-
Notifications
You must be signed in to change notification settings - Fork 4
/
helpFunctions.cpp
815 lines (757 loc) · 50.1 KB
/
helpFunctions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/*-------------------------------------------------------------------------------*/
/* SOLAR - The solar thermal power plant simulator */
/* https://github.com/bbopt/solar */
/* */
/* Miguel Diago, Sebastien Le Digabel, Mathieu Lemyre-Garneau, Bastien Talgorn */
/* */
/* Polytechnique Montreal / GERAD */
/* [email protected] */
/* */
/* This program is free software: you can redistribute it and/or modify it */
/* under the terms of the GNU Lesser General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or (at your */
/* option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, but WITHOUT */
/* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or */
/* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License */
/* for more details. */
/* */
/* You should have received a copy of the GNU Lesser General Public License */
/* along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* */
/*-------------------------------------------------------------------------------*/
#include "helpFunctions.hpp"
/*-----------------------------------------------------------*/
/* display best known values (valid for version 1) */
/*-----------------------------------------------------------*/
void display_best_solutions ( std::ostream & out ) {
out << "\tSOLAR1 \t-902,503.692418" << std::endl
<< "\tSOLAR2 \t841,839.671915" << std::endl
<< "\tSOLAR3 \t70,813,885.0684" << std::endl
<< "\tSOLAR4 \t108,197,236.146" << std::endl
<< "\tSOLAR5 \t-28.8817193932" << std::endl
<< "\tSOLAR6 \t43,954,935.1836" << std::endl
<< "\tSOLAR7 \t-4,972.88689831" << std::endl
<< "\tSOLAR10\t42.416671" << std::endl;
}
/*-----------------------------------------------------------*/
/* display list of problems */
/*-----------------------------------------------------------*/
void display_problems ( std::ostream & out , const std::vector<Problem> & problems ) {
out << "\t#\t"<< std::setw(22) << "pb_id"
<< "\t" << std::setw(40) << "obj.(f)"
<< "\t" << std::setw(15) << "# of objectives(p)"
<< "\t" << std::setw(15) << "# of var.(n)"
<< "\t" << std::setw(15) << "# of constr.(m)\n\n";
for ( size_t i = 0 ; i < problems.size() ; ++i ) {
std::ostringstream oss;
oss << "SOLAR" << i+1;
out << "\t" << oss.str()
<< "\t" << std::setw(22) << problems[i].get_pb_id()
<< "\t" << std::setw(40) << problems[i].get_f_description()
<< "\t" << std::setw(15) << problems[i].get_p()
<< "\t" << std::setw(15) << problems[i].get_n()
<< "\t" << std::setw(15) << problems[i].get_m()
<< std::endl;
}
}
/*-----------------------------------------------------------*/
/* display usage */
/*-----------------------------------------------------------*/
void display_usage ( std::ostream & out ) {
out << std::endl
<< "Run SOLAR (basic) : solar pb_id x.txt (add -v for verbose mode)" << std::endl
<< "Run SOLAR (advanced): solar pb_id x.txt -seed=S -fid=F -rep=R -v" << std::endl
<< " pb_id: Problem instance: integer in {1, 2, ..., 10}" << std::endl
<< " S: Random seed : integer >=0 or \"diff\"; Default=0" << std::endl
<< " F: Fidelity : real in [0;1]; Default=1.0 (truth)" << std::endl
<< " R: Replications : integer >= 1 or real in ]0;1[; Default=1\n" << std::endl
<< "Validation: solar -check (can take several minutes)" << std::endl
<< "Help(1) : solar -h" << std::endl
<< "Help(2) : solar -h pb_id" << std::endl
<< "Info : solar -i\n" << std::endl;
}
/*-----------------------------------------------------------*/
/* display info */
/*-----------------------------------------------------------*/
void display_info ( std::ostream & out , const std::string & version ) {
out << std::endl << "SOLAR, the solar thermal power plant simulator, version "
<< version << std::endl << std::endl
<< "Contributors: M. Diago, S. Le Digabel, M. Lemyre-Garneau, B. Talgorn;"
<< " GERAD and Polytechnique Montreal" << std::endl << std::endl
<< "This code is distributed under the LGPL license" << std::endl
<< "https://github.com/bbopt/solar" << std::endl << std::endl
<< "Please report bugs to [email protected]" << std::endl << std::endl;
}
/*-----------------------------------------------------------*/
/* display (short) help for all problems */
/*-----------------------------------------------------------*/
void display_help ( std::ostream & out , const std::vector<Problem> & problems ) {
out << std::endl
<< "Run simulation: solar pb_id x.txt -seed=S -fid=F -rep=R -v (optional)\n\n"
<< " pb_id: Problem instance (see list of problems below)\n\n"
<< " x.txt: Point at which the simulator is evaluated\n"
<< " Values separated with spaces\n"
<< " It is possible to specify several points: Use one line for each\n\n"
<< " -v: Verbose option\n\n"
<< " S: Random seed:\n"
<< " Some SOLAR instances are stochastic. This parameter impacts the value of stochastic outputs\n"
<< " The seed is a natural integer\n"
