-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlangchain_helper.py
executable file
·69 lines (45 loc) · 1.58 KB
/
langchain_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_ollama import OllamaEmbeddings, ChatOllama
# from langchain_community.vectorstores import Chroma
# 替换旧的导入
from langchain_chroma import Chroma
from langchain.chains import RetrievalQA
oembed_server = OllamaEmbeddings(
base_url="http://192.168.66.24:11434",
model="nomic-embed-text" # 确认模型名称正确 all-MiniLM-L6-v2 nomic-embed-text
)
ollama_server = ChatOllama(
base_url="http://192.168.66.26:11434",
model="llama3:latest",
temperature=0.8,
num_predict=256
)
file_path = "./data/tesla_p40.pdf"
db_path = "./chroma_db"
# 加载文档
loader = PyPDFLoader(file_path)
docs = loader.load()
# 分割文档
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(docs)
# 量化文档存入数据库
vectorstore_to_db = Chroma.from_documents(
documents=all_splits,
embedding=oembed_server,
persist_directory=db_path
)
#加载embedding
vectorstore_from_db = Chroma(
persist_directory = db_path, # Directory of db
embedding_function = oembed_server # Embedding model
)
#print(vectorstore_from_db)
# 准备问题
question="最大显存是多少?"
docs = vectorstore_from_db.similarity_search(question)
#print(docs)
#运行链
qachain=RetrievalQA.from_chain_type(ollama_server, retriever=vectorstore_from_db.as_retriever())
ans = qachain.invoke({"query": "请用中文回答我:" + question})
print(ans["result"])