int c, double d);
    void compute(int count, double * data);
};
```

In foo.C

```
Foo::Foo(int c, double d) : c_(c), d_(d) { }
void Foo::compute(int count, double * data)
{ /* . . . */ }
```

Calling Entry Methods: Proxy Objects

// Construct a 10*10 array of Foo chares, each initialized with {42, 2.7} CProxy_Foo $f = CProxy_Foo::ckNew(10, 10, 42, 2.7);$

double d[7] = {0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6};

// Call Foo::compute(7, d) on the object at (1, 2) in the collection f(1, 2).compute(7, d);

Tenet: Do not hide locality information from developer

Many RMI implementations try to hide remote-ness. Ours draws attention to potential expense of non-local operations. Proxy objects are explicitly visible to client code. Any invocations via proxies are potentially remote.

イロト イヨト イヨト

How do you get return values

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 30 / 86

Method invocation on object collections

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 31 / 86

Method invocation on object collections

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 31 / 86

- void return types imply one-way information transfer
- signal application's intent to perform (possibly) remote task
- carry required input data for remote task
- express parallel dependencies

Parallel decomposition and dependencies

Phil and Ram (PPL, UIUC)

May 14, 2012 33 / 86

Chromatophore vesicle in purple bacteria

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 34 / 86

ApoA1 on IBM BlueGene P/Q (Intrepid/Mira)

ApoA1 on IBM BlueGene P/Q (Intrepid/Mira)

794 us / step

Biomolecular Physics: NAMD 100M atom STMV on Cray XK6 (Titan)

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 36

36 / 86

$\mathsf{RMI} \to \mathsf{Messages}$

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 37 / 86

Remember the void return types?

- void return types imply one-way information transfer
- signal application's intent to perform (possibly) remote task
- carry required input data for remote task
- express parallel dependencies

Remember the void return types?

- void return types imply one-way information transfer
- signal application's intent to perform (possibly) remote task
- carry required input data for remote task
- express parallel dependencies

Entry methods express when something can execute. Not when something should execute.

Message queues

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 39 / 86

Scheduler

May 14, 2012 39 / 86

Charm++

- \bullet objects = fundamental unit of state / functionality
- methods = fundamental unit of execution

(日) (周) (三) (三)

Charm++

- objects = fundamental unit of state / functionality
- methods = fundamental unit of execution

Entry Methods ...

- are scheduled for execution
- are not preempted
- are not reentrant
- have unspecified delivery order
- do not require threading / locking mechanisms (typically)

Prioritized Execution

May 14, 2012 41 / 86

Prioritized Execution

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 41 / 86

Cosmology: ChaNGa

Cosmology: ChaNGa

Parallelism with Charm++

May 14, 2012 43 / 86

э

<ロ> (日) (日) (日) (日) (日)

Cosmology: ChaNGa

Parallel Decomposition

Recap

- Data or Task parallelism encoded in objects
- Object count independent of processors
- How many objects, then? How big?

< A > < 3

Parallel Decomposition

Overdecomposition

Want several objects per processor

- Increase chance that one will have work available
- Overlap communication of one with computation of another
- Important for later optimizations

Parallel Decomposition

Overdecomposition Example: Weather Forecasting in BRAMS

- BRAMS: Brazillian weather code (based on RAMS)
- AMPI version (Eduardo Rodrigues, with C. Mendes and J. Panetta)

Basic Virtualization of BRAMS

3

Baseline: 64 objects on 64 processors

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 49 / 86

Over-decomposition: 1024 objects on 64 processors

Benefits from communication/computation overlap

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 50 / 86

Grain Size

Working Definition

The amount of computation per potentially parallel event (task creation, enqueue/dequeue, messaging, locking, etc.)

→ < ∃ >

Modularity & Composability

• Easy to write code separately and then run it separately

- Possible to write code for explicit parallel composition, interleaving multiple modules
- Want seamless resource sharing by separate pieces of code

Separation of Roles and Concerns

Different layers / components, different focus

- Application logic
- Parallel Algorithm
- Performance related application code
- Parallel runtime infrastructure

Separation of Roles and Concerns

Different layers / components, different focus

- Application logic
- Parallel Algorithm
- Performance related application code
- Parallel runtime infrastructure

Different expertise, different focus

- Domain specialists write domain logic
- Performance experts specify tuning and optimizations
- HPC and CS experts develop and deploy runtime services

Different expertise, different focus: Object Mapping Code

```
/// Implement a mapping that tiles a 2D processor tile
/// in the 2D chare array
class LUMap : public CBase_LUMap {
 // . . .