<< " If SOLAR is run twice at the same point with the same seed, it will give the same outputs\n"
<< " The default value is 0\n"
<< " Use -seed=diff to let SOLAR use a different random seed each time\n"
<< " The random number generator can be validated by running 'solar -check'\n\n"
<< " F: Fidelity of the simulator\n"
<< " Real value in [0;1]\n"
<< " Default: 1.0 (full fidelity), which corresponds to the \"true blackbox\", or the \"truth\"\n"
<< " Any value in ]0;1[ corresponds to a \"static surrogate\" of the truth\n"
<< " With -fid=0.0, only the a priori constraints and analytical objectives are computed\n"
<< " The execution time increases with the fidelity\n"
<< " A good default static surrogate is -fid=0.5\n\n"
<< " R: Number of replications\n"
<< " Integer >= 1 or real in ]0;1[, default=1\n"
<< " If R is integer, it is the number of times that the simulator is run at the same point\n"
<< " If R is real, it corresponds to a probability that the outputs are stabilized after a variable number of replications\n"
<< " Each replication uses a different random seed dependent on the -seed option\n"
<< " The mean value of stochastic outputs is displayed\n"
<< " It is not possible to use R!=1 with deterministic instances\n"
<< "\nHelp for a problem: solar pb_id or solar -h pb_id" << std::endl << std::endl
<< "List of problems:" << std::endl << std::endl;
display_problems ( out , problems );
out << std::endl
<< "Best known values for single-objective instances, with one replication, full fidelity, and default seed of zero:"
<< std::endl << std::endl;
display_best_solutions ( out );
out << std::endl << "\t--> These values are valid only for SOLAR version 1"
<< std::endl << std::endl;
}
/*-----------------------------------------------------------*/
/* display (complete) help for one instance */
/*-----------------------------------------------------------*/
void display_help ( std::ostream & out ,
const std::vector<Problem> & problems ,
const std::string & pb_id ) {
out << "Display help for Instance \"" << pb_id << "\":" << std::endl << std::endl;
const Problem * pb = find_problem ( problems, pb_id );
if ( pb ) {
out << "Instance: " << pb->get_pb_id() << " (solar" << pb->get_index() << ")"
<< "\t" << pb->get_f_description()
<< "\tn=" << pb->get_n()
<< "\tm=" << pb->get_m()
<< std::endl;
// #1:
if ( pb->get_pb_id() == "MAXNRG_H1" )
print_maxNrg_H1 ( out );
// #2:
else if ( pb->get_pb_id() == "MINSURF_H1" )
print_minSurf_H1 ( out );
// #3:
else if ( pb->get_pb_id() == "MINCOST_C1" )
print_minCost_C1 ( out);
// #4:
else if ( pb->get_pb_id() == "MINCOST_C2" )
print_minCost_C2 ( out );
// #5:
else if ( pb->get_pb_id() == "MAXCOMP_HTF1" )
print_maxComp_HTF1 ( out );
// #6:
else if ( pb->get_pb_id() == "MINCOST_TS" )
print_minCost_TS ( out );
// #7:
else if ( pb->get_pb_id() == "MAXEFF_RE" )
print_maxEff_RE ( out );
// #8:
else if ( pb->get_pb_id() == "MAXHF_MINCOST" )
print_maxHF_minCost ( out );
// #9:
else if ( pb->get_pb_id() == "MAXNRG_MINPAR" )
print_maxNrg_minPar ( out );
// #10:
else if ( pb->get_pb_id() == "MINCOST_UNCONSTRAINED" )
print_minCost_unconstrained ( out );
else {
out << "Cannot find detailed help for this instance" << std::endl;
return;
}
}
else {
out << "This problem instance does not exist" << std::endl;
return;
}
out << "\n-----------------------------------------------------------------\n" << std::endl;
}
/*-------------- #1 ---------------------------*/
void print_maxNrg_H1 ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tHeliostats field only\n"
<< "\tLatitude: 44.95 deg N\n"
<< "\tDay: April 10th\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 24 hours\n"
<< "\tMaximum field surface area: 195 hectares\n"
<< "\tBudget: $50M\n"
<< "\tMust provide 100% of the demand requirement\n"
<< "\tFidelity cannot be changed (must be 100%)\n"
<< std::endl
<< "Objective (first output, stochastic)\n"
<< "\tMaximize the total solar energy concentrated on the receiver aperture through one day (kWh)\n"
<< std::endl
<< "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\tx1: Heliostats length (m) : Real in [ 1; 40]\n"
<< "\t\tx2: Heliostats width (m) : Real in [ 1; 40]\n"
<< "\t\tx3: Tower height (m) : Real in [20;250]\n"
<< "\t\tx4: Receiver aperture height (m) : Real in [ 1; 30]\n"
<< "\t\tx5: Receiver aperture width (m) : Real in [ 1; 30]\n"
<< "\t\tx6: Number of heliostats to fit in the field : Integer >= 1\n"
<< "\t\tx7: Field angular width (deg) : Real in [1;89]\n"
<< "\t\tx8: Minimum distance from tower (% of tower height): Real in [0;20]\n"
<< "\t\tx9: Maximum distance from tower (% of tower height): Real in [1;20]\n"
<< std::endl
<< "Constraints (outputs 2 to 6 with format ci <= 0):\n"
<< "\tc1: Cost of plant <= budget=$50M\n"
<< "\tc2: Field surface area: A priori constraint: PI*x3*x3(x9*x9-x8*x8) * x7/180 <= 1.95e6\n"
<< "\tc3: Tower is at least twice as high as heliostats : A priori, linear constraint: 2x1 <= x3\n"
<< "\tc4: Min. distance from tower <= Max. distance from tower: A priori, linear constraint: x8 <= x9\n"
