-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse_methods.bbl
281 lines (236 loc) · 11.3 KB
/
sparse_methods.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
\begin{thebibliography}{10}
\bibitem{alter_singular_2000}
O.~Alter, {P.O.} Brown, and D.~Botstein.
\newblock Singular value decomposition for {genome-Wide} expression data
processing and modeling.
\newblock {\em Proceedings of the National Academy of Sciences of the United
States of America}, 97(18):10101--10106, 2000.
\bibitem{ashburner_voxel-based_2000}
J~Ashburner and K~J Friston.
\newblock Voxel-based morphometry--the methods.
\newblock {\em {NeuroImage}}, 11(6 Pt 1):805--821, June 2000.
\newblock {PMID:} 10860804.
\bibitem{batmanghelich_regularized_2011}
N.~Batmanghelich, A.~Dong, B.~Taskar, and C.~Davatzikos.
\newblock Regularized tensor factorization for multi-modality medical image
classification.
\newblock {\em Medical image computing and computer-assisted intervention :
{MICCAI} ... International Conference on Medical Image Computing and
{Computer-Assisted} Intervention}, 14(Pt 3):17--24, 2011.
\bibitem{batmanghelich_general_2009}
N.~Batmanghelich, B.~Taskar, and C.~Davatzikos.
\newblock A general and unifying framework for feature construction, in
image-based pattern classification.
\newblock {\em Information processing in medical imaging : proceedings of the
... conference}, 21:423--434, 2009.
\bibitem{belhumeur_eigenfaces_1997}
{P.N.} Belhumeur, {J.P.} Hespanha, and {D.J.} Kriegman.
\newblock Eigenfaces vs. fisherfaces: Recognition using class specific linear
projection.
\newblock {\em {IEEE} Transactions on Pattern Analysis and Machine
Intelligence}, 19(7):711--720, 1997.
\bibitem{belkin_laplacian_2003}
M.~Belkin and P.~Niyogi.
\newblock Laplacian eigenmaps for dimensionality reduction and data
representation.
\newblock {\em Neural Computation}, 15(6):1373--1396, 2003.
\bibitem{bowie_administration_2006}
Christopher~R Bowie and Philip~D Harvey.
\newblock Administration and interpretation of the trail making test.
\newblock {\em Nature Protocols}, 1(5):2277--2281, 2006.
\bibitem{candes_robust_2006}
{E.J.} Candès, J.~Romberg, and T.~Tao.
\newblock Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information.
\newblock {\em {IEEE} Transactions on Information Theory}, 52(2):489--509,
2006.
\bibitem{davatzikos_why_2004}
Christos Davatzikos.
\newblock Why voxel-based morphometric analysis should be used with great
caution when characterizing group differences.
\newblock {\em {NeuroImage}}, 23(1):17--20, September 2004.
\bibitem{donoho_for_2006}
{D.L.} Donoho.
\newblock For most large underdetermined systems of linear equations the
minimal ℓ 1-norm solution is also the sparsest solution.
\newblock {\em Communications on Pure and Applied Mathematics}, 59(6):797--829,
2006.
\bibitem{efron_least_2004}
B.~Efron, T.~Hastie, I.~Johnstone, and R.~Tibshirani.
\newblock Least angle regression.
\newblock {\em The Annals of statistics}, 32(2):407---499, 2004.
\bibitem{geng_supervised_2005}
X.~Geng, {D.-C.} Zhan, and {Z.-H.} Zhou.
\newblock Supervised nonlinear dimensionality reduction for visualization and
classification.
\newblock {\em {IEEE} Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics}, 35(6):1098--1107, 2005.
\bibitem{hastie_elements_2009}
Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
\newblock {\em The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Second Edition}.
\newblock Springer, 2nd ed. 2009. corr. 3rd printing 5th printing. edition,
February 2009.
\bibitem{hebiri_smooth-lasso_2011}
M.~Hebiri and S.~van~de Geer.
\newblock The smooth-lasso and other ℓ 1 + ℓ 2-penalized methods.
\newblock {\em Electronic Journal of Statistics}, 5:1184--1226, 2011.
\bibitem{holter_fundamental_2000}
{N.S.} Holter, M.~Mitra, A.~Maritan, M.~Cieplak, {J.R.} Banavar, and {N.V.}
Fedoroff.
\newblock Fundamental patterns underlying gene expression profiles: Simplicity
from complexity.
\newblock {\em Proceedings of the National Academy of Sciences of the United
States of America}, 97(15):8409--8414, 2000.
\bibitem{hoyer_non-negative_2004}
P.~O Hoyer.
