-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
369 lines (315 loc) · 12.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import numpy as np
import torchvision.utils as vutils
import torch, random
import torch.nn.functional as F
# print arguments
def print_args(args):
print("################################ args ################################")
for k, v in args.__dict__.items():
print("{0: <10}\t{1: <30}\t{2: <20}".format(k, str(v), str(type(v))))
print("########################################################################")
# torch.no_grad warpper for functions
def make_nograd_func(func):
def wrapper(*f_args, **f_kwargs):
with torch.no_grad():
ret = func(*f_args, **f_kwargs)
return ret
return wrapper
# convert a function into recursive style to handle nested dict/list/tuple variables
def make_recursive_func(func):
def wrapper(vars):
if isinstance(vars, list):
return [wrapper(x) for x in vars]
elif isinstance(vars, tuple):
return tuple([wrapper(x) for x in vars])
elif isinstance(vars, dict):
return {k: wrapper(v) for k, v in vars.items()}
else:
return func(vars)
return wrapper
@make_recursive_func
def tensor2float(vars):
if isinstance(vars, float):
return vars
elif isinstance(vars, torch.Tensor):
return vars.data.item()
else:
raise NotImplementedError("invalid input type {} for tensor2float".format(type(vars)))
@make_recursive_func
def tensor2numpy(vars):
if isinstance(vars, np.ndarray):
return vars
elif isinstance(vars, torch.Tensor):
return vars.detach().cpu().numpy().copy()
else:
raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
@make_recursive_func
def tocuda(vars):
if isinstance(vars, torch.Tensor):
return vars.to(torch.device("cuda"))
elif isinstance(vars, str):
return vars
else:
raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
def save_scalars(logger, mode, scalar_dict, global_step):
scalar_dict = tensor2float(scalar_dict)
for key, value in scalar_dict.items():
if not isinstance(value, (list, tuple)):
name = '{}/{}'.format(mode, key)
logger.add_scalar(name, value, global_step)
else:
for idx in range(len(value)):
name = '{}/{}_{}'.format(mode, key, idx)
logger.add_scalar(name, value[idx], global_step)
def save_images(logger, mode, images_dict, global_step):
images_dict = tensor2numpy(images_dict)
def preprocess(name, img):
if not (len(img.shape) == 3 or len(img.shape) == 4):
raise NotImplementedError("invalid img shape {}:{} in save_images".format(name, img.shape))
if len(img.shape) == 3:
img = img[:, np.newaxis, :, :]
img = torch.from_numpy(img[:1])
return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True)
for key, value in images_dict.items():
if not isinstance(value, (list, tuple)):
name = '{}/{}'.format(mode, key)
logger.add_image(name, preprocess(name, value), global_step)
else:
for idx in range(len(value)):
name = '{}/{}_{}'.format(mode, key, idx)
logger.add_image(name, preprocess(name, value[idx]), global_step)
class DictAverageMeter(object):
def __init__(self):
self.data = {}
self.count = 0
def update(self, new_input):
self.count += 1
if len(self.data) == 0:
for k, v in new_input.items():
if not isinstance(v, float):
raise NotImplementedError("invalid data {}: {}".format(k, type(v)))
self.data[k] = v
else:
for k, v in new_input.items():
if not isinstance(v, float):
raise NotImplementedError("invalid data {}: {}".format(k, type(v)))
self.data[k] += v
def mean(self):
return {k: v / self.count for k, v in self.data.items()}
# a wrapper to compute metrics for each image individually
def compute_metrics_for_each_image(metric_func):
def wrapper(depth_est, depth_gt, mask, *args):
batch_size = depth_gt.shape[0]
results = []
# compute result one by one
for idx in range(batch_size):
ret = metric_func(depth_est[idx], depth_gt[idx], mask[idx], *args)
results.append(ret)
return torch.stack(results).mean()
return wrapper
@make_nograd_func
@compute_metrics_for_each_image
def Thres_metrics(depth_est, depth_gt, mask, thres):
assert isinstance(thres, (int, float))
depth_est_mask, depth_gt_mask = depth_est[mask], depth_gt[mask]
errors = torch.abs(depth_est_mask - depth_gt_mask)
# return errors
err_mask = errors > thres
return torch.mean(err_mask.float())
# NOTE: please do not use this to build up training loss
@make_nograd_func
@compute_metrics_for_each_image
def AbsDepthError_metrics(depth_est, depth_gt, mask, thres=None):
depth_est, depth_gt = depth_est[mask], depth_gt[mask]
error = (depth_est - depth_gt).abs()
if thres is not None:
error = error[(error >= float(thres[0])) & (error <= float(thres[1]))]
if error.shape[0] == 0:
return torch.tensor(0, device=error.device, dtype=error.dtype)
return torch.mean(error)
import torch.distributed as dist
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def reduce_scalar_outputs(scalar_outputs):
world_size = get_world_size()
if world_size < 2:
return scalar_outputs
with torch.no_grad():
names = []
scalars = []
for k in sorted(scalar_outputs.keys()):
names.append(k)