<< "\tc5: Check that x6 heliostats can fit in the field\n"
<< "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 9 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $1" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R I R R R )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 20.0 1.0 1.0 1 1.0 0.0 1.0 )" << std::endl
<< "\tX0 " << "( 8.0 8.0 150.0 7.0 7.0 250 45.0 0.5 5.0 )" << std::endl
<< "\tUPPER_BOUND " << "( 40.0 40.0 250.0 30.0 30.0 - 89.0 20.0 20.0 )" << std::endl;
}
/*-------------- #2 ---------------------------*/
void print_minSurf_H1 ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tLatitude: 37.55 deg N\n"
<< "\tDay: June 29th\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 72 hours\n"
<< "\tMaximum field surface area: 400 hectares\n"
<< "\tBudget: $300M\n"
<< "\tMust provide 100% of the demand requirement\n"
<< std::endl
<< "Objective (first output, analytic)\n"
<< "\tMinimize total heliostats field surface to run a pre-determined powerplant (square meters)\n"
<< "\tObjective = PI*x3*x3(x9*x9-x8*x8) * x7/180\n"
<< std::endl
<< "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\t x1: Heliostats length (m) : Real in [ 1; 40]\n"
<< "\t\t x2: Heliostats width (m) : Real in [ 1; 40]\n"
<< "\t\t x3: Tower height (m) : Real in [20;250]\n"
<< "\t\t x4: Receiver aperture height (m) : Real in [ 1; 30]\n"
<< "\t\t x5: Receiver aperture width (m) : Real in [ 1; 30]\n"
<< "\t\t x6: Number of heliostats to fit in the field : Integer >= 1\n"
<< "\t\t x7: Field angular width (deg) : Real in [1;89]\n"
<< "\t\t x8: Minimum distance from tower (% of tower height): Real in [0;20]\n"
<< "\t\t x9: Maximum distance from tower (% of tower height): Real in [1;20]\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx10: Receiver outlet temperature (K): Real in [793;995]\n"
<< "\t\tx11: Receiver number of tubes : Integer in {1,2,...,9424}\n"
<< "\t\tx12: Receiver insulation thickness (m): Real in [0.01 ;5 ]\n"
<< "\t\tx13: Receiver tubes inner diameter (m): Real in [0.005;0.1]\n"
<< "\t\tx14: Receiver tubes outer diameter (m): Real in [0.005;0.1]\n"
<< std::endl
<< "Constraints (outputs 2 to 13 with format ci <= 0):\n"
<< "\t c1: Field surface area: A priori constraint: PI*x3*x3(x9*x9-x8*x8) * x7/180 <= 4e6 or: objective <= 4e6\n"
<< "\t c2: Compliance to demand (stochastic)\n"
<< "\t c3: Cost of plant <= budget=$300M\n"
<< "\t c4: Tower is at least twice as high as heliostats : A priori, linear constraint: 2x1 <= x3\n"
<< "\t c5: Min. distance from tower <= Max. distance from tower: A priori, linear constraint: x8 <= x9\n"
<< "\t c6: Check that x6 heliostats can fit in the field\n"
<< "\t c7: Pressure in receiver tubes <= yield pressure (stochastic)\n"
<< "\t c8: Molten salt melting point <= hot storage lowest temperature (stochastic)\n"
<< "\t c9: Molten salt melting point <= cold storage lowest temperature (stochastic)\n"
// c10 removed in version 0.5.4:
// << "\tc10: Molten salt melting point <= steam generator outlet temperature\n"
<< "\tc10: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x13 <= x14\n"
<< "\tc11: Number of tubes in receiver fit inside receiver : A priori constraint : x11*x14 <= x5*PI/2\n"
<< "\tc12: Receiver outlet temperature >= steam turbine inlet temperature\n";
out << "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 14 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $2" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R I R R R R I R R R )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 20.0 1.0 1.0 1 1.0 0.0 1.0 793.0 1 0.01 0.005 0.0050 )" << std::endl
<< "\tX0 " << "( 11.0 11.0 140.0 10.0 10.0 2650 89.0 0.5 5.0 838.0 36 0.30 0.020 0.0216 )" << std::endl
<< "\tUPPER_BOUND " << "( 40.0 40.0 250.0 30.0 30.0 - 89.0 20.0 20.0 995.0 9424 5.00 0.100 0.1000 )" << std::endl;
}
/*-------------- #3 ---------------------------*/
void print_minCost_C1 ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 35 deg N\n"
<< "\tDay: September 27th\n"
<< "\tDuration: 24 hours\n"
<< "\tDemand profile: 10MW, starting at 3PM and ending at 9PM, 3 consecutive days\n"
<< "\tMaximum field surface area: 80 hectares\n"
<< "\tMust provide 100% of the demand requirement\n"
<< std::endl
<< "Objective (first output)\n"
<< "\tMinimize total investment cost ($)\n"
<< std::endl
<< "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\t x1: Heliostats length (m) : Real in [ 1; 40]\n"
<< "\t\t x2: Heliostats width (m) : Real in [ 1; 40]\n"
<< "\t\t x3: Tower height (m) : Real in [20;250]\n"
<< "\t\t x4: Receiver aperture height (m) : Real in [ 1; 30]\n"
<< "\t\t x5: Receiver aperture width (m) : Real in [ 1; 30]\n"
<< "\t\t x6: Number of heliostats to fit in the field : Integer >= 1\n"
<< "\t\t x7: Field angular width (deg) : Real in [1;89]\n"
<< "\t\t x8: Minimum distance from tower (% of tower height): Real in [0;20]\n"
<< "\t\t x9: Maximum distance from tower (% of tower height): Real in [1;20]\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx10: Receiver outlet temperature (K) : Real in [793;995]\n"