\newblock Non-negative matrix factorization with sparseness constraints.
\newblock {\em The Journal of Machine Learning Research}, 5:1457--1469, 2004.
\bibitem{jolliffe_modified_2003}
{I.T.} Jolliffe, {N.T.} Trendafilov, and M.~Uddin.
\newblock A modified principal component technique based on the {LASSO}.
\newblock {\em Journal of Computational and Graphical Statistics},
12(3):531–547, 2003.
\bibitem{jolliffe_simplified_2000}
{I.T.} Jolliffe and M.~Uddin.
\newblock The simplified component technique: An alternative to rotated
principal components.
\newblock {\em Journal of Computational and Graphical Statistics},
9(4):689--710, 2000.
\bibitem{levy_reconstruction_1981}
S.~Levy and {P.K.} Fullagar.
\newblock Reconstruction of a sparse spike train from a portion of its spectrum
and application to high-resolution deconvolution.
\newblock {\em Geophysics}, 46(9):1235--1243, 1981.
\bibitem{maaten_dimensionality_2008}
{L.J.P.} van~der Maaten, E.~O. Postma, and H.~J. van~den Herik.
\newblock {\em Dimensionality Reduction: A Comparative Review}.
\newblock 2008.
\bibitem{natarajan_sparse_1995}
{B.K.} Natarajan.
\newblock Sparse approximate solutions to linear systems.
\newblock {\em {SIAM} Journal on Computing}, 24(2):227--234, 1995.
\bibitem{raducanu_supervised_2012}
B.~Raducanu and F.~Dornaika.
\newblock A supervised non-linear dimensionality reduction approach for
manifold learning.
\newblock {\em Pattern Recognition}, 45(6):2432--2444, 2012.
\bibitem{kaynak_supervised_????}
Dick Ridder, Olga Kouropteva, Oleg Okun, Matti Pietikäinen, and Robert P.~W.
Duin.
\newblock Supervised locally linear embedding.
\newblock In Okyay Kaynak, Ethem Alpaydin, Erkki Oja, and Lei Xu, editors, {\em
Artificial Neural Networks and Neural Information Processing —
{ICANN/ICONIP} 2003}, volume 2714, pages 333--341. Springer Berlin
Heidelberg, Berlin, Heidelberg.
\bibitem{roweis_nonlinear_2000}
Sam~T Roweis and Lawrence~K Saul.
\newblock Nonlinear dimensionality reduction by locally linear embedding.
\newblock {\em Science}, 290(5500):2323--2326, December 2000.
\bibitem{rudin_nonlinear_1992}
L.~I Rudin, S.~Osher, and E.~Fatemi.
\newblock Nonlinear total variation based noise removal algorithms.
\newblock {\em Physica D: Nonlinear Phenomena}, 60(1-4):259–268, 1992.
\bibitem{scholkopf_kernel_1997}
Bernhard Schölkopf, Alexander Smola, and {Klaus-Robert} Müller.
\newblock Kernel principal component analysis.
\newblock In Wulfram Gerstner, Alain Germond, Martin Hasler, and {Jean-Daniel}
Nicoud, editors, {\em Artificial Neural Networks — {ICANN'97}}, volume 1327
of {\em Lecture Notes in Computer Science}, pages 583--588. Springer Berlin /
Heidelberg, 1997.
\bibitem{schwarz_estimating_1978}
G.~Schwarz.
\newblock Estimating the dimension of a model.
\newblock {\em The annals of statistics}, 6(2):461--464, 1978.
\bibitem{sethian_fast_1996}
J~A Sethian.
\newblock A fast marching level set method for monotonically advancing fronts.
\newblock {\em Proceedings of the National Academy of Sciences},
93(4):1591--1595, February 1996.
\bibitem{sjostrand_sparse_2007}
K.~Sjostrand, E.~Rostrup, C.~Ryberg, R.~Larsen, C.~Studholme, H.~Baezner,
J.~Ferro, F.~Fazekas, L.~Pantoni, D.~Inzitari, and G.~Waldemar.
\newblock Sparse decomposition and modeling of anatomical shape variation.
\newblock {\em Medical Imaging, {IEEE} Transactions on}, 26(12):1625 --1635,
December 2007.
\bibitem{teipel_multivariate_2007}
{S.J.} Teipel, C.~Born, M.~Ewers, {A.L.W.} Bokde, {M.F.} Reiser, {H.-J.}
Möller, and H.~Hampel.
\newblock Multivariate deformation-based analysis of brain atrophy to predict
alzheimer's disease in mild cognitive impairment.
