-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
359 lines (311 loc) · 16.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import time
import argparse
import logging
import numpy as np
import torch
import torch.nn as nn
import pandas as pd
from collections import OrderedDict
import models
from datasets.poison_tool_cifar import get_backdoor_loader, get_test_loader, get_train_loader
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
seed = 98
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
np.random.seed(seed)
def train_step_unlearning(args, model, criterion, optimizer, data_loader):
model.train()
total_correct = 0
total_loss = 0.0
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.view_as(pred)).sum()
total_loss += loss.item()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
(-loss).backward()
optimizer.step()
loss = total_loss / len(data_loader)
acc = float(total_correct) / len(data_loader.dataset)
return loss, acc
def train_step_recovering(args, unlearned_model, criterion, mask_opt, data_loader):
unlearned_model.train()
total_correct = 0
total_loss = 0.0
nb_samples = 0
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
nb_samples += images.size(0)
mask_opt.zero_grad()
output = unlearned_model(images)
loss = criterion(output, labels)
loss = args.alpha * loss
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.view_as(pred)).sum()
total_loss += loss.item()
loss.backward()
mask_opt.step()
clip_mask(unlearned_model)
loss = total_loss / len(data_loader)
acc = float(total_correct) / nb_samples
return loss, acc
def load_state_dict(net, orig_state_dict):
if 'state_dict' in orig_state_dict.keys():
orig_state_dict = orig_state_dict['state_dict']
new_state_dict = OrderedDict()
for k, v in net.state_dict().items():
if k in orig_state_dict.keys():
new_state_dict[k] = orig_state_dict[k]
else:
new_state_dict[k] = v
net.load_state_dict(new_state_dict)
def clip_mask(unlearned_model, lower=0.0, upper=1.0):
params = [param for name, param in unlearned_model.named_parameters() if 'neuron_mask' in name]
with torch.no_grad():
for param in params:
param.clamp_(lower, upper)
def save_mask_scores(state_dict, file_name):
mask_values = []
count = 0
for name, param in state_dict.items():
if 'neuron_mask' in name:
for idx in range(param.size(0)):
neuron_name = '.'.join(name.split('.')[:-1])
mask_values.append('{} \t {} \t {} \t {:.4f} \n'.format(count, neuron_name, idx, param[idx].item()))
count += 1
with open(file_name, "w") as f:
f.write('No \t Layer Name \t Neuron Idx \t Mask Score \n')
f.writelines(mask_values)
def read_data(file_name):
tempt = pd.read_csv(file_name, sep='\s+', skiprows=1, header=None)
layer = tempt.iloc[:, 1]
idx = tempt.iloc[:, 2]
value = tempt.iloc[:, 3]
mask_values = list(zip(layer, idx, value))
return mask_values
def pruning(net, neuron):
state_dict = net.state_dict()
weight_name = '{}.{}'.format(neuron[0], 'weight')
state_dict[weight_name][int(neuron[1])] = 0.0
net.load_state_dict(state_dict)
def test(model, criterion, data_loader):
model.eval()
total_correct = 0
total_loss = 0.0
with torch.no_grad():
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
output = model(images)
total_loss += criterion(output, labels).item()
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.data.view_as(pred)).sum()
loss = total_loss / len(data_loader)
acc = float(total_correct) / len(data_loader.dataset)
return loss, acc
def evaluate_by_number(model, logger, mask_values, pruning_max, pruning_step, criterion, clean_loader, poison_loader):
results = []
nb_max = int(np.ceil(pruning_max))
nb_step = int(np.ceil(pruning_step))
for start in range(0, nb_max + 1, nb_step):
i = start
for i in range(start, start + nb_step):
pruning(model, mask_values[i])
layer_name, neuron_idx, value = mask_values[i][0], mask_values[i][1], mask_values[i][2]
cl_loss, cl_acc = test(model=model, criterion=criterion, data_loader=clean_loader)
po_loss, po_acc = test(model=model, criterion=criterion, data_loader=poison_loader)
logger.info('{} \t {} \t {} \t {} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}'.format(
i+1, layer_name, neuron_idx, value, po_loss, po_acc, cl_loss, cl_acc))
results.append('{} \t {} \t {} \t {} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}'.format(
i+1, layer_name, neuron_idx, value, po_loss, po_acc, cl_loss, cl_acc))
return results
def evaluate_by_threshold(model, logger, mask_values, pruning_max, pruning_step, criterion, clean_loader, poison_loader):
results = []
thresholds = np.arange(0, pruning_max + pruning_step, pruning_step)
start = 0
for threshold in thresholds:
idx = start
for idx in range(start, len(mask_values)):
if float(mask_values[idx][2]) <= threshold:
pruning(model, mask_values[idx])
start += 1
else:
break
layer_name, neuron_idx, value = mask_values[idx][0], mask_values[idx][1], mask_values[idx][2]
cl_loss, cl_acc = test(model=model, criterion=criterion, data_loader=clean_loader)
po_loss, po_acc = test(model=model, criterion=criterion, data_loader=poison_loader)
logger.info('{:.2f} \t {} \t {} \t {} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}'.format(
start, layer_name, neuron_idx, threshold, po_loss, po_acc, cl_loss, cl_acc))
results.append('{:.2f} \t {} \t {} \t {} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}\n'.format(
start, layer_name, neuron_idx, threshold, po_loss, po_acc, cl_loss, cl_acc))
return results
def save_checkpoint(state, file_path):
# filepath = os.path.join(args.output_dir, args.arch + '-unlearning_epochs{}.tar'.format(epoch))
torch.save(state, file_path)
def main(args):
logger = logging.getLogger(__name__)
logging.basicConfig(
format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.DEBUG,
handlers=[
logging.FileHandler(os.path.join(args.log_root, 'output.log')),
logging.StreamHandler()
])
logger.info(args)
logger.info('----------- Data Initialization --------------')
defense_data_loader = get_train_loader(args)
clean_test_loader, bad_test_loader = get_test_loader(args)
logger.info('----------- Backdoor Model Initialization --------------')
state_dict = torch.load(args.backdoor_model_path, map_location=device)
net = getattr(models, args.arch)(num_classes=10, norm_layer=None)
load_state_dict(net, orig_state_dict=state_dict)
net = net.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=args.unlearning_lr, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.schedule, gamma=0.1)
logger.info('----------- Model Unlearning --------------')
logger.info('Epoch \t lr \t Time \t TrainLoss \t TrainACC \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC')
for epoch in range(0, args.unlearning_epochs + 1):
start = time.time()
lr = optimizer.param_groups[0]['lr']
train_loss, train_acc = train_step_unlearning(args=args, model=net, criterion=criterion, optimizer=optimizer,
data_loader=defense_data_loader)
cl_test_loss, cl_test_acc = test(model=net, criterion=criterion, data_loader=clean_test_loader)
po_test_loss, po_test_acc = test(model=net, criterion=criterion, data_loader=bad_test_loader)
scheduler.step()
end = time.time()
logger.info(
'%d \t %.3f \t %.1f \t %.4f \t %.4f \t %.4f \t %.4f \t %.4f \t %.4f',
epoch, lr, end - start, train_loss, train_acc, po_test_loss, po_test_acc,
cl_test_loss, cl_test_acc)
if train_acc <= args.clean_threshold:
# save the last checkpoint
file_path = os.path.join(args.output_weight, f'unlearned_model_last.tar')
# torch.save(net.state_dict(), os.path.join(args.output_dir, 'unlearned_model_last.tar'))
save_checkpoint({
'epoch': epoch,
'state_dict': net.state_dict(),
'clean_acc': cl_test_acc,
'bad_acc': po_test_acc,
'optimizer': optimizer.state_dict(),
}, file_path)
break
logger.info('----------- Model Recovering --------------')
# Step 2: load unleanred model checkpoints
if args.unlearned_model_path is not None:
unlearned_model_path = args.unlearned_model_path
else:
unlearned_model_path = os.path.join(args.output_weight, 'unlearned_model_last.tar')
checkpoint = torch.load(unlearned_model_path, map_location=device)
print('Unlearned Model:', checkpoint['epoch'], checkpoint['clean_acc'], checkpoint['bad_acc'])
unlearned_model = getattr(models, args.arch)(num_classes=10, norm_layer=models.MaskBatchNorm2d)
load_state_dict(unlearned_model, orig_state_dict=checkpoint['state_dict'])
unlearned_model = unlearned_model.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
parameters = list(unlearned_model.named_parameters())
mask_params = [v for n, v in parameters if "neuron_mask" in n]
mask_optimizer = torch.optim.SGD(mask_params, lr=args.recovering_lr, momentum=0.9)
# Recovering
logger.info('Epoch \t lr \t Time \t TrainLoss \t TrainACC \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC')
for epoch in range(1, args.recovering_epochs + 1):
start = time.time()
lr = mask_optimizer.param_groups[0]['lr']
train_loss, train_acc = train_step_recovering(args=args, unlearned_model=unlearned_model, criterion=criterion, data_loader=defense_data_loader,
mask_opt=mask_optimizer)
cl_test_loss, cl_test_acc = test(model=unlearned_model, criterion=criterion, data_loader=clean_test_loader)
po_test_loss, po_test_acc = test(model=unlearned_model, criterion=criterion, data_loader=bad_test_loader)
end = time.time()
logger.info('{} \t {:.3f} \t {:.1f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}'.format(
epoch, lr, end - start, train_loss, train_acc, po_test_loss, po_test_acc,
cl_test_loss, cl_test_acc))
save_mask_scores(unlearned_model.state_dict(), os.path.join(args.log_root, 'mask_values.txt'))