<< "\t\tx11: Hot storage height (m) : Real in [1;50]\n"
<< "\t\tx12: Hot storage diameter (m) : Real in [1;30]\n"
<< "\t\tx13: Hot storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx14: Cold storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx15: Mininum cold storage temperature (K): Real in [495;650]\n"
<< "\t\tx16: Receiver number of tubes : Integer in {1,2,...,9424}\n"
<< "\t\tx17: Receiver insulation thickness (m) : Real in [0.01 ;5 ]\n"
<< "\t\tx18: Receiver tubes inner diameter (m) : Real in [0.005;0.1]\n"
<< "\t\tx19: Receiver tubes outer diameter (m) : Real in [0.005;0.1]\n"
<< "\tPowerblock:\n"
<< "\t\tx20: Type of turbine: Categorical: Integer in {1, 2, ..., 8}\n"
<< std::endl
<< "Constraints (outputs 2 to 14 with format ci <= 0):\n"
<< "\t c1: Field surface area: A priori constraint: PI*x3*x3(x9*x9-x8*x8) * x7/180 <= 800000\n"
<< "\t c2: Compliance to demand (stochastic)\n"
<< "\t c3: Tower is at least twice as high as heliostats : A priori, linear constraint: 2x1 <= x3\n"
<< "\t c4: Min. distance from tower <= max. distance from tower: A priori, linear constraint: x8 <= x9\n"
<< "\t c5: Check that x6 heliostats can fit in the field\n"
<< "\t c6: Pressure in receiver tubes <= yield pressure (stochastic)\n"
<< "\t c7: Molten salt melting point <= hot storage lowest temperature (stochastic)\n"
<< "\t c8: Molten salt melting point <= cold storage lowest temperature (stochastic)\n"
// c9 should be stochastic but this behavior was never observed
<< "\t c9: Molten salt melting point <= steam generator outlet temperature\n"
<< "\tc10: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x18 <= x19\n"
<< "\tc11: Number of tubes in receiver fit inside receiver : A priori constraint : x16*x19 <= x5*PI/2\n"
<< "\tc12: Receiver outlet temperature >= steam turbine inlet temperature\n"
<< "\tc13: Storage is back at least at its original conditions (stochastic)\n"
<< "\n-----------------------------------------------------------------\n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 20 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $3" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R I R R R R R R R R R I R R R I )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 20.0 1.0 1.0 1 1.0 0.0 1.0 793.0 1.0 1.0 0.01 0.01 495.0 1 0.01 0.005 0.005 1 )" << std::endl
<< "\tX0 " << "( 8.0 8.0 150.0 7.0 7.0 250 45.0 0.5 5.0 900.0 9.0 9.0 0.30 0.20 560.0 40 0.30 0.015 0.017 3 )" << std::endl
<< "\tUPPER_BOUND " << "( 40.0 40.0 250.0 30.0 30.0 - 89.0 20.0 20.0 995.0 50.0 30.0 5.00 5.00 650.0 9424 5.00 0.100 0.100 8 )" << std::endl;
}
/*-------------- #4 ---------------------------*/
void print_minCost_C2 ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 35 deg N\n"
<< "\tDay: January 1st\n"
<< "\tDuration: 24 hours\n"
<< "\tDemand profile: 25MW, starting at 3PM and ending at 9PM, 3 consecutive days\n"
<< "\tMaximum field surface area: 200 hectares\n"
<< "\tMust provide 100% of the demand requirement\n"
<< std::endl
<< "Objective (first output)\n"
<< "\tMinimize the cost of powerplant to respect a given demand with a limited size of field ($)\n"
<< std::endl
<< "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\t x1: Heliostats length (m) : Real in [ 1; 40]\n"
<< "\t\t x2: Heliostats width (m) : Real in [ 1; 40]\n"
<< "\t\t x3: Tower height (m) : Real in [20;250]\n"
<< "\t\t x4: Receiver aperture height (m) : Real in [ 1; 30]\n"
<< "\t\t x5: Receiver aperture width (m) : Real in [ 1; 30]\n"
<< "\t\t x6: Number of heliostats to fit in the field : Integer >= 1\n"
<< "\t\t x7: Field angular width (deg) : Real in [1;89]\n"
<< "\t\t x8: Minimum distance from tower (% of tower height): Real in [0;20]\n"
<< "\t\t x9: Maximum distance from tower (% of tower height): Real in [1;20]\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx10: Receiver outlet temperature (K) : Real in [793;995]\n"
<< "\t\tx11: Hot storage height (m) : Real in [1;50]\n"
<< "\t\tx12: Hot storage diameter (m) : Real in [1;30]\n"
<< "\t\tx13: Hot storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx14: Cold storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx15: Mininum cold storage temperature (K): Real in [495;650]\n"
<< "\t\tx16: Receiver number of tubes : Integer in {1,2,...,7853}\n"
<< "\t\tx17: Receiver insulation thickness (m): Real in [0.01 ;5 ]\n"
<< "\t\tx18: Receiver tubes inner diameter (m): Real in [0.005;0.1]\n"
<< "\t\tx19: Receiver tubes outer diameter (m): Real in [0.006;0.1]\n"
<< "\tSteam generator:\n"
<< "\t\tx20: Tubes spacing (m) : Real in [0.007;0.2]\n"
<< "\t\tx21: Tubes length (m) : Real in [0.5;10]\n"
<< "\t\tx22: Tubes inner diameter (m): Real in [0.005;0.1]\n"
<< "\t\tx23: Tubes outer diameter (m): Real in [0.006;0.1]\n"
<< "\t\tx24: Baffles cut : Real in [0.15;0.4]\n"
<< "\t\tx25: Number of baffles : Integer >= 2\n"
<< "\t\tx26: Number of tubes : Integer >= 1\n"
<< "\t\tx27: Number of shell passes : Integer in {1, 2, ..., 10}\n"