\newblock {\em {NeuroImage}}, 38(1):13--24, 2007.
\bibitem{tenenbaum_global_2000}
Joshua~B Tenenbaum, Vin~De Silva, and John~C Langford.
\newblock A global geometric framework for nonlinear dimensionality reduction.
\newblock {\em Science}, 290(5500):2319--2323, December 2000.
\bibitem{tibshirani_regression_1996}
Robert Tibshirani.
\newblock Regression shrinkage and selection via the lasso.
\newblock {\em Journal of the Royal Statistical Society. Series B
{(Methodological)}}, 58(1):267--288, January 1996.
\newblock {ArticleType:} research-article / Full publication date: 1996 /
Copyright © 1996 Royal Statistical Society.
\bibitem{tibshirani_sparsity_2005}
Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji~Zhu, and Keith Knight.
\newblock Sparsity and smoothness via the fused lasso.
\newblock {\em Journal of the Royal Statistical Society: Series B
{(Statistical} Methodology)}, 67(1):91–108, 2005.
\bibitem{turk_eigenfaces_1991}
M.~Turk and A.~Pentland.
\newblock Eigenfaces for recognition.
\newblock {\em Journal of Cognitive Neuroscience}, 3(1):71--86, 1991.
\bibitem{witten_penalized_2009}
Daniela~M Witten, Robert Tibshirani, and Trevor Hastie.
\newblock A penalized matrix decomposition, with applications to sparse
principal components and canonical correlation analysis.
\newblock {\em Biostatistics {(Oxford}, England)}, 10(3):515--534, July 2009.
\newblock {PMID:} 19377034.
\bibitem{witten_extensions_2009}
{D.M.} Witten and {R.J.} Tibshirani.
\newblock Extensions of sparse canonical correlation analysis with applications
to genomic data.
\newblock {\em Statistical Applications in Genetics and Molecular Biology},
8(1), 2009.
\bibitem{wolz_leap:_2010}
R.~Wolz, P.~Aljabar, {J.V.} Hajnal, A.~Hammers, and D.~Rueckert.
\newblock {LEAP:} learning embeddings for atlas propagation.
\newblock {\em {NeuroImage}}, 49(2):1316--1325, 2010.
\bibitem{wolz_nonlinear_2012}
R.~Wolz, P.~Aljabar, {J.V.} Hajnal, J.~Lötjönen, and D.~Rueckert.
\newblock Nonlinear dimensionality reduction combining {MR} imaging with
non-imaging information.
\newblock {\em Medical Image Analysis}, 16(4):819--830, 2012.
\bibitem{yang_extended_2002}
{M.-H.} Yang.
\newblock Extended isomap for classification.
\newblock In {\em Proceedings - International Conference on Pattern
Recognition}, volume~16, pages 615--618, 2002.
\bibitem{yeung_principal_2001}
{K.Y.} Yeung and {W.L.} Ruzzo.
\newblock Principal component analysis for clustering gene expression data.
\newblock {\em Bioinformatics}, 17(9):763--774, 2001.
\bibitem{yuan_model_2006}
M.~Yuan and Y.~Lin.
\newblock Model selection and estimation in regression with grouped variables.
\newblock {\em Journal of the Royal Statistical Society. Series B: Statistical
Methodology}, 68(1):49--67, 2006.
\bibitem{zdunek_blind_2008}
Rafal Zdunek and Andrzej Cichocki.
\newblock Blind image separation using nonnegative matrix factorization with
gibbs smoothing.
\newblock In Masumi Ishikawa, Kenji Doya, Hiroyuki Miyamoto, and Takeshi
Yamakawa, editors, {\em Neural Information Processing}, volume 4985 of {\em
Lecture Notes in Computer Science}, pages 519--528. Springer Berlin /
Heidelberg, 2008.
\bibitem{zhang_deformable_2011}
S.~Zhang, Y.~Zhan, M.~Dewan, J.~Huang, {D.N.} Metaxas, and {X.S.} Zhou.
\newblock Deformable segmentation via sparse shape representation.
\newblock {\em Medical image computing and computer-assisted intervention :
{MICCAI} ... International Conference on Medical Image Computing and
{Computer-Assisted} Intervention}, 14(Pt 2):451--458, 2011.
\bibitem{zou_sparse_2006}
H.~Zou, T.~Hastie, and R.~Tibshirani.
\newblock Sparse principal component analysis.
\newblock {\em Journal of computational and graphical statistics},
15(2):265---286, 2006.
\end{thebibliography}