diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json b/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json index 216b79b26570..9b461a0e2fcf 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json @@ -1,11 +1,11 @@ { - "commit": "b32e1896f30e6ea155449cb49719a6286e32b961", + "commit": "747d3f08c1cd50b8994b8e77e242d522872e475c", "repository_url": "https://github.com/Azure/azure-rest-api-specs", "autorest": "3.9.2", "use": [ - "@autorest/python@6.2.7", + "@autorest/python@6.4.8", "@autorest/modelerfour@4.24.3" ], - "autorest_command": "autorest specification/machinelearningservices/resource-manager/readme.md --generate-sample=True --include-x-ms-examples-original-file=True --python --python-sdks-folder=/home/vsts/work/1/azure-sdk-for-python/sdk --use=@autorest/python@6.2.7 --use=@autorest/modelerfour@4.24.3 --version=3.9.2 --version-tolerant=False", + "autorest_command": "autorest specification/machinelearningservices/resource-manager/readme.md --generate-sample=True --include-x-ms-examples-original-file=True --python --python-sdks-folder=/mnt/vss/_work/1/s/azure-sdk-for-python/sdk --use=@autorest/python@6.4.8 --use=@autorest/modelerfour@4.24.3 --version=3.9.2 --version-tolerant=False", "readme": "specification/machinelearningservices/resource-manager/readme.md" } \ No newline at end of file diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py index 12c43638a412..a128695e54fd 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py @@ -6,7 +6,6 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, TYPE_CHECKING from azure.core.configuration import Configuration @@ -15,11 +14,6 @@ from ._version import VERSION -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports - if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials import TokenCredential @@ -35,14 +29,14 @@ class MachineLearningServicesMgmtClientConfiguration(Configuration): # pylint: :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str """ def __init__(self, credential: "TokenCredential", subscription_id: str, **kwargs: Any) -> None: super(MachineLearningServicesMgmtClientConfiguration, self).__init__(**kwargs) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", "2022-10-01") + api_version: str = kwargs.pop("api_version", "2023-04-01") if credential is None: raise ValueError("Parameter 'credential' must not be None.") diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py index feffb8cfc3ed..690ca6db66e4 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py @@ -37,6 +37,17 @@ PrivateEndpointConnectionsOperations, PrivateLinkResourcesOperations, QuotasOperations, + RegistriesOperations, + RegistryCodeContainersOperations, + RegistryCodeVersionsOperations, + RegistryComponentContainersOperations, + RegistryComponentVersionsOperations, + RegistryDataContainersOperations, + RegistryDataVersionsOperations, + RegistryEnvironmentContainersOperations, + RegistryEnvironmentVersionsOperations, + RegistryModelContainersOperations, + RegistryModelVersionsOperations, SchedulesOperations, UsagesOperations, VirtualMachineSizesOperations, @@ -75,6 +86,36 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v :ivar workspace_connections: WorkspaceConnectionsOperations operations :vartype workspace_connections: azure.mgmt.machinelearningservices.operations.WorkspaceConnectionsOperations + :ivar registry_code_containers: RegistryCodeContainersOperations operations + :vartype registry_code_containers: + azure.mgmt.machinelearningservices.operations.RegistryCodeContainersOperations + :ivar registry_code_versions: RegistryCodeVersionsOperations operations + :vartype registry_code_versions: + azure.mgmt.machinelearningservices.operations.RegistryCodeVersionsOperations + :ivar registry_component_containers: RegistryComponentContainersOperations operations + :vartype registry_component_containers: + azure.mgmt.machinelearningservices.operations.RegistryComponentContainersOperations + :ivar registry_component_versions: RegistryComponentVersionsOperations operations + :vartype registry_component_versions: + azure.mgmt.machinelearningservices.operations.RegistryComponentVersionsOperations + :ivar registry_data_containers: RegistryDataContainersOperations operations + :vartype registry_data_containers: + azure.mgmt.machinelearningservices.operations.RegistryDataContainersOperations + :ivar registry_data_versions: RegistryDataVersionsOperations operations + :vartype registry_data_versions: + azure.mgmt.machinelearningservices.operations.RegistryDataVersionsOperations + :ivar registry_environment_containers: RegistryEnvironmentContainersOperations operations + :vartype registry_environment_containers: + azure.mgmt.machinelearningservices.operations.RegistryEnvironmentContainersOperations + :ivar registry_environment_versions: RegistryEnvironmentVersionsOperations operations + :vartype registry_environment_versions: + azure.mgmt.machinelearningservices.operations.RegistryEnvironmentVersionsOperations + :ivar registry_model_containers: RegistryModelContainersOperations operations + :vartype registry_model_containers: + azure.mgmt.machinelearningservices.operations.RegistryModelContainersOperations + :ivar registry_model_versions: RegistryModelVersionsOperations operations + :vartype registry_model_versions: + azure.mgmt.machinelearningservices.operations.RegistryModelVersionsOperations :ivar batch_endpoints: BatchEndpointsOperations operations :vartype batch_endpoints: azure.mgmt.machinelearningservices.operations.BatchEndpointsOperations @@ -120,6 +161,8 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v azure.mgmt.machinelearningservices.operations.OnlineDeploymentsOperations :ivar schedules: SchedulesOperations operations :vartype schedules: azure.mgmt.machinelearningservices.operations.SchedulesOperations + :ivar registries: RegistriesOperations operations + :vartype registries: azure.mgmt.machinelearningservices.operations.RegistriesOperations :ivar workspace_features: WorkspaceFeaturesOperations operations :vartype workspace_features: azure.mgmt.machinelearningservices.operations.WorkspaceFeaturesOperations @@ -129,7 +172,7 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword int polling_interval: Default waiting time between two polls for LRO operations if no @@ -146,7 +189,7 @@ def __init__( self._config = MachineLearningServicesMgmtClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) - self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) + self._client: ARMPipelineClient = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) @@ -169,6 +212,36 @@ def __init__( self.workspace_connections = WorkspaceConnectionsOperations( self._client, self._config, self._serialize, self._deserialize ) + self.registry_code_containers = RegistryCodeContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_code_versions = RegistryCodeVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_component_containers = RegistryComponentContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_component_versions = RegistryComponentVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_data_containers = RegistryDataContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_data_versions = RegistryDataVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_environment_containers = RegistryEnvironmentContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_environment_versions = RegistryEnvironmentVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_model_containers = RegistryModelContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_model_versions = RegistryModelVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) self.batch_endpoints = BatchEndpointsOperations(self._client, self._config, self._serialize, self._deserialize) self.batch_deployments = BatchDeploymentsOperations( self._client, self._config, self._serialize, self._deserialize @@ -202,6 +275,7 @@ def __init__( self._client, self._config, self._serialize, self._deserialize ) self.schedules = SchedulesOperations(self._client, self._config, self._serialize, self._deserialize) + self.registries = RegistriesOperations(self._client, self._config, self._serialize, self._deserialize) self.workspace_features = WorkspaceFeaturesOperations( self._client, self._config, self._serialize, self._deserialize ) @@ -235,5 +309,5 @@ def __enter__(self) -> "MachineLearningServicesMgmtClient": self._client.__enter__() return self - def __exit__(self, *exc_details) -> None: + def __exit__(self, *exc_details: Any) -> None: self._client.__exit__(*exc_details) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py index 2c170e28dbca..842ae727fbbc 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py @@ -38,7 +38,22 @@ import re import sys import codecs -from typing import Optional, Union, AnyStr, IO, Mapping +from typing import ( + Dict, + Any, + cast, + Optional, + Union, + AnyStr, + IO, + Mapping, + Callable, + TypeVar, + MutableMapping, + Type, + List, + Mapping, +) try: from urllib import quote # type: ignore @@ -48,12 +63,14 @@ import isodate # type: ignore -from typing import Dict, Any, cast - from azure.core.exceptions import DeserializationError, SerializationError, raise_with_traceback +from azure.core.serialization import NULL as AzureCoreNull _BOM = codecs.BOM_UTF8.decode(encoding="utf-8") +ModelType = TypeVar("ModelType", bound="Model") +JSON = MutableMapping[str, Any] + class RawDeserializer: @@ -277,8 +294,8 @@ class Model(object): _attribute_map: Dict[str, Dict[str, Any]] = {} _validation: Dict[str, Dict[str, Any]] = {} - def __init__(self, **kwargs): - self.additional_properties = {} + def __init__(self, **kwargs: Any) -> None: + self.additional_properties: Dict[str, Any] = {} for k in kwargs: if k not in self._attribute_map: _LOGGER.warning("%s is not a known attribute of class %s and will be ignored", k, self.__class__) @@ -287,25 +304,25 @@ def __init__(self, **kwargs): else: setattr(self, k, kwargs[k]) - def __eq__(self, other): + def __eq__(self, other: Any) -> bool: """Compare objects by comparing all attributes.""" if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ return False - def __ne__(self, other): + def __ne__(self, other: Any) -> bool: """Compare objects by comparing all attributes.""" return not self.__eq__(other) - def __str__(self): + def __str__(self) -> str: return str(self.__dict__) @classmethod - def enable_additional_properties_sending(cls): + def enable_additional_properties_sending(cls) -> None: cls._attribute_map["additional_properties"] = {"key": "", "type": "{object}"} @classmethod - def is_xml_model(cls): + def is_xml_model(cls) -> bool: try: cls._xml_map # type: ignore except AttributeError: @@ -322,7 +339,7 @@ def _create_xml_node(cls): return _create_xml_node(xml_map.get("name", cls.