<< "\t\tx28: Number of tubes passes : Integer in {1, 2, ..., 9}\n"
<< "\tPowerblock:\n"
<< "\t\tx29: Type of turbine: Categorical: Integer in {1, 2, ..., 8}\n"
<< std::endl
<< "Constraints (outputs 2 to 17 with format ci <= 0):\n"
<< "\t c1: Field surface area: A priori constraint: PI*x3*x3(x9*x9-x8*x8) * x7/180 <= 2e6\n"
<< "\t c2: Compliance to demand (stochastic)\n"
<< "\t c3: Tower is at least twice as high as heliostats : A priori, linear constraint: 2x1 <= x3\n"
<< "\t c4: Min. distance from tower <= max. distance from tower: A priori, linear constraint: x8 <= x9\n"
<< "\t c5: Check that x6 heliostats can fit in the field\n"
<< "\t c6: Pressure in receiver tubes <= yield pressure (stochastic)\n"
<< "\t c7: Molten salt melting point <= hot storage lowest temperature (stochastic)\n"
<< "\t c8: Molten salt melting point <= cold storage lowest temperature (stochastic)\n"
<< "\t c9: Molten salt melting point <= steam generator outlet temperature (stochastic)\n"
<< "\tc10: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x18 <= x19\n"
<< "\tc11: Number of tubes in receiver fit inside receiver: A priori constraint: x16*x19 <= x5*PI/2\n"
<< "\tc12: Receiver outlet temperature >= steam turbine inlet temperature\n"
<< "\tc13: Parasitic losses <= 18% of the generated output (stochastic)\n"
<< "\tc14: Steam generator tubes outer diameter <= tubes spacing: A priori, linear constraint: x23 <= x20\n"
<< "\tc15: Steam generator tubes inside diameter <= Steam generator tubes outer diameter: A priori, linear constraint: x22 <= x23\n"
<< "\tc16: Pressure in steam generator tubes <= yield pressure\n"
<< "\n-----------------------------------------------------------------\n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 29 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $4" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R I R R R R R R R R R I R R R R R R R R I I I I I )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 20.0 1.0 1.0 1 1.0 0.0 1.0 793.0 1.0 1.0 0.01 0.01 495.0 1 0.01 0.0050 0.006 0.007 0.5 0.0050 0.006 0.15 2 1 1 1 1 )" << std::endl
<< "\tX0 " << "( 9.0 9.0 150.0 6.0 8.0 1000 45.0 0.5 5.0 900.0 9.0 9.0 0.30 0.20 560.0 500 0.30 0.0165 0.018 0.017 10.0 0.0155 0.016 0.20 3 12000 1 2 2 )" << std::endl
<< "\tUPPER_BOUND " << "( 40.0 40.0 250.0 30.0 30.0 - 89.0 20.0 20.0 995.0 50.0 30.0 5.00 5.00 650.0 7853 5.00 0.1000 0.100 0.200 10.0 0.1000 0.100 0.40 - - 10 9 8 )" << std::endl;
}
/*-------------- #5 ---------------------------*/
void print_maxComp_HTF1 ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 37.5581 deg N\n"
<< "\tDay: January 30th\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 30 days\n"
<< "\tDemand: 12MW\n"
<< "\tBudget: $100M\n"
<< "\tPre-determined sunlight input for a period of 1 month\n"
<< "\tNumber of heliostats to fit in the field: 3,800\n"
<< "\tDeterministic instance\n"
<< "\tFidelity cannot be changed (must be 100%)\n"
<< std::endl
<< "Objective (first output)\n"
<< "\tMaximize compliance to a demand profile\n"
<< std::endl
<< "Variables:\n"
<< "\tHeat transfer loop:\n"
<< "\t\t x1: Receiver outlet temperature (K) : Real in [793;995]\n"
<< "\t\t x2: Hot storage height (m) : Real in [1;30]\n"
<< "\t\t x3: Hot storage diameter (m) : Real in [1;30]\n"
<< "\t\t x4: Hot storage insulation thickness (m): Real in [0.01;2]\n"
<< "\t\t x5: Cold storage insulation thickness (m): Real in [0.01;2]\n"
<< "\t\t x6: Mininum cold storage temperature (K): Real in [495;650]\n"
<< "\t\t x7: Receiver number of tubes : Integer in {1,2,...,1884}\n"
<< "\t\t x8: Receiver insulation thickness (m): Real in [0.100;2.0]\n"
<< "\t\t x9: Receiver tubes inner diameter (m): Real in [0.005;0.1]\n"
<< "\t\tx10: Receiver tubes outer diameter (m): Real in [0.005;0.1]\n"
<< "\tSteam generator:\n"
<< "\t\tx11: Tubes spacing (m) : Real in [0.006; 0.2]\n"
<< "\t\tx12: Tubes length (m) : Real in [0.500;10.0]\n"
<< "\t\tx13: Tubes inner diameter (m): Real in [0.005; 0.1]\n"
<< "\t\tx14: Tubes outer diameter (m): Real in [0.006; 0.1]\n"
<< "\t\tx15: Baffles cut : Real in [0.150; 0.4]\n"
<< "\t\tx16: Number of baffles : Integer >= 2\n"
<< "\t\tx17: Number of tubes : Integer >= 1\n"
<< "\t\tx18: Number of shell passes : Integer in {1, 2, ...,10}\n"
<< "\t\tx19: Number of tube passes : Integer in {1, 2, ..., 9}\n"
<< "\tPowerblock:\n"
<< "\t\tx20: Type of turbine: Categorical: Integer in {1, 2, ..., 8}\n"
<< std::endl
<< "Constraints (outputs 2 to 13 with format ci <= 0):\n"
<< "\t c1: Cost of plant <= budget=$100M\n"
<< "\t c2: Pressure in receiver tubes <= yield pressure\n"
<< "\t c3: Molten salt melting point <= hot storage lowest temperature\n"
<< "\t c4: Molten salt melting point <= cold storage lowest temperature\n"
<< "\t c5: Molten salt melting point <= steam generator outlet temperature\n"
<< "\t c6: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x9 <= x10\n"
<< "\t c7: Number of tubes in receiver fit inside receiver: A priori constraint: x7*x10 <= 3*PI\n"