del unlearned_model, net
logger.info('----------- Backdoored Model Pruning --------------')
# load model checkpoints and trigger info
state_dict = torch.load(args.backdoor_model_path, map_location=device)
net = getattr(models, args.arch)(num_classes=10, norm_layer=None)
load_state_dict(net, orig_state_dict=state_dict)
net = net.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
# Step 3: pruning
if args.mask_file is not None:
mask_file = args.mask_file
else:
mask_file = os.path.join(args.log_root, 'mask_values.txt')
mask_values = read_data(mask_file)
mask_values = sorted(mask_values, key=lambda x: float(x[2]))
logger.info('No. \t Layer Name \t Neuron Idx \t Mask \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC')
cl_loss, cl_acc = test(model=net, criterion=criterion, data_loader=clean_test_loader)
po_loss, po_acc = test(model=net, criterion=criterion, data_loader=bad_test_loader)
logger.info('0 \t None \t None \t {:.4f} \t {:.4f} \t {:.4f} \t {:.4f}'.format(po_loss, po_acc, cl_loss, cl_acc))
if args.pruning_by == 'threshold':
results = evaluate_by_threshold(
net, logger, mask_values, pruning_max=args.pruning_max, pruning_step=args.pruning_step,
criterion=criterion, clean_loader=clean_test_loader, poison_loader=bad_test_loader
)
else:
results = evaluate_by_number(
net, logger, mask_values, pruning_max=args.pruning_max, pruning_step=args.pruning_step,
criterion=criterion, clean_loader=clean_test_loader, poison_loader=bad_test_loader
)
file_name = os.path.join(args.log_root, 'pruning_by_{}.txt'.format(args.pruning_by))
with open(file_name, "w") as f:
f.write('No \t Layer Name \t Neuron Idx \t Mask \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC\n')
f.writelines(results)
if __name__ == '__main__':
# Prepare arguments
parser = argparse.ArgumentParser()
# various path
parser.add_argument('--cuda', type=int, default=1, help='cuda available')
parser.add_argument('--save-every', type=int, default=5, help='save checkpoints every few epochs')
parser.add_argument('--log_root', type=str, default='logs/', help='logs are saved here')
parser.add_argument('--output_weight', type=str, default='weights/')
parser.add_argument('--backdoor_model_path', type=str,
default='weights/ResNet18-ResNet-BadNets-target0-portion0.1-epoch80.tar',
help='path of backdoored model')
parser.add_argument('--unlearned_model_path', type=str,
default=None, help='path of unlearned backdoored model')
parser.add_argument('--arch', type=str, default='resnet18',
choices=['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'MobileNetV2',
'vgg19_bn'])
parser.add_argument('--schedule', type=int, nargs='+', default=[10, 20],
help='Decrease learning rate at these epochs.')
parser.add_argument('--dataset', type=str, default='CIFAR10', help='name of image dataset')
parser.add_argument('--batch_size', type=int, default=128, help='The size of batch')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--num_class', type=int, default=10, help='number of classes')
parser.add_argument('--ratio', type=float, default=0.01, help='ratio of defense data')
# backdoor attacks
parser.add_argument('--target_label', type=int, default=0, help='class of target label')
parser.add_argument('--trigger_type', type=str, default='gridTrigger', help='type of backdoor trigger')
parser.add_argument('--target_type', type=str, default='all2one', help='type of backdoor label')
parser.add_argument('--trig_w', type=int, default=3, help='width of trigger pattern')
parser.add_argument('--trig_h', type=int, default=3, help='height of trigger pattern')
# RNP
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--clean_threshold', type=float, default=0.20, help='threshold of unlearning accuracy')
parser.add_argument('--unlearning_lr', type=float, default=0.01, help='the learning rate for neuron unlearning')
parser.add_argument('--recovering_lr', type=float, default=0.2, help='the learning rate for mask optimization')
parser.add_argument('--unlearning_epochs', type=int, default=20, help='the number of epochs for unlearning')
parser.add_argument('--recovering_epochs', type=int, default=20, help='the number of epochs for recovering')
parser.add_argument('--mask_file', type=str, default=None, help='The text file containing the mask values')
parser.add_argument('--pruning-by', type=str, default='threshold', choices=['number', 'threshold'])
parser.add_argument('--pruning-max', type=float, default=0.90, help='the maximum number/threshold for pruning')
parser.add_argument('--pruning-step', type=float, default=0.05, help='the step size for evaluating the pruning')
args = parser.parse_args()
args_dict = vars(args)
print(args_dict)
os.makedirs(args.log_root, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
main(args)