-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
140 lines (112 loc) · 5.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import division
from models import *
from utils.utils import *
from utils.datasets import *
from utils.parse_config import *
import os
import sys
import time
import datetime
import argparse
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=200, help='number of epochs')
parser.add_argument('--batch_size', type=int, default=16, help='size of each image batch')
parser.add_argument('--model_config_path', type=str, default='config/yolov3.cfg', help='path to model config file')
parser.add_argument('--data_config_path', type=str, default='config/coco.data', help='path to data config file')
parser.add_argument('--weights_path', type=str, default='weights/yolov3.weights', help='path to weights file')
parser.add_argument('--class_path', type=str, default='data/coco.names', help='path to class label file')
parser.add_argument('--iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf_thres', type=float, default=0.5, help='object confidence threshold')
parser.add_argument('--nms_thres', type=float, default=0.45, help='iou thresshold for non-maximum suppression')
parser.add_argument('--n_cpu', type=int, default=0, help='number of cpu threads to use during batch generation')
parser.add_argument('--img_size', type=int, default=416, help='size of each image dimension')
parser.add_argument('--use_cuda', type=bool, default=True, help='whether to use cuda if available')
opt = parser.parse_args()
print(opt)
cuda = torch.cuda.is_available() and opt.use_cuda
# Get data configuration
data_config = parse_data_config(opt.data_config_path)
test_path = data_config['valid']
num_classes = int(data_config['classes'])
# Initiate model
model = Darknet(opt.model_config_path)
model.load_weights(opt.weights_path)
if cuda:
model = model.cuda()
model.eval()
# Get dataloader
dataset = ListDataset(test_path)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
n_gt = 0
correct = 0
print ('Compute mAP...')
outputs = []
targets = None
APs = []
for batch_i, (_, imgs, targets) in enumerate(dataloader):
imgs = Variable(imgs.type(Tensor))
targets = targets.type(Tensor)
with torch.no_grad():
output = model(imgs)
output = non_max_suppression(output, 80, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres)
# Compute average precision for each sample
for sample_i in range(targets.size(0)):
correct = []
# Get labels for sample where width is not zero (dummies)
annotations = targets[sample_i, targets[sample_i, :, 3] != 0]
# Extract detections
detections = output[sample_i]
if detections is None:
# If there are no detections but there are annotations mask as zero AP
if annotations.size(0) != 0:
APs.append(0)
continue
# Get detections sorted by decreasing confidence scores
detections = detections[np.argsort(-detections[:, 4])]
# If no annotations add number of detections as incorrect
if annotations.size(0) == 0:
correct.extend([0 for _ in range(len(detections))])
else:
# Extract target boxes as (x1, y1, x2, y2)
target_boxes = torch.FloatTensor(annotations[:, 1:].shape)
target_boxes[:, 0] = (annotations[:, 1] - annotations[:, 3] / 2)
target_boxes[:, 1] = (annotations[:, 2] - annotations[:, 4] / 2)
target_boxes[:, 2] = (annotations[:, 1] + annotations[:, 3] / 2)
target_boxes[:, 3] = (annotations[:, 2] + annotations[:, 4] / 2)
target_boxes *= opt.img_size
detected = []
for *pred_bbox, conf, obj_conf, obj_pred in detections:
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
# Compute iou with target boxes
iou = bbox_iou(pred_bbox, target_boxes)
# Extract index of largest overlap
best_i = np.argmax(iou)
# If overlap exceeds threshold and classification is correct mark as correct
if iou[best_i] > opt.iou_thres and obj_pred == annotations[best_i, 0] and best_i not in detected:
correct.append(1)
detected.append(best_i)
else:
correct.append(0)
# Extract true and false positives
true_positives = np.array(correct)
false_positives = 1 - true_positives
# Compute cumulative false positives and true positives
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
# Compute recall and precision at all ranks
recall = true_positives / annotations.size(0) if annotations.size(0) else true_positives
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
# Compute average precision
AP = compute_ap(recall, precision)
APs.append(AP)
print ("+ Sample [%d/%d] AP: %.4f (%.4f)" % (len(APs), len(dataset), AP, np.mean(APs)))
print("Mean Average Precision: %.4f" % np.mean(APs))