<< "\t c8: Receiver outlet temperature >= steam turbine inlet temperature\n"
<< "\t c9: Parasitic losses <= 18% of the generated output \n"
<< "\tc10: Steam generator tubes outer diameter <= tubes spacing: A priori, linear constraint: x14 <= x11\n"
<< "\tc11: Steam generator tubes inside diameter <= Steam generator tubes outer diameter: A priori, linear constraint: x13 <= x14\n"
<< "\tc12: Pressure in steam generator tubes <= yield pressure\n";
out << "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 20 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $5" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R R I R R R R R R R R I I I I I )" << std::endl
<< "\tLOWER_BOUND " << "( 793.0 1.0 1.0 0.01 0.01 495 1 0.10 0.005 0.005 0.006 0.5 0.005 0.006 0.15 2 1 1 1 1 )" << std::endl
<< "\tX0 " << "( 900.0 10.0 12.0 0.15 0.10 560 24 0.35 0.020 0.023 0.050 8.0 0.020 0.023 0.20 2 5000 5 5 1 )" << std::endl
<< "\tUPPER_BOUND " << "( 995.0 30.0 30.0 2.00 2.00 650 1884 2.00 0.100 0.100 0.200 10.0 0.100 0.100 0.4 - - 10 9 8 )" << std::endl;
}
/*-------------- #6 ---------------------------*/
void print_minCost_TS ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 30.05 deg N\n"
<< "\tDay: January 1st\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 24 hours\n"
<< "\tDemand: 120MW\n"
<< "\tMust provide 100% of the demand requirement\n"
<< "\tNumber of heliostats to fit in the field: 12,232\n"
<< "\tThis instance runs a predetermined power plant using the molten salt cycle and power block models.\n"
<< "\tThe objective is to minimize the cost of the thermal storage units so that the power plant is able\n"
<< "\tto sustain a 120MW electrical power output during 24 hours. Since the heliostat field is not being\n"
<< "\toptimized, its hourly power output is taken from prerecorded data instead of being simulated\n"
<< "\tDeterministic instance\n"
<< "\tFidelity cannot be changed (must be 100%)\n"
<< std::endl;
out << "Objective (first output)\n"
<< "\tMinimize the cost of storage ($)\n"
<< std::endl;
out << "Variables:\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx1: Receiver outlet temperature (K) : Real in [793;995]\n"
<< "\t\tx2: Hot storage height (m) : Real in [2;50]\n"
<< "\t\tx3: Hot storage diameter (m) : Real in [2;30]\n"
<< "\t\tx4: Hot storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx5: Cold storage insulation thickness (m): Real in [0.01;5]\n"
<< std::endl
<< "Constraints (outputs 2 to 7 with format ci <= 0):\n"
<< "\tc1: Compliance to demand\n"
<< "\tc2: Pressure in receiver tubes <= yield pressure\n"
<< "\tc3: Molten salt melting point <= hot storage lowest temperature\n"
<< "\tc4: Molten salt melting point <= cold storage lowest temperature\n"
<< "\tc5: Receiver outlet temperature >= steam turbine inlet temperature\n"
<< "\tc6: Storage is back at least at its original conditions\n"
<< "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 5 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $6" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R )" << std::endl
<< "\tLOWER_BOUND " << "( 793.0 2.0 2.0 0.01 0.01 )" << std::endl
<< "\tX0 " << "( 900.0 10.0 12.0 0.20 0.20 )" << std::endl
<< "\tUPPER_BOUND " << "( 995.0 50.0 30.0 5.00 5.00 )" << std::endl;
}
/*-------------- #7 ---------------------------*/
void print_maxEff_RE ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 30.05 deg N\n"
<< "\tDay: January 1st\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 24 hours\n"
<< "\tBudget: $45M\n"
<< "\tNumber of heliostats to fit in the field: 5,000\n"
<< std::endl;
out << "Objective (first output, stochastic)\n"
<< "\tMaximize receiver efficiency, i.e the energy transferred to the molten salt (J)\n"
<< std::endl;
out << "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\tx1: Receiver aperture height (m): Real in [ 1; 30]\n"
<< "\t\tx2: Receiver aperture width (m): Real in [ 1; 30]\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx3: Receiver outlet temperature (K): Real in [793;995]\n"
<< "\t\tx4: Receiver number of tubes : Integer in {1,2,...,8567}\n"
<< "\t\tx5: Receiver insulation thickness (m): Real in [0.01 ;5.0]\n"
<< "\t\tx6: Receiver tubes inner diameter (m): Real in [0.005 ;0.1]\n"
<< "\t\tx7: Receiver tubes outer diameter (m): Real in [0.0055;0.1]\n"
<< std::endl
<< "Constraints (outputs 2 to 7 with format ci <= 0):\n"
<< "\tc1: Cost of plant <= budget=$45M\n"
<< "\tc2: Pressure in receiver tubes <= yield pressure (stochastic)\n"
<< "\tc3: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x6 <= x7\n"
<< "\tc4: Receiver outlet temperature >= steam turbine inlet temperature\n"
<< "\tc5: Number of tubes in receiver fit inside receiver: A priori constraint: x4*x7 <= x2*PI/2\n"
<< "\tc6: Parasitic losses <= 3% of the generated output (stochastic)\n"
<< "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 7 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $7" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R I R R R )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 793.0 1 0.01 0.005 0.0055 )" << std::endl
