-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdemo_HD720p.py
212 lines (167 loc) · 8.59 KB
/
demo_HD720p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
from torch.autograd import Variable
import math
import torch
import torch.utils.serialization
import random
import numpy as np
import numpy
import networks
from my_args import args
from AverageMeter import *
from skimage.measure import compare_ssim,compare_psnr
from skimage.color import rgb2yuv, yuv2rgb
from yuv_frame_io import YUV_Read,YUV_Write
torch.backends.cudnn.benchmark = False # True # to speed up the
HD720p_Other_DATA = "/tmp4/wenbobao_data/HD/720p"
HD720p_Other_RESULT = "/tmp4/wenbobao_data/HD/720p_ours"
if not os.path.exists(HD720p_Other_RESULT):
os.mkdir(HD720p_Other_RESULT)
model = networks.__dict__[args.netName](
channel=args.channels,
filter_size = args.filter_size ,
training=False)
if args.use_cuda:
model = model.cuda()
args.SAVED_MODEL = './model_weights/' + args.SAVED_MODEL
print("The testing model weight is: " + args.SAVED_MODEL)
if not args.use_cuda:
#pretrained_dict = torch.load(args.SAVED_MODEL, map_location=lambda storage, loc: storage)
model.load_state_dict(torch.load(args.SAVED_MODEL, map_location=lambda storage, loc: storage))
else:
#pretrained_dict = torch.load(args.SAVED_MODEL)
model.load_state_dict(torch.load(args.SAVED_MODEL))
model = model.eval() # deploy mode
def test_HD720p(model = model, use_cuda = args.use_cuda,save_which = args.save_which, dtype = args.dtype):
files = sorted(os.listdir(HD720p_Other_DATA))
unique_id =str(random.randint(0, 100000))
gen_dir = os.path.join(HD720p_Other_RESULT, unique_id)
os.mkdir(gen_dir)
for file_i in files:
print("\n\n\n**************")
print(file_i)
gen_file = os.path.join(HD720p_Other_RESULT, unique_id, file_i)
input_file = os.path.join(HD720p_Other_DATA, file_i)
interp_error = AverageMeter()
psnr_error = AverageMeter()
ssim_error = AverageMeter()
print(input_file)
print(gen_file)
Reader = YUV_Read(input_file, 720, 1280, toRGB=True)
Writer = YUV_Write(gen_file, fromRGB=True)
for index in range(0, 100, 2): # len(files) - 2, 2):
IMAGE1, sucess1 = Reader.read(index)
IMAGE2, sucess2 = Reader.read(index + 2)
if not sucess1 or not sucess2:
break
X0 = torch.from_numpy( np.transpose(IMAGE1 , (2,0,1)).astype("float32")/ 255.0).type(dtype)
X1 = torch.from_numpy( np.transpose(IMAGE2, (2,0,1)).astype("float32")/ 255.0).type(dtype)
y_ = torch.FloatTensor()
assert (X0.size(1) == X1.size(1))
assert (X0.size(2) == X1.size(2))
intWidth = X0.size(2)
intHeight = X0.size(1)
channel = X0.size(0)
if not channel == 3:
continue
if intWidth != ((intWidth >> 7) << 7):
intWidth_pad = (((intWidth >> 7) + 1) << 7) # more than necessary
intPaddingLeft =int(( intWidth_pad - intWidth)/2)
intPaddingRight = intWidth_pad - intWidth - intPaddingLeft
else:
intWidth_pad = intWidth
intPaddingLeft = 32
intPaddingRight= 32
if intHeight != ((intHeight >> 7) << 7):
intHeight_pad = (((intHeight >> 7) + 1) << 7) # more than necessary
intPaddingTop = int((intHeight_pad - intHeight) / 2)
intPaddingBottom = intHeight_pad - intHeight - intPaddingTop
else:
intHeight_pad = intHeight
intPaddingTop = 32
intPaddingBottom = 32
pader = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight , intPaddingTop, intPaddingBottom])
X0 = Variable(torch.unsqueeze(X0,0),volatile=True)
X1 = Variable(torch.unsqueeze(X1,0), volatile=True)
X0 = pader(X0)
X1 = pader(X1)
if use_cuda:
X0 = X0.cuda()
X1 = X1.cuda()