__name__), xml_map.get("prefix", None), xml_map.get("ns", None)) - def serialize(self, keep_readonly=False, **kwargs): + def serialize(self, keep_readonly: bool = False, **kwargs: Any) -> JSON: """Return the JSON that would be sent to azure from this model. This is an alias to `as_dict(full_restapi_key_transformer, keep_readonly=False)`. @@ -336,8 +353,13 @@ def serialize(self, keep_readonly=False, **kwargs): serializer = Serializer(self._infer_class_models()) return serializer._serialize(self, keep_readonly=keep_readonly, **kwargs) - def as_dict(self, keep_readonly=True, key_transformer=attribute_transformer, **kwargs): - """Return a dict that can be JSONify using json.dump. + def as_dict( + self, + keep_readonly: bool = True, + key_transformer: Callable[[str, Dict[str, Any], Any], Any] = attribute_transformer, + **kwargs: Any + ) -> JSON: + """Return a dict that can be serialized using json.dump. Advanced usage might optionally use a callback as parameter: @@ -384,7 +406,7 @@ def _infer_class_models(cls): return client_models @classmethod - def deserialize(cls, data, content_type=None): + def deserialize(cls: Type[ModelType], data: Any, content_type: Optional[str] = None) -> ModelType: """Parse a str using the RestAPI syntax and return a model. :param str data: A str using RestAPI structure. JSON by default. @@ -396,7 +418,12 @@ def deserialize(cls, data, content_type=None): return deserializer(cls.__name__, data, content_type=content_type) @classmethod - def from_dict(cls, data, key_extractors=None, content_type=None): + def from_dict( + cls: Type[ModelType], + data: Any, + key_extractors: Optional[Callable[[str, Dict[str, Any], Any], Any]] = None, + content_type: Optional[str] = None, + ) -> ModelType: """Parse a dict using given key extractor return a model. By default consider key @@ -409,8 +436,8 @@ def from_dict(cls, data, key_extractors=None, content_type=None): :raises: DeserializationError if something went wrong """ deserializer = Deserializer(cls._infer_class_models()) - deserializer.key_extractors = ( - [ + deserializer.key_extractors = ( # type: ignore + [ # type: ignore attribute_key_case_insensitive_extractor, rest_key_case_insensitive_extractor, last_rest_key_case_insensitive_extractor, @@ -518,7 +545,7 @@ class Serializer(object): "multiple": lambda x, y: x % y != 0, } - def __init__(self, classes=None): + def __init__(self, classes: Optional[Mapping[str, Type[ModelType]]] = None): self.serialize_type = { "iso-8601": Serializer.serialize_iso, "rfc-1123": Serializer.serialize_rfc, @@ -534,7 +561,7 @@ def __init__(self, classes=None): "[]": self.serialize_iter, "{}": self.serialize_dict, } - self.dependencies = dict(classes) if classes else {} + self.dependencies: Dict[str, Type[ModelType]] = dict(classes) if classes else {} self.key_transformer = full_restapi_key_transformer self.client_side_validation = True @@ -602,7 +629,7 @@ def _serialize(self, target_obj, data_type=None, **kwargs): if xml_desc.get("attr", False): if xml_ns: ET.register_namespace(xml_prefix, xml_ns) - xml_name = "{}{}".format(xml_ns, xml_name) + xml_name = "{{{}}}{}".format(xml_ns, xml_name) serialized.set(xml_name, new_attr) # type: ignore continue if xml_desc.get("text", False): @@ -626,8 +653,7 @@ def _serialize(self, target_obj, data_type=None, **kwargs): serialized.append(local_node) # type: ignore else: # JSON for k in reversed(keys): # type: ignore - unflattened = {k: new_attr} - new_attr = unflattened + new_attr = {k: new_attr} _new_attr = new_attr _serialized = serialized @@ -656,8 +682,8 @@ def body(self, data, data_type, **kwargs): """ # Just in case this is a dict - internal_data_type = data_type.strip("[]{}") - internal_data_type = self.dependencies.get(internal_data_type, None) + internal_data_type_str = data_type.strip("[]{}") + internal_data_type = self.dependencies.get(internal_data_type_str, None) try: is_xml_model_serialization = kwargs["is_xml"] except KeyError: @@ -777,6 +803,8 @@ def serialize_data(self, data, data_type, **kwargs): raise ValueError("No value for given attribute") try: + if data is AzureCoreNull: + return None if data_type in self.basic_types.values(): return self.serialize_basic(data, data_type, **kwargs) @@ -1161,7 +1189,8 @@ def rest_key_extractor(attr, attr_desc, data): working_data = data while "." in key: - dict_keys = _FLATTEN.split(key) + # Need the cast, as for some reasons "split" is typed as list[str | Any] + dict_keys = cast(List[str], _FLATTEN.split(key)) if len(dict_keys) == 1: key = _decode_attribute_map_key(dict_keys[0]) break @@ -1242,7 +1271,7 @@ def _extract_name_from_internal_type(internal_type): xml_name = internal_type_xml_map.get("name", internal_type.__name__) xml_ns = internal_type_xml_map.get("ns", None) if xml_ns: - xml_name = "{}{}".format(xml_ns, xml_name) + xml_name = "{{{}}}{}".format(xml_ns, xml_name) return xml_name @@ -1266,7 +1295,7 @@ def xml_key_extractor(attr, attr_desc, data): # Integrate namespace if necessary xml_ns = xml_desc.get("ns", internal_type_xml_map.get("ns", None)) if xml_ns: - xml_name = "{}{}".format(xml_ns, xml_name) + xml_name = "{{{}}}{}".format(xml_ns, xml_name) # If it's an attribute, that's simple if xml_desc.get("attr", False): @@ -1332,7 +1361,7 @@ class Deserializer(object): valid_date = re.compile(r"\d{4}[-]\d{2}[-]\d{2}T\d{2}:\d{2}:\d{2}" r"\.?\d*Z?[-+]?[\d{2}]?:?