-
Notifications
You must be signed in to change notification settings - Fork 74
/
layers.py
104 lines (87 loc) · 3.91 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True, init='xavier'):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
if init == 'uniform':
print("| Uniform Initialization")
self.reset_parameters_uniform()
elif init == 'xavier':
print("| Xavier Initialization")
self.reset_parameters_xavier()
elif init == 'kaiming':
print("| Kaiming Initialization")
self.reset_parameters_kaiming()
else:
raise NotImplementedError
def reset_parameters_uniform(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def reset_parameters_xavier(self):
nn.init.xavier_normal_(self.weight.data, gain=0.02) # Implement Xavier Uniform
if self.bias is not None:
nn.init.constant_(self.bias.data, 0.0)
def reset_parameters_kaiming(self):
nn.init.kaiming_normal_(self.weight.data, a=0, mode='fan_in')
if self.bias is not None:
nn.init.constant_(self.bias.data, 0.0)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GraphAttention(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(GraphAttention, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(nn.init.xavier_normal_(torch.Tensor(in_features, out_features).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True)
self.a1 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor(out_features, 1).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True)
self.a2 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor(out_features, 1).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
h = torch.mm(input, self.W)
N = h.size()[0]
f_1 = torch.matmul(h, self.a1)
f_2 = torch.matmul(h, self.a2)
e = self.leakyrelu(f_1 + f_2.transpose(0,1))
zero_vec = -9e15*torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
if self.concat:
return F.elu(h_prime)
else:
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'