-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator.py
168 lines (144 loc) · 5.66 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/python
# Copyright (c) 2014 Kota Tsuyuzaki
"""
An Implements of Durability Calculator for OpenStack Swift.
To build a very large scale object storage system, we have to consider
about the suitable design such as processing HW, network architecture,
# of devices and system configuration.
For these design, sometimes we need to know how durability is calculated
to confirm that our storage system is really durable or not. However it could
be difficalut since the components of the storage system would be complicated
for beginers and there is a lot of reference papers for the durability
calculation.
This script helps them to calculate how their own storage system is durable.
Its calculation is built based on a paper[1]. There is a similar idea called
"redundancy set" with the swift's partition. We can assumes a redundancy set
as a partition for durability calculation. Please see the paper in detail.
[1]: "Reliability Mechanisms for Very Large Storage Systems"
http://www.ssrc.ucsc.edu/Papers/xin-mss03.pdf
"""
import numpy as np
import math
from decimal import Decimal
from optparse import OptionParser
def generate_malkov_inv_matrix(k, m, u, v, print_title=False):
"""
This function returns inverse of M (i.e. I-Q) matrix
instead of Q for ensuring precision. M is a limitation of
state transition matrix among temprary states.
:param: k: # of data fragments.
:param: m: # of parity fragments.
"""
# k must be an integer more than 0
if k < 1:
raise ValueError
# n: # of all fragments
n = k + m
# At Reaplica Model (case k==1)
# we have to all
loosable = m + 1 if k == 1 else m
tmp = []
for x in xrange(loosable):
row = []
row_title = []
for y in xrange(loosable):
# skip unreachable statement
# TODO: append 0 on this state
if abs(x - y) > 1:
row_title.append('0')
row.append(0)
continue
if x == y:
ux = n - x
cell = Decimal(1) - (Decimal(ux) * Decimal(u) +
Decimal(x) * Decimal(v))
cell = float(Decimal(1) - Decimal(cell))
row.append(cell)
row_title.append('1-(%du + %dv)' % (ux, x))
elif x > y:
row.append(x * v * -1)
row_title.append('%dv' % x)
elif y > x:
val = n - x
row.append((val) * u * -1)
row_title.append('%du' % val)
if print_title:
print row_title
tmp.append(row)
return np.matrix(tmp).getI()
def generate_state_matrix(k, m):
"""
Generates m rows, 1 column matrix filled by 1.
"""
loosable = m + 1 if k == 1 else m
state_matrix = np.matrix([[1] for x in xrange(loosable)])
return state_matrix
if __name__ == '__main__':
"""
Replica Model (2 replicas):
k = 1, m = 1
Replica Model (3 replicas):
k = 1, m = 2
EC Model (6 data fragments and 3 parity fragments):
k = 6, m = 3
Note that EC model could allow to lose m fragments but Replica Model
could allow m+1 fragments. To simplify, this script specializes Replica
Model case (i.e. k == 1) to calculate the duability.
"""
parser = OptionParser()
parser.add_option(
'-k', '--data-num', dest='data_num', default=1,
type=int, help='# of data fragments. Default is 1. (3 Replica Model)')
parser.add_option(
'-m', '--parity-num', dest='parity_num', default=2, type=int,
help='# of parity fragments. Default is 2. (3 Replica Model)')
parser.add_option(
'-p', '--parition_num', dest='part_power', default=18,
type=int, help='# of partition power. Default is 18.')
parser.add_option(
'-u', '--afr', dest='afr', default=8.3/10**6, type=float,
help='Disk AFR from catalog (or actual) spec (per hour)')
# TODO: add repair rate calculation description with network design
parser.add_option(
'-v', '--repair-rate', dest='repair_rate', default=1.66,
type=float, help='Repair Rate')
parser.add_option(
'--vorbose', dest='vorbose', default=False,
type=float, help='show detail calculation method')
# parse args and set the values
(options, args) = parser.parse_args()
data_num = options.data_num
parity_num = options.parity_num
rs_num = 2 ** options.part_power
u = options.afr
# u = 1.4 / 10 ** 8
v = options.repair_rate
# v = 0.0277
vorbose = options.vorbose
print '########## Parameters for Calculation ##########'
print '# of data fragments: %d' % data_num
print '# of parity fragments: %d' % parity_num
print '# of partition in Swift: %d' % rs_num
print 'AFR: %f' % u
print 'RepairRate: %f' % v
print '############# Calculation Results ##############'
# generate matrix from malcov model
if vorbose:
print 'Malkov matrix'
matrix = generate_malkov_inv_matrix(data_num, parity_num, u, v, vorbose)
state_matrix = generate_state_matrix(data_num, parity_num)
mttdl_rs = matrix * state_matrix
mttdl = mttdl_rs / rs_num
durability = 1 - (1 / mttdl.getA1()[0])
try:
nines = int(math.log(1 - durability, 0.1))
except ValueError:
nines = 'Over flow (more than 15)'
if vorbose:
print 'mttdl_rs: \n', mttdl_rs
print 'mttdl: \n', mttdl
print 'Storage Efficiency (NOTE: no replica -> 1.0): %s' % \
(float(data_num + parity_num) / float(data_num))
print 'Swift Durability : %s' % durability
print '# of Nines (LOG): %s' % nines
print '################################################'