[\d{2}]?") - def __init__(self, classes=None): + def __init__(self, classes: Optional[Mapping[str, Type[ModelType]]] = None): self.deserialize_type = { "iso-8601": Deserializer.deserialize_iso, "rfc-1123": Deserializer.deserialize_rfc, @@ -1352,7 +1381,7 @@ def __init__(self, classes=None): "duration": (isodate.Duration, datetime.timedelta), "iso-8601": (datetime.datetime), } - self.dependencies = dict(classes) if classes else {} + self.dependencies: Dict[str, Type[ModelType]] = dict(classes) if classes else {} self.key_extractors = [rest_key_extractor, xml_key_extractor] # Additional properties only works if the "rest_key_extractor" is used to # extract the keys. Making it to work whatever the key extractor is too much @@ -1471,7 +1500,7 @@ def _classify_target(self, target, data): Once classification has been determined, initialize object. :param str target: The target object type to deserialize to. - :param str/dict data: The response data to deseralize. + :param str/dict data: The response data to deserialize. """ if target is None: return None, None @@ -1486,7 +1515,7 @@ def _classify_target(self, target, data): target = target._classify(data, self.dependencies) except AttributeError: pass # Target is not a Model, no classify - return target, target.__class__.__name__ + return target, target.__class__.__name__ # type: ignore def failsafe_deserialize(self, target_obj, data, content_type=None): """Ignores any errors encountered in deserialization, @@ -1496,7 +1525,7 @@ def failsafe_deserialize(self, target_obj, data, content_type=None): a deserialization error. :param str target_obj: The target object type to deserialize to. - :param str/dict data: The response data to deseralize. + :param str/dict data: The response data to deserialize. :param str content_type: Swagger "produces" if available. """ try: diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py index 9aad73fc743e..bd0df84f5319 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py @@ -5,6 +5,8 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- +from typing import List, cast + from azure.core.pipeline.transport import HttpRequest @@ -22,6 +24,7 @@ def _format_url_section(template, **kwargs): try: return template.format(**kwargs) except KeyError as key: - formatted_components = template.split("/") + # Need the cast, as for some reasons "split" is typed as list[str | Any] + formatted_components = cast(List[str], template.split("/")) components = [c for c in formatted_components if "{}".format(key.args[0]) not in c] template = "/".join(components) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py index e32dc6ec4218..e5754a47ce68 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py @@ -6,4 +6,4 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -VERSION = "2.0.0b1" +VERSION = "1.0.0b1" diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py index 88eada53ff68..f012a758393b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py @@ -6,7 +6,6 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, TYPE_CHECKING from azure.core.configuration import Configuration @@ -15,11 +14,6 @@ from .._version import VERSION -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports - if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential @@ -35,14 +29,14 @@ class MachineLearningServicesMgmtClientConfiguration(Configuration): # pylint: :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str """ def __init__(self, credential: "AsyncTokenCredential", subscription_id: str, **kwargs: Any) -> None: super(MachineLearningServicesMgmtClientConfiguration, self).__init__(**kwargs) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", "2022-10-01") + api_version: str = kwargs.pop("api_version", "2023-04-01") if credential is None: raise ValueError("Parameter 'credential' must not be None.") diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py index 4c1c840cfff5..0240f80e8769 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py @@ -37,6 +37,17 @@ PrivateEndpointConnectionsOperations, PrivateLinkResourcesOperations, QuotasOperations, + RegistriesOperations, + RegistryCodeContainersOperations, + RegistryCodeVersionsOperations, + RegistryComponentContainersOperations, + RegistryComponentVersionsOperations, + RegistryDataContainersOperations, + RegistryDataVersionsOperations, + RegistryEnvironmentContainersOperations, + RegistryEnvironmentVersionsOperations, + RegistryModelContainersOperations, + RegistryModelVersionsOperations, SchedulesOperations, UsagesOperations, VirtualMachineSizesOperations, @@ -75,6 +86,36 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v :ivar workspace_connections: WorkspaceConnectionsOperations operations :vartype workspace_connections: azure.mgmt.machinelearningservices.aio.operations.WorkspaceConnectionsOperations + :ivar registry_code_containers: RegistryCodeContainersOperations operations + :vartype registry_code_containers: + azure.mgmt.machinelearningservices.aio.operations.RegistryCodeContainersOperations + :ivar registry_code_versions: RegistryCodeVersionsOperations operations + :vartype registry_code_versions: + azure.mgmt.machinelearningservices.aio.operations.RegistryCodeVersionsOperations + :ivar registry_component_containers: RegistryComponentContainersOperations operations + :vartype registry_component_containers: + azure.mgmt.machinelearningservices.aio.operations.RegistryComponentContainersOperations + :ivar registry_component_versions: RegistryComponentVersionsOperations operations + :vartype registry_component_versions: + azure.mgmt.machinelearningservices.aio.operations.RegistryComponentVersionsOperations + :ivar registry_data_containers: RegistryDataContainersOperations operations + :vartype registry_data_containers: + azure.mgmt.machinelearningservices.aio.operations.RegistryDataContainersOperations + :ivar registry_data_versions: