Sharchat Recsys 2023 Challange - Recommendations Squad
The best model is xgb_all_feat and the corresponding code in src/xgb_all_cat_num.ipynb
List of the experiment results:
Model | Val Loss | Test Loss | Sharchat Timestap | Description |
---|---|---|---|---|
xgb_all_feat | 5.968829287 | 6.37396 | 24/05/2023 05:09 | Hyper parameter turing with optuna |
f1_xgb_catb_best | 6.375778 | 27/05/2023 15:33 | Combined XGB and Catboost with f1 formula | |
xgb_all_feat_xgb_chain | 5.99 | 6.385457 | 25/05/2023 16:06 | Xgb on top of another Xgb model |
catboost_all_feat | 5.739692312 | 6.461268 | 25/05/2023 11:42 | Catboost model with all the feature with optuna |
xgb_stacked_kfold_logistic | Nan | 6.611657 | 05/06/2023 16:34 | XGB Stacked kflod Logistic Regression |
xgb_calibrated_logistic | 6.61368 | 26/05/2023 14:55 | Calibrated XGB with logistic regression | |
xgb_stack_all_cat_num_xgb | 6.026 | 6.64367 | 25/05/2023 06:20 | Stack all the above row 1,2 and 3 optuna with xgb |
xgb_num_cat_all_avg | 6.690628 | 25/05/2023 16:22 | Simple average of all the xgb of row 1 | |
xgb_cat_feat | 6.248026244 | 6.927283 | 24/05/2023 05:18 | Hyper parameter turing with optuna while using only Categorical Features |
xgb_float_all_feat | 5.79 | 7.254 | 27/05/2023 21:11 | Converted all the categorical values to probablites |
xgb_num_feat | 6.245909454 | 7.401632 | 24/05/2023 05:18 ,24/05/2023 05:19 | Hyper parameter turing with optuna while using only Numerical Features |
xgb_stack_all_cat_num | 7.68580268 | 9.910395 | 25/05/2023 04:10 | Stack all the above row 1,2 and 3 optuna with logistice regression model |
xgb_full_data | Nan | 27/05/2023 22:29 | Validation data is also mixed with whole data but dates is not used | |