Skip to content

Latest commit

 

History

History
194 lines (155 loc) · 6.75 KB

Context-aware_recommendation.md

File metadata and controls

194 lines (155 loc) · 6.75 KB

Time and memory cost of context-aware recommendation models

Datasets information:

Dataset #Interaction #Feature Field #Feature
ml-1m 1,000,209 5 134
Criteo 2,292,530 39 2,572,192
Avazu 4,218,938 21 1,326,631

Device information

OS:                   Linux
Python Version:       3.8.3
PyTorch Version:      1.7.0
cudatoolkit Version:  10.1
GPU:                  TITAN RTX(24GB)
Machine Specs:        32 CPU machine, 64GB RAM

1) ml-1m dataset:

Time and memory cost on ml-1m dataset:

Method Training Time (sec/epoch) Evaluation Time (sec/epoch) GPU Memory (GB)
LR 18.34 2.18 0.82
DIN 20.37 2.26 1.16
DSSM 21.93 2.24 0.95
FM 19.33 2.34 0.83
DeepFM 20.42 2.27 0.91
Wide&Deep 26.13 2.95 0.89
NFM 23.36 2.26 0.89
AFM 20.08 2.26 0.92
AutoInt 22.41 2.34 0.94
DCN 28.33 2.97 0.93
FNN(DNN) 19.51 2.21 0.91
PNN 22.29 2.23 0.91
FFM 22.98 2.47 0.87
FwFM 23.38 2.50 0.85
xDeepFM 24.40 2.30 1.06

Config file of ml-1m dataset:

# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: user_id
ITEM_ID_FIELD: item_id
LABEL_FIELD: label
threshold:
  rating: 4.0
unused_col: 
  inter: [rating]
load_col:
  inter: [user_id, item_id, rating]
  item: [item_id, release_year, genre]
  user: [user_id, age, gender, occupation]

# training and evaluation
epochs: 500
train_batch_size: 2048
eval_batch_size: 2048
eval_setting: RO_RS
group_by_user: False
valid_metric: AUC
metrics: ['AUC', 'LogLoss']

Other parameters (including model parameters) are default value.

2)Criteo dataset:

Time and memory cost on Criteo dataset:

Method Training Time (sec/epoch) Evaluation Time (sec/epoch) GPU Memory (GB)
LR 7.65 0.61 1.11
DIN - - -
DSSM - - -
FM 9.77 0.73 1.45
DeepFM 13.64 0.83 1.72
Wide&Deep 13.58 0.80 1.72
NFM 13.36 0.75 1.72
AFM 19.40 1.02 2.34
AutoInt 19.40 0.98 2.06
DCN 16.25 0.78 1.67
FNN(DNN) 10.03 0.64 1.63
PNN 12.92 0.72 1.85
FFM - - Out of Memory
FwFM 1175.24 8.90 2.12
xDeepFM 32.27 1.34 2.25

Note: Criteo dataset is not suitable for DIN model and DSSM model.

Config file of Criteo dataset:

# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: ~
ITEM_ID_FIELD: ~
LABEL_FIELD: label

load_col: 
    inter: '*'

highest_val:
    index: 2292530

fill_nan: True
normalize_all: True
min_item_inter_num: 0
min_user_inter_num: 0

unused_col: 
  inter: [index]


# training and evaluation
epochs: 500
train_batch_size: 2048
eval_batch_size: 2048
eval_setting: RO_RS
group_by_user: False
valid_metric: AUC
metrics: ['AUC', 'LogLoss']

Other parameters (including model parameters) are default value.

3)Avazu dataset:

Time and memory cost on Avazu dataset:

Method Training Time (sec/epoch) Evaluation Time (sec/epoch) GPU Memory (GB)
LR 9.30 0.76 1.42
DIN - - -
DSSM - - -
FM 25.68 0.94 2.60
DeepFM 28.41 1.19 2.66
Wide&Deep 27.58 0.97 2.66
NFM 30.46 1.06 2.66
AFM 31.03 1.06 2.69
AutoInt 38.11 1.41 2.84
DCN 30.78 0.96 2.64
FNN(DNN) 23.53 0.84 2.60
PNN 25.86 0.90 2.68
FFM - - Out of Memory
FwFM 336.75 7.49 2.63
xDeepFM 54.88 1.45 2.89

Note: Avazu dataset is not suitable for DIN model and DSSM model.

Config file of Avazu dataset:

# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: ~
ITEM_ID_FIELD: ~
LABEL_FIELD: label
fill_nan: True
normalize_all: True

load_col:
    inter: '*'
    
lowest_val:
  timestamp: 14102931
unused_col: 
  inter: [timestamp]

# training and evaluation
epochs: 500
train_batch_size: 2048
eval_batch_size: 2048
eval_setting: RO_RS
group_by_user: False
valid_metric: AUC
metrics: ['AUC', 'LogLoss']

Other parameters (including model parameters) are default value.