-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathload_data.py
261 lines (214 loc) · 8.13 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import pandas as pd
import collections
import random
import torch
from torch.utils.data import Dataset
from sklearn.model_selection import StratifiedKFold
class RE_Dataset(Dataset):
"""
Relation Extraction Dataset 구성을 위한 class
"""
def __init__(self, dataset, labels):
self.dataset = dataset
self.labels = labels
def __getitem__(self, idx):
item = {
key: val[idx] for key, val in self.dataset.items()
} # id,sentence, subject_entity,object_entity,label
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
class DatasetForRRoBERTa(RE_Dataset):
"""
R-RoBERTa 모델을 사용하기 위해 커스텀한 Relation Extraction Dataset
subject, object entity embedding을 만들어주기 위한 클래스
subject : e1_mask
object : e2_mask
"""
def __init__(self, dataset, labels, tokenizer):
self.dataset = dataset
self.labels = labels
self.sub_id = tokenizer.get_vocab()["◈"]
self.obj_id = tokenizer.get_vocab()["↑"]
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.dataset.items()}
item["labels"] = torch.tensor(self.labels[idx])
sub_flag, obj_flag = 0, 0
e1_mask, e2_mask = [], []
for enc in item["input_ids"]:
if enc == self.sub_id:
sub_flag += 1
e1_mask.append(0)
e2_mask.append(0)
continue
elif enc == self.obj_id:
obj_flag += 1
e1_mask.append(0)
e2_mask.append(0)
continue
if sub_flag == 1:
e1_mask.append(1)
else:
e1_mask.append(0)
if obj_flag == 1:
e2_mask.append(1)
else:
e2_mask.append(0)
item["e1_mask"] = torch.tensor(e1_mask)
item["e2_mask"] = torch.tensor(e2_mask)
return item
def preprocessing_dataset(dataset, sen_preprocessor, entity_preprocessor):
"""
처음 불러온 csv 파일을 원하는 형태의 DataFrame으로 변경 시켜줍니다.
"""
subject_entity, object_entity = list(
zip(
*dataset.apply(
lambda x: [x["subject_entity"]["word"], x["object_entity"]["word"]],
axis=1,
)
)
)
# Data Sentence Entity processor
dataset = entity_preprocessor(dataset)
# Sentence Preprocessor
sen_data = [sen_preprocessor(sen) for sen in dataset["sentence"]]
subject_data = [sen_preprocessor(sub) for sub in subject_entity]
object_data = [sen_preprocessor(obj) for obj in object_entity]
out_dataset = pd.DataFrame(
{
"id": dataset["id"],
"sentence": sen_data,
"subject_entity": subject_data,
"object_entity": object_data,
"label": dataset["label"],
}
)
return out_dataset
def load_data(dataset_dir, k_fold=0, val_ratio=0, train=True, model_type="default"):
"""
csv 파일을 경로에 맡게 불러 옵니다.
k_fold와 val_ratio를 통해 train data와 validation data를 나눕니다.
단, k_fold가 우선순위고, k_fold가 없을 경우 val_ratio에 따라 split을 진행합니다.
"""
dataset = pd.read_csv(dataset_dir)
if train == True:
dataset = dataset.drop_duplicates(
["sentence", "subject_entity", "object_entity", "label"], keep="first"
)
# 라벨링이 다른 데이터 제거
dataset = dataset.drop(index=[6749, 8364, 22258, 277, 25094])
dataset = dataset.reset_index(drop=True)
if model_type == "per_sort":
dataset = dataset[dataset["label"].str.contains("per")].reset_index(drop=True)
elif model_type == "org_sort":
dataset = dataset[dataset["label"].str.contains("org")].reset_index(drop=True)
# datatype 변경
dataset["subject_entity"] = dataset.subject_entity.map(eval)
dataset["object_entity"] = dataset.object_entity.map(eval)
print(
">>>>>>>>>>Finish pre processing loaded data(drop duplicated and miss-labeled data"
)
if k_fold > 0 and train == True: # train, split by kfold
return split_by_kfolds(dataset, k_fold)
elif val_ratio > 0: # train, split by val_ratio
return split_by_val_ratio(dataset, val_ratio)
elif train == False: # inference
return dataset
else: # train, not split
return [[dataset, None]]
def split_by_kfolds(dataset, k_fold):
X = dataset.drop(["label"], axis=1)
y = dataset["label"]
skf = StratifiedKFold(n_splits=k_fold, shuffle=True)
return [
[dataset.iloc[train_dset], dataset.iloc[val_dset]]
for train_dset, val_dset in skf.split(X, y)
]
def split_by_val_ratio(dataset, val_ratio):
data_size = len(dataset)
index_map = collections.defaultdict(list)
for idx in range(data_size):
label = dataset.iloc[idx]["label"]
index_map[label].append(idx)
train_indices = []
val_indices = []
for label in index_map.keys():
idx_list = index_map[label]
val_size = int(len(idx_list) * val_ratio)
val_index = random.sample(idx_list, val_size)
train_index = list(set(idx_list) - set(val_index))
train_indices.extend(train_index)
val_indices.extend(val_index)
random.shuffle(train_indices)
random.shuffle(val_indices)
train_dset = dataset.iloc[train_indices]
val_dset = dataset.iloc[val_indices]
return [[train_dset, val_dset]]
#### for mlm
class MLM_Dataset(Dataset):
"""
Masked Language Model Dataset 구성을 위한 class
"""
def __init__(self, dataset, tokenizer):
self.dataset = dataset
self.tokenizer = tokenizer
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.dataset.items()}
inputs, labels = mask_tokens(item["input_ids"], self.tokenizer)
item["input_ids"] = inputs.squeeze()
item["labels"] = labels.squeeze()
return item
def __len__(self):
return len(self.dataset["input_ids"])
def load_mlm_data(dataset_dir):
"""
csv 파일을 경로에 맞게 불러 오고
중복되는 문장을 제거합니다.
"""
pd_dataset = pd.read_csv(dataset_dir)
if "train" in dataset_dir:
pd_dataset = pd_dataset.drop_duplicates(
["sentence"], keep="first"
) # 중복되는 문장 제거
pd_dataset = pd.DataFrame(
{
"id": pd_dataset["id"],
"sentence": pd_dataset["sentence"],
"label": pd_dataset["label"],
}
)
return pd_dataset
def mask_tokens(inputs, tokenizer, mlm_probability=0.15, pad=True):
inputs = torch.tensor(inputs)
labels = inputs.clone()
# mlm_probability은 15%로 BERT에서 사용하는 확률
probability_matrix = torch.full(labels.shape, mlm_probability)
special_tokens_mask = [
tokenizer.get_special_tokens_mask(
labels.tolist(), already_has_special_tokens=True
)
]
probability_matrix.masked_fill_(
torch.tensor(special_tokens_mask, dtype=torch.bool).squeeze(), value=0.0
)
if tokenizer._pad_token is not None:
padding_mask = labels.eq(tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
)
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
return inputs, labels