Skip to content

Commit a019bfc

Browse files
paper fixes (SERVIR#62)
* address joss paper comments * add accompanying files * add accompanying files
1 parent 27395ff commit a019bfc

File tree

4 files changed

+38
-12
lines changed

4 files changed

+38
-12
lines changed

paper/paper.bib

+4-4
Original file line numberDiff line numberDiff line change
@@ -113,8 +113,8 @@ @article{Wu2020
113113
}
114114

115115
@misc{rastervision,
116-
author="Azavea/Element 84, Robert Cheetham",
117-
doi="10.5281/zenodo.11123303",
118-
title="{Raster Vision: An open source library and framework for deep learning on satellite and aerial imagery (2017-2023)}",
119-
url="https://github.com/azavea/raster-vision"
116+
title="{Raster Vision: An open source library and framework for deep learning on satellite and aerial imagery (2017-2023)}",
117+
url="https://github.com/azavea/raster-vision",
118+
author="Fishgold, Lewis and Hassan, Adeel and Emanuele, Rob and McClain, James and Kassel, Simon and Zhao, Annie and {jpolchlo} and Morrison, Joe and Bakker, Laurens and Santucci, James and Holeman, Nathan and {rbreslow} and {Taylor} and Park, Bborie and Liedman, Per and Kalra, Umang and Sani, Ammar and Meier, Andreas and Brown, Chris and McCallum, Chuck and Kettler, Cole and Cheipesh, Eugene and {Grigory} and Maleski, Jerome and Bertrand, Matt and Uryu, Shinya",
119+
doi="10.5281/zenodo.8018177",
120120
}

paper/paper.jats

+33-7
Original file line numberDiff line numberDiff line change
@@ -136,10 +136,11 @@ a Creative Commons Attribution 4.0 International License (CC BY
136136
<p>Several unified libraries like torchgeo
137137
(<xref alt="Stewart et al., 2022" rid="ref-Stewart_TorchGeo_Deep_Learning_2022" ref-type="bibr">Stewart
138138
et al., 2022</xref>) and rastervision
139-
(<xref alt="Azavea/Element 84, n.d." rid="ref-rastervision" ref-type="bibr">Azavea/Element
140-
84, n.d.</xref>) exists, but they are primarily targeted for PyTorch
141-
user community. Some efforts for GEE &amp; TensorFlow users, such as
142-
geemap (<xref alt="Wu, 2020" rid="ref-Wu2020" ref-type="bibr">Wu,
139+
(<xref alt="Fishgold et al., n.d." rid="ref-rastervision" ref-type="bibr">Fishgold
140+
et al., n.d.</xref>) exists, but they are primarily targeted for
141+
PyTorch user community. Some efforts for GEE &amp; TensorFlow users,
142+
such as geemap
143+
(<xref alt="Wu, 2020" rid="ref-Wu2020" ref-type="bibr">Wu,
143144
2020</xref>), are mostly used for classical ML approaches like Random
144145
Forest, while
145146
<ext-link ext-link-type="uri" xlink:href="https://github.com/opengeos/geospatial-ml">geospatial-ml</ext-link>
@@ -180,7 +181,7 @@ a Creative Commons Attribution 4.0 International License (CC BY
180181
<bold><monospace>servir-aces</monospace></bold>. Here we show how
181182
<bold><monospace>servir-aces</monospace></bold> can be used for
182183
crop-mapping related applications. Ideally, the same process can be
183-
repeated for any of image segmentation task.</p>
184+
repeated for any image segmentation task.</p>
184185
</sec>
185186
<sec id="servir-aces-functionality">
186187
<title><bold><monospace>servir-aces</monospace></bold>
@@ -438,11 +439,36 @@ a Creative Commons Attribution 4.0 International License (CC BY
438439
<ref id="ref-rastervision">
439440
<element-citation>
440441
<person-group person-group-type="author">
441-
<name><surname>Azavea/Element 84</surname><given-names>Robert Cheetham</given-names></name>
442+
<name><surname>Fishgold</surname><given-names>Lewis</given-names></name>
443+
<name><surname>Hassan</surname><given-names>Adeel</given-names></name>
444+
<name><surname>Emanuele</surname><given-names>Rob</given-names></name>
445+
<name><surname>McClain</surname><given-names>James</given-names></name>
446+
<name><surname>Kassel</surname><given-names>Simon</given-names></name>
447+
<name><surname>Zhao</surname><given-names>Annie</given-names></name>
448+
<string-name>jpolchlo</string-name>
449+
<name><surname>Morrison</surname><given-names>Joe</given-names></name>
450+
<name><surname>Bakker</surname><given-names>Laurens</given-names></name>
451+
<name><surname>Santucci</surname><given-names>James</given-names></name>
452+
<name><surname>Holeman</surname><given-names>Nathan</given-names></name>
453+
<string-name>rbreslow</string-name>
454+
<string-name>Taylor</string-name>
455+
<name><surname>Park</surname><given-names>Bborie</given-names></name>
456+
<name><surname>Liedman</surname><given-names>Per</given-names></name>
457+
<name><surname>Kalra</surname><given-names>Umang</given-names></name>
458+
<name><surname>Sani</surname><given-names>Ammar</given-names></name>
459+
<name><surname>Meier</surname><given-names>Andreas</given-names></name>
460+
<name><surname>Brown</surname><given-names>Chris</given-names></name>
461+
<name><surname>McCallum</surname><given-names>Chuck</given-names></name>
462+
<name><surname>Kettler</surname><given-names>Cole</given-names></name>
463+
<name><surname>Cheipesh</surname><given-names>Eugene</given-names></name>
464+
<string-name>Grigory</string-name>
465+
<name><surname>Maleski</surname><given-names>Jerome</given-names></name>
466+
<name><surname>Bertrand</surname><given-names>Matt</given-names></name>
467+
<name><surname>Uryu</surname><given-names>Shinya</given-names></name>
442468
</person-group>
443469
<article-title>Raster Vision: An open source library and framework for deep learning on satellite and aerial imagery (2017-2023)</article-title>
444470
<uri>https://github.com/azavea/raster-vision</uri>
445-
<pub-id pub-id-type="doi">10.5281/zenodo.11123303</pub-id>
471+
<pub-id pub-id-type="doi">10.5281/zenodo.8018177</pub-id>
446472
</element-citation>
447473
</ref>
448474
</ref-list>

paper/paper.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ Several unified libraries like torchgeo [@Stewart_TorchGeo_Deep_Learning_2022] a
4343

4444
**`servir-aces`** is intended for development practitioners, researchers, scientists, software developers, and students who would like to utilize various freely available Earth Observation (EO) data using cloud-based GEE and TF ecosystem to perform large scale ML/DL related remote sensing applications.
4545

46-
We also provide several [notebook](https://github.com/SERVIR/servir-aces/tree/main/notebook) examples to showcase the usage of the **`servir-aces`**. Here we show how **`servir-aces`** can be used for crop-mapping related applications. Ideally, the same process can be repeated for any of image segmentation task.
46+
We also provide several [notebook](https://github.com/SERVIR/servir-aces/tree/main/notebook) examples to showcase the usage of the **`servir-aces`**. Here we show how **`servir-aces`** can be used for crop-mapping related applications. Ideally, the same process can be repeated for any image segmentation task.
4747

4848
# **`servir-aces`** Functionality
4949

paper/paper.pdf

311 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)