 int procNum(int arrayHdl, const CkArrayIndex &idx) {
    const int *coor = idx.data();
    int tileYIndex = coor[1] / peCols;
    int XwithinPEtile = (coor[0] + tileYIndex * peRotate) % peRows;
    int YwithinPEtile = coor[1] \% (peCols / peStride);
    int subtileY = (coor[1] % peCols) / (peCols / peStride);
    int peNum = XwithinPEtile * peStride +
                YwithinPEtile * peStride * peRows + subtileY;
    return peNum;
```

イロト 不得下 イヨト イヨト

Different expertise, different focus

Mapping Example: Quantum Chemistry with OPENATOM

(日) (同) (三) (三)

Different expertise, different focus

Mapping Example: Quantum Chemistry with OPENATOM

May 14, 2012 56

^{56 / 86}

Different expertise, different focus

Mapping Example: Quantum Chemistry with OPENATOM

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 57 / 86

Layered responsibility

Application worries about what, runtime system worries about how

- What data to send, vs. message allocation and packing
- Who to talk to, vs. where they live

Example: Object location services

- Possible solutions to "Where does object X live?"
 - Name is location-specific
 - Object creator specifies location, passes along with name
 - Fixed mapping from names to locations
 - Dynamic lookup

Example: Object location services

- Possible solutions to "Where does object X live?"
 - Name is location-specific
 - Object creator specifies location, passes along with name
 - Fixed mapping from names to locations
 - Dynamic lookup
- Charm++approach
 - Mapping scheme defines home location default location, and responsible for knowing current location
 - Cache of last known locations on each processor
 - Messages sent to cached location, or home if none known

Example: Object location services

- Possible solutions to "Where does object X live?"
 - Name is location-specific
 - Object creator specifies location, passes along with name
 - Fixed mapping from names to locations
 - Dynamic lookup
- Charm++approach
 - Mapping scheme defines home location default location, and responsible for knowing current location
 - Cache of last known locations on each processor
 - Messages sent to cached location, or home if none known

Application is mostly oblivioous

Fire off message, runtime delivers

Example: Object location services

Separation of Concerns: Object Migration

Why migrate?

- Fault tolerance
- Communication locality
- Load balance
- Power, Energy, and Heat management

Separation of Concerns: Object Migration

Why migrate?

- Fault tolerance
- Communication locality
- Load balance
- Power, Energy, and Heat management

Application provides serialization routines, runtime can do the rest!

Object Serialization

```
void MyChare::pup(PUP::er &p) {
   CBase_MyChare::pup(p);
   p | a; p | b; p | c;
   p(localArray, LOCAL_SIZE);
   p | heapArraySize;
   if (p.isUnpacking()) {
     heapArray =
       new float[heapArraySize];
   p(heapArray, heapArraySize);
   bool isNull = pointer == NULL;
   p | isNull;
   if (!isNull) {
     if (p.isUnpacking())
       pointer = new MyClass();
     p | *pointer;
}
```

All about execution resources: processors, network, nodes, etc.

- Watch how each object and method uses resources: time running, bytes/messages sent & received, CPU frequency sensitivity, performance counters
- Record instrumented data for other components to use
- Invoke adaptation mechanisms at appropriate intervals
- Adjust system configuration accordingly

Load Imbalance

• Performance limited by difference between most-loaded processor and overall average.

 1,800,800	E36,500,500	308,008,008	738,008,008	713,080,080	725, 380, 380	723,800,800	728,005,000	723,080,080	735 300 300	543,800,800	748,000,000	753,008,008	798,800,800	ME3,000,000	318,000
10 at 10														100 A	
				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1											
					_										
10000	•					No.								10 M 10	1000
					_									_	
TO BE DO DO					1000										
															-
10000	il dana and an	and the second se		han an a						COLUMN TWO IS NOT					100.000

3

(日) (周) (三) (三)

- Performance limited by difference between most-loaded processor and overall average.
- Causes vary in severity, time scale, nature

- Performance limited by difference between most-loaded processor and overall average.
- Causes vary in severity, time scale, nature
- Response must suit causes, other application concerns, system scale

With Load Balancing: 1024 objects on 64 processors

- No overdecomp (64 threads): 4988 sec
- Overdecomp into 1024 threads: 3713 sec

With Load Balancing: 1024 objects on 64 processors

- No overdecomp (64 threads): 4988 sec
- Overdecomp into 1024 threads: 3713 sec
- Load balancing (1024 threads): 3367 sec

Phil and Ram (PPL, UIUC)

May 14, 2012 65 / 86

Parallelism with Charm++

Load Balancing Adaptive Mesh Refinement for solving PDEs

Load changes gradually and incrementally, suggesting localized strategies

Load Balancing Adaptive Mesh Refinement for solving PDEs

Load Imbalance: Crack Propagation

As computation progresses, crack propagates, and new elements are added, leading to more complex computations in some chunks

Picture: S. Breitenfeld and P. Geubelle

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 68 / 86

Load Imbalance: Crack Propagation

May 14, 2012 69 / 86

3

- ∢ ≣ →

Load Imbalance: Crack Propagation

Sudden, severe shift in load suggests comprehensive rebalancing Link-time: -balancer GreedyLB or -balancer MetisLB Run-time: +balancer FooLB Phil and Ram (PPL, UUC) Parallelism with Charm++ May 14, 2012 69 / 86

Load Imbalance: Adaptive Response

• When to run load balancer?