scalars.append(scalar_outputs[k])
scalars = torch.stack(scalars, dim=0)
dist.reduce(scalars, dst=0)
if dist.get_rank() == 0:
# only main process gets accumulated, so only divide by
# world_size in this case
scalars /= world_size
reduced_scalars = {k: v for k, v in zip(names, scalars)}
return reduced_scalars
def check_shape_for_metric_computation(*vars):
assert isinstance(vars, tuple)
for var in vars:
assert len(var.size()) == 3
assert var.size() == vars[0].size()
# a wrapper to compute metrics for each image individually
def compute_metric_for_each_image(metric_func):
def wrapper(D_ests, D_gts, masks, *nargs):
check_shape_for_metric_computation(D_ests, D_gts, masks)
bn = D_gts.shape[0] # batch size
results = [] # a list to store results for each image
# compute result one by one
for idx in range(bn):
# if tensor, then pick idx, else pass the same value
cur_nargs = [x[idx] if isinstance(x, (Tensor, Variable)) else x for x in nargs]
if masks[idx].float().mean() / (D_gts[idx] > 0).float().mean() < 0.1:
# print("masks[idx].float().mean() too small, skip")
pass
else:
ret = metric_func(D_ests[idx], D_gts[idx], masks[idx], *cur_nargs)
results.append(ret)
if len(results) == 0:
print("masks[idx].float().mean() too small for all images in this batch, return 0")
return torch.tensor(0, dtype=torch.float32, device=D_gts.device)
else:
return torch.stack(results).mean()
return wrapper
@make_nograd_func
@compute_metric_for_each_image
def D1_metric(D_est, D_gt, mask):
D_est, D_gt = D_est[mask], D_gt[mask]
E = torch.abs(D_gt - D_est)
err_mask = (E > 3) & (E / D_gt.abs() > 0.05)
return torch.mean(err_mask.float())
@make_nograd_func
@compute_metric_for_each_image
def Thres_metric(D_est, D_gt, mask, thres):
assert isinstance(thres, (int, float))
D_est, D_gt = D_est[mask], D_gt[mask]
E = torch.abs(D_gt - D_est)
err_mask = E > thres
return torch.mean(err_mask.float())
# NOTE: please do not use this to build up training loss
@make_nograd_func
@compute_metric_for_each_image
def EPE_metric(D_est, D_gt, mask):
D_est, D_gt = D_est[mask], D_gt[mask]
return F.l1_loss(D_est, D_gt, reduction='mean')
import torch
from bisect import bisect_right
# FIXME ideally this would be achieved with a CombinedLRScheduler,
# separating MultiStepLR with WarmupLR
# but the current LRScheduler design doesn't allow it
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
optimizer,
milestones,
gamma=0.1,
warmup_factor=1.0 / 3,
warmup_iters=500,
warmup_method="linear",
last_epoch=-1,
):
if not list(milestones) == sorted(milestones):
raise ValueError(
"Milestones should be a list of" " increasing integers. Got {}",
milestones,
)
if warmup_method not in ("constant", "linear"):
raise ValueError(
"Only 'constant' or 'linear' warmup_method accepted"
"got {}".format(warmup_method)
)
self.milestones = milestones
self.gamma = gamma
self.warmup_factor = warmup_factor
self.warmup_iters = warmup_iters
self.warmup_method = warmup_method
super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
warmup_factor = 1
if self.last_epoch < self.warmup_iters:
if self.warmup_method == "constant":
warmup_factor = self.warmup_factor
elif self.warmup_method == "linear":
alpha = float(self.last_epoch) / self.warmup_iters
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
#print("base_lr {}, warmup_factor {}, self.gamma {}, self.milesotnes {}, self.last_epoch{}".format(
# self.base_lrs[0], warmup_factor, self.gamma, self.milestones, self.last_epoch))
return [
base_lr
* warmup_factor
* self.gamma ** bisect_right(self.milestones, self.last_epoch)
for base_lr in self.base_lrs
]
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def local_pcd(depth, intr):
nx = depth.shape[1] # w
ny = depth.shape[0] # h
x, y = np.meshgrid(np.arange(nx), np.arange(ny), indexing='xy')
x = x.reshape(nx * ny)
y = y.reshape(nx * ny)
p2d = np.array([x, y, np.ones_like(y)])
p3d = np.matmul(np.linalg.inv(intr), p2d)
depth = depth.reshape(1, nx * ny)
p3d *= depth
p3d = np.transpose(p3d, (1, 0))
p3d = p3d.reshape(ny, nx, 3).astype(np.float32)
return p3d
def generate_pointcloud(rgb, depth, ply_file, intr, scale=1.0):
"""
Generate a colored point cloud in PLY format from a color and a depth image.
Input:
rgb_file -- filename of color image
depth_file -- filename of depth image
ply_file -- filename of ply file
"""
fx, fy, cx, cy = intr[0, 0], intr[1, 1], intr[0, 2], intr[1, 2]
points = []
for v in range(rgb.shape[0]):
for u in range(rgb.shape[1]):
color = rgb[v, u] #rgb.getpixel((u, v))
Z = depth[v, u] / scale
if Z == 0: continue
X = (u - cx) * Z / fx
Y = (v - cy) * Z / fy
points.append("%f %f %f %d %d %d 0\n" % (X, Y, Z, color[0], color[1], color[2]))
file = open(ply_file, "w")
file.write('''ply
format ascii 1.0
element vertex %d
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property uchar alpha
end_header
%s
''' % (len(points), "".join(points)))
file.close()
print("save ply, fx:{}, fy:{}, cx:{}, cy:{}".format(fx, fy, cx, cy))