-
Distribution of Node Embeddings as Multiresolution Features for Graphs (ICDM 2019)
-
Optimal Transport for Structured Data with Application on Graphs (ICML 2019)
- Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, Rémi Flamary
- [Paper]
- [Python Reference]
-
A Persistent Weisfeiler–Lehman Procedure for Graph Classification (ICML 2019)
- Sebastian Rieck, Christian Bock, and Karsten Borgwardt
- [Paper]
- [Python Reference]
-
Wasserstein Weisfeiler-Lehman Graph Kernels (NIPS 2019)
-
Learning Metrics for Persistence-Based Summaries and Applications for Graph Classification (NIPS 2019)
-
Propagation Kernels: Efficient Graph Kernels from Propagated Information (Machine Learning 2019)
- Marion Neumann, Roman Garnett, Christian Bauckhage, Kristian Kersting
- [Paper]
- [Matlab Reference]
-
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels (WWW 2019)
- Message Passing Graph Kernels (2018)
- Giannis Nikolentzos, Michalis Vazirgiannis
- [Paper]
- [Python Reference]
-
Matching Node Embeddings for Graph Similarity (AAAI 2017)
- Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis
- [Paper]
-
Global Weisfeiler-Lehman Graph Kernels (ICDM 2017)
- Christopher Morris, Kristian Kersting and Petra Mutzel
- [Paper]
- [C++ Reference]
-
Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor (JMLR 2017)
- Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka
- [Paper]
- [Python Reference]
-
On Valid Optimal Assignment Kernels and Applications to Graph Classification (NIPS 2016)
- Nils Kriege, Pierre-Louis Giscard, Richard Wilson
- [Paper]
- [Java Reference]
-
Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)
- Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel
- [Paper]
- [Python Reference]
-
Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)
- Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian
- [Paper]
- [Matlab Reference]
-
Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)
- Stephen Bonner, John Brennan, and A. Stephen McGough
- [Paper]
- [python Reference]
-
The Multiscale Laplacian Graph Kernel (NIPS 2016)
- Risi Kondor and Horace Pan
- [Paper]
- [C++ Reference]
-
An Aligned Subtree Kernel for Weighted Graphs (ICML 2015)
- Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock
- [Paper]
-
A Graph Kernel Based on the Jensen-Shannon Representation Alignment (IJCAI 2015)
- Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock
- [Paper]
- [Matlab reference]
-
Halting Random Walk Kernels (NIPS 2015)
- Mahito Sugiyama and Karsten M. Borgward
- [Paper]
- [C++ Reference]
- Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)
- Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt
- [Paper]
-
Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)
- Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang
- [Paper]
- [Python Reference]
-
Subgraph Matching Kernels for Attributed Graphs (ICML 2012)
- Nils Kriege and Petra Mutzel
- [Paper]
- [Python Reference]
-
Two New Graphs Kernels in Chemoinformatics (Pattern Recognition Letters 2012)
- Benoit Gaüzère, LucBrun, and Didier Villemin
- [Paper]
- [Python Reference]
- Weisfeiler-Lehman Graph Kernels (JMLR 2011)
- Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt
- [Paper]
- [Python Reference]
- [Python Reference]
- [C++ Reference]
-
Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)
- Fabrizio Costa and Kurt De Grave
- [Paper]
- [C++ Reference]
- [Python Reference]
-
Graph Kernels (JMLR 2010)
- S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt;
- [Paper]
- [Python Reference]
-
A Linear-time Graph Kernel (ICDM 2009)
- Shohei Hido and Hisashi Kashima
- [Paper]
- [Python Reference]
-
Weisfeiler-Lehman Subtree Kernels (NIPS 2009)
- Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt
- [Paper]
- [Python Reference]
- [Python Reference]
- [C++ Reference]
- Kernel on Bag of Paths For Measuring Similarity of Shapes (ESANN 2007)
- Frederic Suard, Alain Rakotomamonjy, and Abdelaziz Bensrhair
- [Paper]
- [Python Reference]
- Fast Computation of Graph Kernels (NIPS 2006)
- S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph
- [Paper]
- [Python Reference]
- [C++ Reference]
-
Shortest-Path Kernels on Graphs (ICDM 2005)
- Karsten M. Borgwardt and Hans-Peter Kriegel
- [Paper]
- [C++ Reference]
-
Graph Kernels for Chemical Informatics (Neural Networks 2005)
- Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi
- [Paper]
- [Python Reference]
-
Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)
- Tamás Horváth, Thomas Gärtner, and Stefan Wrobel
- [Paper]
- [Python Reference]
-
Extensions of Marginalized Graph Kernels (ICML 2004)
- Pierre Mahe , Nobuhisa Ueda , Tatsuya Akutsu , Jean-Luc Perret , Jean-Philippe Vert
- [Paper]
- [Python Reference]
-
Marginalized Kernels Between Labeled Graphs (ICML 2003)
- Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi
- [Paper]
- [Python Reference]
-
On Graph Kernels: Hardness Results and Efficient Alternatives (Learning Theory and Kernel Machines 2003)
- Thomas Gärtner, Peter Flach, and Stefan Wrobel
- [Paper]
- [Python Reference]