replication code for Estimating the Hallucination Rate of Generative AI
@misc{jesson2024estimating,
title={Estimating the Hallucination Rate of Generative AI},
author={Andrew Jesson and Nicolas Beltran-Velez and Quentin Chu and Sweta Karlekar and Jannik Kossen and Yarin Gal and John P. Cunningham and David Blei},
year={2024},
eprint={2406.07457},
archivePrefix={arXiv},
}git clone https://github.com/blei-lab/PHR.git
cd PHR
conda env create -f environment.yaml
pip install [-e] .fit the model
python3 phr/regression/fit.py --job-dir output/ --experiment-id baseline --seed 0run the evaluation script. Get the runid from output/wandb (e.g. 20240602_173936-biy3p7qq)
python3 phr/regression/evaluate.py --job-dir output/ --run-id 20240602_173936-biy3p7qq --set test --N 100for plotting results, use notebooks/regression/plotting.ipynb
run evaluation scripts for Llama-2 7B. repeat for seeds [0, ..., 49], context lenghts [2, 4, 8, 16, 32], and datasets [sst2, SetFit/subj, ag_news, medical_questions_pairs, rte, wnli]. slurm job arrays are recommended.
python3 \
phr/language/evaluate.py \
--job-dir output/ \
--model meta-llama/Llama-2-7b-hf \
--dataset sst2 \
--context-length 2 \
--N 5 \
--num-reps 10 \
--num-y-samples 50 \
--top-p 0.9 \
--seed 0
for plotting results, use notebooks/language/plotting.ipynb