y_s ,offset,filter,occlusion = model(torch.stack((X0, X1),dim = 0))
y_ = y_s[save_which]
if use_cuda:
X0 = X0.data.cpu().numpy()
y_ = y_.data.cpu().numpy()
offset = [offset_i.data.cpu().numpy() for offset_i in offset]
filter = [filter_i.data.cpu().numpy() for filter_i in filter] if filter[0] is not None else None
occlusion = [occlusion_i.data.cpu().numpy() for occlusion_i in occlusion] if occlusion[0] is not None else None
X1 = X1.data.cpu().numpy()
else:
X0 = X0.data.numpy()
y_ = y_.data.numpy()
offset = [offset_i.data.numpy() for offset_i in offset]
filter = [filter_i.data.numpy() for filter_i in filter]
occlusion = [occlusion_i.data.numpy() for occlusion_i in occlusion]
X1 = X1.data.numpy()
X0 = np.transpose(255.0 * X0.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
y_ = np.transpose(255.0 * y_.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
offset = [np.transpose(offset_i[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0)) for offset_i in offset]
filter = [np.transpose(
filter_i[0, :, intPaddingTop:intPaddingTop + intHeight, intPaddingLeft: intPaddingLeft + intWidth],
(1, 2, 0)) for filter_i in filter] if filter is not None else None
occlusion = [np.transpose(
occlusion_i[0, :, intPaddingTop:intPaddingTop + intHeight, intPaddingLeft: intPaddingLeft + intWidth],
(1, 2, 0)) for occlusion_i in occlusion] if occlusion is not None else None
X1 = np.transpose(255.0 * X1.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
Writer.write(IMAGE1)
rec_rgb = np.round(y_).astype(numpy.uint8)
Writer.write(rec_rgb)
gt_rgb, sucess = Reader.read(index+1)
gt_yuv = rgb2yuv(gt_rgb / 255.0)
rec_yuv = rgb2yuv(rec_rgb / 255.0)
gt_rgb = gt_yuv[:, :, 0] * 255.0
rec_rgb = rec_yuv[:, :, 0] * 255.0
gt_rgb = gt_rgb.astype('uint8')
rec_rgb = rec_rgb.astype('uint8')
diff_rgb = 128.0 + rec_rgb - gt_rgb
avg_interp_error_abs = np.mean(np.abs(diff_rgb - 128.0))
interp_error.update(avg_interp_error_abs,1)
mse = numpy.mean((diff_rgb - 128.0) ** 2)
if mse == 0:
return 100.0
PIXEL_MAX = 255.0
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
psnr_error.update(psnr, 1)
psnr_ = compare_psnr(rec_rgb, gt_rgb)
print(str(psnr) + '\t'+ str(psnr_))
ssim = compare_ssim(rec_rgb, gt_rgb,multichannel=False)
ssim_error.update(ssim,1)
diff_rgb = diff_rgb.astype("uint8")
print("interpolation error / PSNR : " + str(round(avg_interp_error_abs,4)) + " ,\t psnr " + str(round(psnr,4))+ ",\t ssim " + str(round(ssim,5)))
fh = open(os.path.join(HD720p_Other_RESULT, unique_id, file_i+ "_psnr_Y.txt"), "a+")
fh.write(str(psnr))
fh.write("\n")
fh.close()
fh = open(os.path.join(HD720p_Other_RESULT, unique_id, file_i+ "_ssim_Y.txt"), "a+")
fh.write(str(ssim))
fh.write("\n")
fh.close()
metrics = "The average interpolation error / PSNR for all images are : " + str(
round(interp_error.avg, 4)) + ",\t psnr " + str(round(psnr_error.avg, 4)) + ",\t ssim " + str(
round(ssim_error.avg, 4))
print(metrics)
metrics = "The average interpolation error / PSNR for all images are : " + str(round(interp_error.avg,4)) + ",\t psnr " + str(round(psnr_error.avg,4)) + ",\t ssim " + str(round(ssim_error.avg,4))
print(metrics)
fh = open(os.path.join(HD720p_Other_RESULT, unique_id, file_i+ "_psnr_Y.txt"), "a+")
fh.write("\n")
fh.write(str(psnr_error.avg))
fh.write("\n")
fh.close()
fh = open(os.path.join(HD720p_Other_RESULT, unique_id, file_i+"_ssim_Y.txt"), "a+")
fh.write("\n")
fh.write(str(ssim_error.avg))
fh.write("\n")
fh.close()
if __name__ == '__main__':
test_HD720p(model,args.use_cuda)