RegistryDataVersionsOperations operations + :vartype registry_data_versions: + azure.mgmt.machinelearningservices.aio.operations.RegistryDataVersionsOperations + :ivar registry_environment_containers: RegistryEnvironmentContainersOperations operations + :vartype registry_environment_containers: + azure.mgmt.machinelearningservices.aio.operations.RegistryEnvironmentContainersOperations + :ivar registry_environment_versions: RegistryEnvironmentVersionsOperations operations + :vartype registry_environment_versions: + azure.mgmt.machinelearningservices.aio.operations.RegistryEnvironmentVersionsOperations + :ivar registry_model_containers: RegistryModelContainersOperations operations + :vartype registry_model_containers: + azure.mgmt.machinelearningservices.aio.operations.RegistryModelContainersOperations + :ivar registry_model_versions: RegistryModelVersionsOperations operations + :vartype registry_model_versions: + azure.mgmt.machinelearningservices.aio.operations.RegistryModelVersionsOperations :ivar batch_endpoints: BatchEndpointsOperations operations :vartype batch_endpoints: azure.mgmt.machinelearningservices.aio.operations.BatchEndpointsOperations @@ -123,6 +164,8 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v azure.mgmt.machinelearningservices.aio.operations.OnlineDeploymentsOperations :ivar schedules: SchedulesOperations operations :vartype schedules: azure.mgmt.machinelearningservices.aio.operations.SchedulesOperations + :ivar registries: RegistriesOperations operations + :vartype registries: azure.mgmt.machinelearningservices.aio.operations.RegistriesOperations :ivar workspace_features: WorkspaceFeaturesOperations operations :vartype workspace_features: azure.mgmt.machinelearningservices.aio.operations.WorkspaceFeaturesOperations @@ -132,7 +175,7 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword int polling_interval: Default waiting time between two polls for LRO operations if no @@ -149,7 +192,7 @@ def __init__( self._config = MachineLearningServicesMgmtClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) - self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) + self._client: AsyncARMPipelineClient = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) @@ -172,6 +215,36 @@ def __init__( self.workspace_connections = WorkspaceConnectionsOperations( self._client, self._config, self._serialize, self._deserialize ) + self.registry_code_containers = RegistryCodeContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_code_versions = RegistryCodeVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_component_containers = RegistryComponentContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_component_versions = RegistryComponentVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_data_containers = RegistryDataContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_data_versions = RegistryDataVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_environment_containers = RegistryEnvironmentContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_environment_versions = RegistryEnvironmentVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_model_containers = RegistryModelContainersOperations( + self._client, self._config, self._serialize, self._deserialize + ) + self.registry_model_versions = RegistryModelVersionsOperations( + self._client, self._config, self._serialize, self._deserialize + ) self.batch_endpoints = BatchEndpointsOperations(self._client, self._config, self._serialize, self._deserialize) self.batch_deployments = BatchDeploymentsOperations( self._client, self._config, self._serialize, self._deserialize @@ -205,6 +278,7 @@ def __init__( self._client, self._config, self._serialize, self._deserialize ) self.schedules = SchedulesOperations(self._client, self._config, self._serialize, self._deserialize) + self.registries = RegistriesOperations(self._client, self._config, self._serialize, self._deserialize) self.workspace_features = WorkspaceFeaturesOperations( self._client, self._config, self._serialize, self._deserialize ) @@ -238,5 +312,5 @@ async def __aenter__(self) -> "MachineLearningServicesMgmtClient": await self._client.__aenter__() return self - async def __aexit__(self, *exc_details) -> None: + async def __aexit__(self, *exc_details: Any) -> None: await self._client.__aexit__(*exc_details) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py index 0065485916d9..4967e3af6930 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py @@ -15,6 +15,16 @@ from ._private_endpoint_connections_operations import PrivateEndpointConnectionsOperations from ._private_link_resources_operations import PrivateLinkResourcesOperations from ._workspace_connections_operations import WorkspaceConnectionsOperations +from ._registry_code_containers_operations import RegistryCodeContainersOperations +from ._registry_code_versions_operations import RegistryCodeVersionsOperations +from ._registry_component_containers_operations import RegistryComponentContainersOperations +from ._registry_component_versions_operations import RegistryComponentVersionsOperations +from ._registry_data_containers_operations import RegistryDataContainersOperations +from ._registry_data_versions_operations import RegistryDataVersionsOperations +from ._registry_environment_containers_operations import RegistryEnvironmentContainersOperations +from ._registry_environment_versions_operations import RegistryEnvironmentVersionsOperations +from ._registry_model_containers_operations import