forked from yjxiong/tsn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_models.py
164 lines (127 loc) · 5.45 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import time
import numpy as np
import torch.nn.parallel
import torch.optim
from sklearn.metrics import confusion_matrix
from dataset import TSNDataSet
from models import TSN
from transforms import *
from ops import ConsensusModule
# options
parser = argparse.ArgumentParser(
description="Standard video-level testing")
parser.add_argument('dataset', type=str, choices=['ucf101', 'hmdb51', 'kinetics'])
parser.add_argument('modality', type=str, choices=['RGB', 'Flow', 'RGBDiff'])
parser.add_argument('test_list', type=str)
parser.add_argument('weights', type=str)
parser.add_argument('--arch', type=str, default="resnet101")
parser.add_argument('--save_scores', type=str, default=None)
parser.add_argument('--test_segments', type=int, default=25)
parser.add_argument('--max_num', type=int, default=-1)
parser.add_argument('--test_crops', type=int, default=10)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--crop_fusion_type', type=str, default='avg',
choices=['avg', 'max', 'topk'])
parser.add_argument('--k', type=int, default=3)
parser.add_argument('--dropout', type=float, default=0.7)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--gpus', nargs='+', type=int, default=None)
parser.add_argument('--flow_prefix', type=str, default='')
args = parser.parse_args()
if args.dataset == 'ucf101':
num_class = 101
elif args.dataset == 'hmdb51':
num_class = 51
elif args.dataset == 'kinetics':
num_class = 400
else:
raise ValueError('Unknown dataset '+args.dataset)
net = TSN(num_class, 1, args.modality,
base_model=args.arch,
consensus_type=args.crop_fusion_type,
dropout=args.dropout, rnn=args.rnn,
rnn_mem_size=args.rnn_mem_size)
checkpoint = torch.load(args.weights)
print("model epoch {} best prec@1: {}".format(checkpoint['epoch'], checkpoint['best_prec1']))
base_dict = {'.'.join(k.split('.')[1:]): v for k,v in list(checkpoint['state_dict'].items())}
net.load_state_dict(base_dict)
if args.test_crops == 1:
cropping = torchvision.transforms.Compose([
GroupScale(net.scale_size),
GroupCenterCrop(net.input_size),
])
elif args.test_crops == 10:
cropping = torchvision.transforms.Compose([
GroupOverSample(net.input_size, net.scale_size)
])
else:
raise ValueError("Only 1 and 10 crops are supported while we got {}".format(args.test_crops))
data_loader = torch.utils.data.DataLoader(
TSNDataSet("", args.test_list, num_segments=args.test_segments,
new_length=1 if args.modality == "RGB" else 5,
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality in ['RGB', 'RGBDiff'] else args.flow_prefix+"{}_{:05d}.jpg",
test_mode=True,
transform=torchvision.transforms.Compose([
cropping,
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
GroupNormalize(net.input_mean, net.input_std),
])),
batch_size=1, shuffle=False,
num_workers=args.workers * 2, pin_memory=True)
net = torch.nn.DataParallel(net, device_ids=list(range(args.workers)))
net.cuda()
net.eval()
data_gen = enumerate(data_loader)
total_num = len(data_loader.dataset)
output = []
def eval_video(video_data):
i, data, label = video_data
num_crop = args.test_crops
if args.modality == 'RGB':
length = 3
elif args.modality == 'Flow':
length = 10
elif args.modality == 'RGBDiff':
length = 18
else:
raise ValueError("Unknown modality "+args.modality)
input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)),
volatile=True)
rst = net(input_var).data.cpu().numpy().copy()
return i, rst.reshape((num_crop, args.test_segments, num_class)).mean(axis=0).reshape(
(args.test_segments, 1, num_class)
), label[0]
proc_start_time = time.time()
max_num = args.max_num if args.max_num > 0 else len(data_loader.dataset)
for i, (data, label) in data_gen:
if i >= max_num:
break
rst = eval_video((i, data, label))
output.append(rst[1:])
cnt_time = time.time() - proc_start_time
print('video {} done, total {}/{}, average {} sec/video'.format(i, i+1,
total_num,
float(cnt_time) / (i+1)))
video_pred = [np.argmax(np.mean(x[0], axis=0)) for x in output]
video_labels = [x[1] for x in output]
cf = confusion_matrix(video_labels, video_pred).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit / cls_cnt
print(cls_acc)
print('Accuracy {:.02f}%'.format(np.mean(cls_acc) * 100))
if args.save_scores is not None:
# reorder before saving
name_list = [x.strip().split()[0] for x in open(args.test_list)]
order_dict = {e:i for i, e in enumerate(sorted(name_list))}
reorder_output = [None] * len(output)
reorder_label = [None] * len(output)
for i in range(len(output)):
idx = order_dict[name_list[i]]
reorder_output[idx] = output[i]
reorder_label[idx] = video_labels[i]
np.savez(args.save_scores, scores=reorder_output, labels=reorder_label)