Image: A math a math

Load Imbalance: Adaptive Response

• When to run load balancer? When imbalance hurts (worse than the cost)!

How to activate?

./pgm argsA argsB argsC +MetaLB

Load Imbalance: Adaptive Response

• When to run load balancer? When imbalance hurts (worse than the cost)!

How to activate?

./pgm argsA argsB argsC +MetaLB
- When to run load balancer? When imbalance hurts (worse than the cost)!
- When to allow migration?

Load Imbalance: Adaptive Response

- When to run load balancer? When imbalance hurts (worse than the cost)!
- When to allow migration? When imbalance hurts (worse than the cost)!

Phil and Ram (PPL, UIUC)

- Reduce direct costs of execution cumulative machine energy, cooling energy from start to finish
- Reduce capital costs transformers, chillers
- Improve reliability
- Improve user experience fan noise, ambient heat, battery life

Power, Energy, and Heat

Established Technique

Set temperature threshold, periodic DVFS to enforce

- Slower clocks can hurt performance
- Load balance to compensate

Power, Energy, and Heat

Established Technique

Set temperature threshold, periodic DVFS to enforce

- Slower clocks can hurt performance
- Load balance to compensate

Upcoming Technique

Set power threshold on newer Intel CPUs, load balance as overloads appear

Contagion and Information Spread: CharmEpiSimDemics

- < A

Contagion and Information Spread: CharmEpiSimDemics Full US population simulations on Cray XE6 (Blue Waters)

Strong scaling of EpiSimdemics on Blue Waters

kd-tree construction on multicores

4 socket, 40 core intel xeon E7-4860 at 2.27GHz

Phil and Ram (PPL, UIUC)

May 14, 2012 76 / 86

kd-tree construction on multicores

4 socket, 40 core intel xeon E7-4860 at 2.27GHz

Phil and Ram (PPL, UIUC)

May 14, 2012 76 / 86

Numerical Linear Algebra: Dense LU Factorization

Performance Analysis Using Projections

Instrumentation and measurement during program execution

- Easy setup: just modify link options
- Easy setup: data is generated automatically during run
- User events can be easily inserted as needed

Visualization and analysis client

- Scalable: analyze execution traces for 100s of thousands of cores
- Rich feature set: time profile, time lines, usage profile, histograms, outliers etc
- Detect performance problems: load imbalance, grain size, communication bottleneck, etc

Time Profile

May 14, 2012 79 / 86

3

(日) (同) (三) (三)

Extrema Tool for Least Idle Processors

Time Lines with Message Back Tracing

May 14, 2012 81 / 86

3

<ロ> (日) (日) (日) (日) (日)

Communication over Time for all Processors

May 14, 2012 82 / 86

- 4 同 ト 4 ヨ ト 4 ヨ

Debugging Charm++applications using CharmDebug

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 83 / 86

Debugging Charm++applications using CharmDebug

Phil and Ram (PPL, UIUC)

May 14, 2012 84 / 86

イロト イ理ト イヨト イヨト 二日

Recap

Charm++: Parallel Program × New Tab

Charm++: Parallel Programming Framework

Charm++

parallel programming framework

migratable objects

Use our unified data / task parallel model. Express parallelism in terms of interacting collections of objects. Use work and data units natural to your app. Dont shackle performance by explicitly managing cores / threads.

asynchronous methods

Communication is as simple as invoking methods on remote objects. Get zero-effort overlap of your computation with your communication. Define your own serializable data or message types.

adaptive runtime system

Allow our intelligent runtime system to orchestrate execution. You design and decompose the parallel algorithm; the runtime observes and optimizes performance. Win-Win!

more...

©, ☆ =

Menu

capabilities

Automatic overlap Automatic load balancing Automatic checkpointing Automatic fault tolerance Portable code Independent modules, interleaved execution Interoperable with MPI and OpenMP Ecosystem of tools

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

more...

Phil and Ram (PPL, UIUC)

Parallelism with Charm++

May 14, 2012 85 / 86

< E

Questions?