<< "\tX0 " << "( 7.0 7.0 850.0 40 0.20 0.010 0.0110 )" << std::endl
<< "\tUPPER_BOUND " << "( 30.0 30.0 995.0 8567 5.00 0.100 0.1000 )" << std::endl;
}
/*-------------- #8 ---------------------------*/
void print_maxHF_minCost ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 45 deg N\n"
<< "\tDay: January 1st\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 24 hours\n"
<< "\tMaximum field surface area: 400 hectares\n"
<< "\tMinimum energy production: 400MWh\n"
<< std::endl;
out << "Objectives (first and second outputs; first objective is stochastic)\n"
<< "\tMaximize heliostat field performance (absorbed energy in Joules) and minimize cost of field, tower and receiver ($)\n"
<< std::endl;
out << "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\t x1: Heliostats length (m) : Real in [ 1; 40]\n"
<< "\t\t x2: Heliostats width (m) : Real in [ 1; 40]\n"
<< "\t\t x3: Tower height (m) : Real in [20;250]\n"
<< "\t\t x4: Receiver aperture height (m) : Real in [ 1; 30]\n"
<< "\t\t x5: Receiver aperture width (m) : Real in [ 1; 30]\n"
<< "\t\t x6: Number of heliostats to fit in the field : Integer >= 1\n"
<< "\t\t x7: Field angular width (deg) : Real in [1;89]\n"
<< "\t\t x8: Minimum distance from tower (% of tower height): Real in [0;20]\n"
<< "\t\t x9: Maximum distance from tower (% of tower height): Real in [1;20]\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx10: Receiver number of tubes : Integer in {1,2,...,7853}\n"
<< "\t\tx11: Receiver insulation thickness (m): Real in [0.01 ;5 ]\n"
<< "\t\tx12: Receiver tubes inner diameter (m): Real in [0.005;0.1]\n"
<< "\t\tx13: Receiver tubes outer diameter (m): Real in [0.006;0.1]\n"
<< std::endl
<< "Constraints (outputs 3 to 11 with format ci <= 0):\n"
<< "\tc1: Field surface area: A priori constraint: PI*x3*x3(x9*x9-x8*x8) * x7/180 <= 4e6\n"
<< "\tc2: Tower is at least twice as high as heliostats : A priori, linear constraint: 2x1 <= x3\n"
<< "\tc3: Min. distance from tower <= max. distance from tower: A priori, linear constraint: x8 <= x9\n"
<< "\tc4: Check that x6 heliostats can fit in the field\n"
<< "\tc5: Pressure in receiver tubes <= yield pressure (stochastic)\n"
<< "\tc6: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x12 <= x13\n"
<< "\tc7: Number of tubes in receiver fit inside receiver: A priori constraint: x10*x13 <= x5*PI/2\n"
<< "\tc8: Minimal acceptable energy production (lower bound on the first objective, stochastic)\n"
<< "\tc9: Parasitic losses <= 8% of the generated output (stochastic)\n"
<< "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 13 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $8" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ OBJ CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R I R R R I R R R )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 20.0 1.0 1.0 1 1.0 0.0 1.0 1 0.01 0.005 0.0060 )" << std::endl
<< "\tX0 " << "( 11.0 11.0 200.0 10.0 10.0 2650 89.0 0.5 8.0 36 0.30 0.020 0.0216 )" << std::endl
<< "\tUPPER_BOUND " << "( 40.0 40.0 250.0 30.0 30.0 - 89.0 20.0 20.0 7853 5.00 0.100 0.1000 )" << std::endl;
}
/*-------------- #9 ---------------------------*/
void print_maxNrg_minPar ( std::ostream & out ) {
/*-----------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 25 deg N\n"
<< "\tDay: June 29th\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 24 hours\n"
<< "\tMaximum field surface area: 500 hectares\n"
<< "\tBudget: $1.2B\n"
<< "\tMinimum energy production: 120MWh\n"
<< std::endl;
out << "Objectives (first and second outputs; the two objectives are stochastic)\n"
<< "\tMaximize power (Wh) and minimize losses (Wh)\n"
<< std::endl;
out << "Variables:\n"
<< "\tHeliostats Field:\n"
<< "\t\t x1: Heliostats length (m) : Real in [ 1; 40]\n"
<< "\t\t x2: Heliostats width (m) : Real in [ 1; 40]\n"
<< "\t\t x3: Tower height (m) : Real in [20;250]\n"
<< "\t\t x4: Receiver aperture height (m) : Real in [ 1; 30]\n"
<< "\t\t x5: Receiver aperture width (m) : Real in [ 1; 30]\n"
<< "\t\t x6: Number of heliostats to fit in the field : Integer >= 1\n"
<< "\t\t x7: Field angular width (deg) : Real in [1;89]\n"
<< "\t\t x8: Minimum distance from tower (% of tower height): Real in [0;20]\n"
<< "\t\t x9: Maximum distance from tower (% of tower height): Real in [1;20]\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx10: Receiver outlet temperature (K) : Real in [793;995]\n"
<< "\t\tx11: Hot storage height (m) : Real in [1;50]\n"
<< "\t\tx12: Hot storage diameter (m) : Real in [1;30]\n"
<< "\t\tx13: Hot storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx14: Cold storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx15: Mininum cold storage temperature (K): Real in [495;650]\n"
<< "\t\tx16: Receiver number of tubes : Integer in {1,2,...,7853}\n"
<< "\t\tx17: Receiver insulation thickness (m) : Real in [0.01 ;5 ]\n"
<< "\t\tx18: Receiver tubes inner diameter (m) : Real in [0.005;0.1]\n"
