forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
12_4_hello_rnn_emb.py
75 lines (58 loc) · 2.17 KB
/
12_4_hello_rnn_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Lab 12 RNN
import torch
import torch.nn as nn
from torch.autograd import Variable
torch.manual_seed(777) # reproducibility
idx2char = ['h', 'i', 'e', 'l', 'o']
# Teach hihell -> ihello
x_data = [[0, 1, 0, 2, 3, 3]] # hihell
y_data = [1, 0, 2, 3, 3, 4] # ihello
# As we have one batch of samples, we will change them to variables only once
inputs = Variable(torch.LongTensor(x_data))
labels = Variable(torch.LongTensor(y_data))
num_classes = 5
input_size = 5
embedding_size = 10 # embedding size
hidden_size = 5 # output from the LSTM. 5 to directly predict one-hot
batch_size = 1 # one sentence
sequence_length = 6 # |ihello| == 6
num_layers = 1 # one-layer rnn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.embedding = nn.Embedding(input_size, embedding_size)
self.rnn = nn.RNN(input_size=embedding_size,
hidden_size=5, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# Initialize hidden and cell states
# (num_layers * num_directions, batch, hidden_size)
h_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
emb = self.embedding(x)
emb = emb.view(batch_size, sequence_length, -1)
# Propagate embedding through RNN
# Input: (batch, seq_len, embedding_size)
# h_0: (num_layers * num_directions, batch, hidden_size)
out, _ = self.rnn(emb, h_0)
return self.fc(out.view(-1, num_classes))
# Instantiate RNN model
model = Model()
print(model)
# Set loss and optimizer function
# CrossEntropyLoss = LogSoftmax + NLLLoss
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
# Train the model
for epoch in range(100):
outputs = model(inputs)
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, idx = outputs.max(1)
idx = idx.data.numpy()
result_str = [idx2char[c] for c in idx.squeeze()]
print("epoch: %d, loss: %1.3f" % (epoch + 1, loss.data[0]))
print("Predicted string: ", ''.join(result_str))
print("Learning finished!")