Skip to content

bhoomeendra/Sharchat-Recsys-2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Sharchat Recsys 2023 Challange - Recommendations Squad

The best model is xgb_all_feat and the corresponding code in src/xgb_all_cat_num.ipynb

List of the experiment results:

Model Val Loss Test Loss Sharchat Timestap Description
xgb_all_feat 5.968829287 6.37396 24/05/2023 05:09 Hyper parameter turing with optuna
f1_xgb_catb_best 6.375778 27/05/2023 15:33 Combined XGB and Catboost with f1 formula
xgb_all_feat_xgb_chain 5.99 6.385457 25/05/2023 16:06 Xgb on top of another Xgb model
catboost_all_feat 5.739692312 6.461268 25/05/2023 11:42 Catboost model with all the feature with optuna
xgb_stacked_kfold_logistic Nan 6.611657 05/06/2023 16:34 XGB Stacked kflod Logistic Regression
xgb_calibrated_logistic 6.61368 26/05/2023 14:55 Calibrated XGB with logistic regression
xgb_stack_all_cat_num_xgb 6.026 6.64367 25/05/2023 06:20 Stack all the above row 1,2 and 3 optuna with xgb
xgb_num_cat_all_avg 6.690628 25/05/2023 16:22 Simple average of all the xgb of row 1
xgb_cat_feat 6.248026244 6.927283 24/05/2023 05:18 Hyper parameter turing with optuna while using only Categorical Features
xgb_float_all_feat 5.79 7.254 27/05/2023 21:11 Converted all the categorical values to probablites
xgb_num_feat 6.245909454 7.401632 24/05/2023 05:18 ,24/05/2023 05:19 Hyper parameter turing with optuna while using only Numerical Features
xgb_stack_all_cat_num 7.68580268 9.910395 25/05/2023 04:10 Stack all the above row 1,2 and 3 optuna with logistice regression model
xgb_full_data Nan 27/05/2023 22:29 Validation data is also mixed with whole data but dates is not used

About

10th Place solution of Sharchat Recsys 2023 challange

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published