<< "\t\tx19: Receiver tubes outer diameter (m) : Real in [0.006;0.1]\n"
<< "\tSteam generator:\n"
<< "\t\tx20: Tubes spacing (m) : Real in [0.007;0.2]\n"
<< "\t\tx21: Tubes length (m) : Real in [0.5;10]\n"
<< "\t\tx22: Tubes inner diameter (m): Real in [0.005;0.1]\n"
<< "\t\tx23: Tubes outer diameter (m): Real in [0.006;0.1]\n"
<< "\t\tx24: Baffles cut : Real in [0.15;0.4]\n"
<< "\t\tx25: Number of baffles : Integer >= 2\n"
<< "\t\tx26: Number of tubes : Integer >= 1\n"
<< "\t\tx27: Number of shell passes : Integer in {1, 2, ..., 10}\n"
<< "\t\tx28: Number of tube passes : Integer in {1, 2, ..., 9}\n"
<< "\tPowerblock:\n"
<< "\t\tx29: Type of turbine: Categorical: Integer in {1, 2, ..., 8}\n"
<< std::endl
<< "Constraints (outputs 3 to 19 with format ci <= 0):\n"
<< "\t c1: Cost of plant <= budget=$1.2B\n"
<< "\t c2: Minimal acceptable energy production (stochastic)\n"
<< "\t c3: Field surface area: A priori constraint: PI*x3*x3(x9*x9-x8*x8) * x7/180 <= 5e6\n"
<< "\t c4: Tower is at least twice as high as heliostats : A priori, linear constraint: 2x1 <= x3\n"
<< "\t c5: Min. distance from tower <= max. distance from tower: A priori, linear constraint: x8 <= x9\n"
<< "\t c6: Check that x6 heliostats can fit in the field\n"
<< "\t c7: Pressure in receiver tubes <= yield pressure (stochastic)\n"
<< "\t c8: Molten salt melting point <= hot storage lowest temperature (stochastic)\n"
<< "\t c9: Molten salt melting point <= cold storage lowest temperature (stochastic)\n"
<< "\tc10: Molten salt melting point <= steam generator outlet temperature (stochastic)\n"
<< "\tc11: Receiver tubes inside diameter <= outside diameter: A priori, linear constraint: x18 <= x19\n"
<< "\tc12: Number of tubes in receiver fit inside receiver: A priori constraint: x16*x19 <= x5*PI/2\n"
<< "\tc13: Receiver outlet temperature >= steam turbine inlet temperature\n"
<< "\tc14: Parasitic losses <= 20% of the generated output (stochastic)\n"
<< "\tc15: Steam generator tubes outer diameter <= tubes spacing: A priori, linear constraint: x23 <= x20\n"
<< "\tc16: Steam generator tubes inside diameter <= Steam generator tubes outer diameter: A priori, linear constraint: x22 <= x23\n"
<< "\tc17: Pressure in steam generator tubes <= yield pressure\n";
out << "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 29 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $9" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ OBJ CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR CSTR" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R I R R R R R R R R R I R R R R R R R R I I I I I )" << std::endl
<< "\tLOWER_BOUND " << "( 1.0 1.0 20.0 1.0 1.0 1 1.0 0.0 1.0 793.0 1.0 1.0 0.01 0.01 495.0 1 0.01 0.0050 0.006 0.007 0.5 0.0050 0.006 0.15 2 1 1 1 1 )" << std::endl
<< "\tX0 " << "( 9.0 9.0 150.0 6.0 8.0 1000 45.0 0.5 5.0 900.0 9.0 9.0 0.30 0.20 560.0 500 0.30 0.0165 0.018 0.017 10.0 0.0155 0.016 0.20 3 12000 1 2 2 )" << std::endl
<< "\tUPPER_BOUND " << "( 40.0 40.0 250.0 30.0 30.0 - 89.0 20.0 20.0 995.0 50.0 30.0 5.00 5.00 650.0 7853 5.00 0.1000 0.100 0.200 10.0 0.1000 0.100 0.40 - - 10 9 8 )" << std::endl;
}
/*-------------- #10 -------------------------------------*/
void print_minCost_unconstrained ( std::ostream & out ) {
/*---------------------------------------------------------*/
out << "\n-----------------------------------------------------------------\n"
<< "Parameters:\n"
<< "\tWhole plant\n"
<< "\tLatitude: 30.05 deg N\n"
<< "\tDay: January 1st\n" // https://www.epochconverter.com/days/2019
<< "\tDuration: 24 hours\n"
<< "\tDemand: 120MW\n"
<< "\tMust provide 100% of the demand requirement\n"
<< "\tNumber of heliostats to fit in the field: 12,232\n"
<< "\tDeterministic instance\n"
<< "\tThis instance is the unconstrained version of instance #6\n"
<< std::endl;
out << "Objective (first output)\n"
<< "\tMinimize the cost of storage + penalties on the 6 constraints of Instance #6:\n"
<< "\tUnconstrained objective = 1E-6 f + 0.5 ( (c1+)^2 + (2E-6 c2+)^2 + (c3+)^2 + (c4+)^2 + (c5+)^2 + (c6+)^2 )\n"
<< "\twith f, c1, c2, ..., c6 the outputs of Instance #6 and cj+ = max{0,cj}, j=1,2,...,6\n"
<< std::endl;
out << "Variables:\n"
<< "\tHeat transfer loop:\n"
<< "\t\tx1: Receiver outlet temperature (K) : Real in [793;995]\n"
<< "\t\tx2: Hot storage height (m) : Real in [2;50]\n"
<< "\t\tx3: Hot storage diameter (m) : Real in [2;30]\n"
<< "\t\tx4: Hot storage insulation thickness (m): Real in [0.01;5]\n"
<< "\t\tx5: Cold storage insulation thickness (m): Real in [0.01;5]\n"
<< std::endl
<< "\n----------------------------------------------------------------- \n"
<< "NOMAD parameters:\n\n"
<< "\tDIMENSION " << 5 << std::endl
<< "\tBB_EXE " << "$SOLAR_HOME/bin/solar $10" << std::endl
<< "\tBB_OUTPUT_TYPE " << "OBJ" << std::endl
<< "\tBB_INPUT_TYPE " << "( R R R R R )" << std::endl
<< "\tLOWER_BOUND " << "( 793.0 2.0 2.0 0.01 0.01 )" << std::endl
<< "\tX0 " << "( 900.0 10.0 12.0 0.20 0.20 )" << std::endl
<< "\tUPPER_BOUND " << "( 995.0 50.0 30.0 5.00 5.00 )" << std::endl;
}