RegistryModelContainersOperations +from ._registry_model_versions_operations import RegistryModelVersionsOperations from ._batch_endpoints_operations import BatchEndpointsOperations from ._batch_deployments_operations import BatchDeploymentsOperations from ._code_containers_operations import CodeContainersOperations @@ -32,6 +42,7 @@ from ._online_endpoints_operations import OnlineEndpointsOperations from ._online_deployments_operations import OnlineDeploymentsOperations from ._schedules_operations import SchedulesOperations +from ._registries_operations import RegistriesOperations from ._workspace_features_operations import WorkspaceFeaturesOperations from ._patch import __all__ as _patch_all @@ -48,6 +59,16 @@ "PrivateEndpointConnectionsOperations", "PrivateLinkResourcesOperations", "WorkspaceConnectionsOperations", + "RegistryCodeContainersOperations", + "RegistryCodeVersionsOperations", + "RegistryComponentContainersOperations", + "RegistryComponentVersionsOperations", + "RegistryDataContainersOperations", + "RegistryDataVersionsOperations", + "RegistryEnvironmentContainersOperations", + "RegistryEnvironmentVersionsOperations", + "RegistryModelContainersOperations", + "RegistryModelVersionsOperations", "BatchEndpointsOperations", "BatchDeploymentsOperations", "CodeContainersOperations", @@ -65,6 +86,7 @@ "OnlineEndpointsOperations", "OnlineDeploymentsOperations", "SchedulesOperations", + "RegistriesOperations", "WorkspaceFeaturesOperations", ] __all__.extend([p for p in _patch_all if p not in __all__]) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py index 37950b084904..09a5fbbc9049 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -39,10 +38,6 @@ build_update_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -103,9 +98,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -163,8 +156,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -195,9 +189,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -214,8 +206,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -272,9 +265,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -298,7 +289,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -349,9 +342,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) request = build_get_request( @@ -368,8 +359,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -410,9 +402,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.BatchDeployment]] = kwargs.pop("cls", None) @@ -441,8 +431,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -587,8 +578,8 @@ async def begin_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a + PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties or IO @@ -612,9 +603,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -681,9 +670,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) @@ -712,8 +699,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -859,8 +847,8 @@ async def begin_create_or_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a BatchDeployment type or + a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -882,9 +870,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -913,7 +899,10 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py index 848fe6dc7e27..89a1a70c2287 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -40,10 +39,6 @@ build_update_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -98,9 +93,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -156,8 +149,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -188,9 +182,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -206,8 +198,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -262,9 +255,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -287,7 +278,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -336,9 +329,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) request = build_get_request( @@ -354,8 +345,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -395,9 +387,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.BatchEndpoint]] = kwargs.pop("cls", None) @@ -425,8 +415,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -562,8 +553,8 @@ async def begin_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Mutable batch inference endpoint definition object. Is either a model type or a IO - type. Required. + :param body: Mutable batch inference endpoint definition object. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -586,9 +577,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -653,9 +642,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) @@ -683,8 +670,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -821,8 +809,8 @@ async def begin_create_or_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Batch inference endpoint definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference endpoint definition object. Is either a BatchEndpoint type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -844,9 +832,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -874,7 +860,10 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -923,9 +912,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -941,8 +928,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py index c69213fa842c..387e735a87a2 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -87,9 +82,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -144,8 +137,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -193,9 +187,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -211,8 +203,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -260,9 +253,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -278,8 +269,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -386,7 +378,7 @@ async def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a CodeContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -408,9 +400,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) @@ -438,8 +428,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py index 473dec5348b9..e0f2effe2186 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -30,16 +29,13 @@ from ... import models as _models from ..._vendor import _convert_request from ...operations._code_versions_operations import ( + build_create_or_get_start_pending_upload_request, build_create_or_update_request, build_delete_request, build_get_request, build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -72,6 +68,8 @@ def list( order_by: Optional[str] = None, top: Optional[int] = None, skip: Optional[str] = None, + hash: Optional[str] = None, + hash_version: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.CodeVersion"]: """List versions. @@ -91,6 +89,11 @@ def list( :type top: int :param skip: Continuation token for pagination. Default value is None. :type skip: str + :param hash: If specified, return CodeVersion assets with specified content hash value, + regardless of name. Default value is None. + :type hash: str + :param hash_version: Hash algorithm version when listing by hash. Default value is None. + :type hash_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CodeVersion or the result of cls(response) :rtype: @@ -100,9 +103,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -124,6 +125,8 @@ def prepare_request(next_link=None): order_by=order_by, top=top, skip=skip, + hash=hash, + hash_version=hash_version, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, @@ -160,8 +163,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -211,9 +215,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -230,8 +232,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -281,9 +284,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -300,8 +301,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -417,7 +419,8 @@ async def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a CodeVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -438,9 +441,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) @@ -469,8 +470,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -494,3 +496,172 @@ async def create_or_update( create_or_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}" } + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + workspace_name: str, + name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param workspace_name: Name of Azure Machine Learning workspace. Required. + :type workspace_name: str + :param name: Container name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + workspace_name: str, + name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param workspace_name: Name of Azure Machine Learning workspace. Required. + :type workspace_name: str + :param name: Container name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + workspace_name: str, + name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param workspace_name: Name of Azure Machine Learning workspace. Required. + :type workspace_name: str + :param name: Container name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + workspace_name=workspace_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py index 59f121afb4b1..f3a450ff346c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -95,9 +90,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -153,8 +146,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -202,9 +196,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -220,8 +212,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -269,9 +262,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -287,8 +278,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -395,8 +387,8 @@ async def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ComponentContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -417,9 +409,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) @@ -447,8 +437,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py index f217f6650def..530b0cb311c9 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -104,9 +99,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -165,8 +158,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -216,9 +210,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -235,8 +227,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -286,9 +279,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -305,8 +296,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,7 +414,8 @@ async def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ComponentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -443,9 +436,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) @@ -474,8 +465,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py index 382828847481..033d0d3330fd 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -44,10 +43,6 @@ build_update_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -93,9 +88,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PaginatedComputeResourcesList] = kwargs.pop("cls", None) error_map = { @@ -150,8 +143,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -198,9 +192,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) request = build_get_request( @@ -216,8 +208,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -257,9 +250,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) @@ -287,8 +278,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,8 +414,8 @@ async def begin_create_or_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Payload with Machine Learning compute definition. Is either a model type or - a IO type. Required. + :param parameters: Payload with Machine Learning compute definition. Is either a + ComputeResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ComputeResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -445,9 +437,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -512,9 +502,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) @@ -542,8 +530,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -665,8 +654,8 @@ async def begin_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Additional parameters for cluster update. Is either a model type or a IO - type. Required. + :param parameters: Additional parameters for cluster update. Is either a + ClusterUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ClusterUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -688,9 +677,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -755,9 +742,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -774,8 +759,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -837,9 +823,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -904,9 +888,7 @@ def list_nodes( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.AmlComputeNodesInformation] = kwargs.pop("cls", None) error_map = { @@ -961,8 +943,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1008,9 +991,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComputeSecrets] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -1026,8 +1007,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1062,9 +1044,7 @@ async def _start_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_start_request( @@ -1080,8 +1060,9 @@ async def _start_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1126,9 +1107,7 @@ async def begin_start( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1183,9 +1162,7 @@ async def _stop_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_stop_request( @@ -1201,8 +1178,9 @@ async def _stop_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1247,9 +1225,7 @@ async def begin_stop( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1304,9 +1280,7 @@ async def _restart_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_restart_request( @@ -1322,8 +1296,9 @@ async def _restart_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1368,9 +1343,7 @@ async def begin_restart( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py index 4c5aca387b8f..e309a49a13ce 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -95,9 +90,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -153,8 +146,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -202,9 +196,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -220,8 +212,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -269,9 +262,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -287,8 +278,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -395,7 +387,7 @@ async def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a DataContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DataContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -417,9 +409,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) @@ -447,8 +437,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py index a9f90dd943ed..d6274c502967 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -112,9 +107,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataVersionBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -174,8 +167,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -225,9 +219,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -244,8 +236,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -295,9 +288,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) request = build_get_request( @@ -314,8 +305,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -431,7 +423,8 @@ async def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a DataVersionBase type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -452,9 +445,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) @@ -483,8 +474,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py index 293c073184e6..1cb11f9be015 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, List, Optional, TypeVar, Union, overload import urllib.parse @@ -37,10 +36,6 @@ build_list_secrets_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -110,9 +105,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DatastoreResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -173,8 +166,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -222,9 +216,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -240,8 +232,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -287,9 +280,7 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.Datastore] = kwargs.pop("cls", None) request = build_get_request( @@ -305,8 +296,9 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -420,7 +412,7 @@ async def create_or_update( :type workspace_name: str :param name: Datastore name. Required. :type name: str - :param body: Datastore entity to create or update. Is either a model type or a IO type. + :param body: Datastore entity to create or update. Is either a Datastore type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Datastore or IO :param skip_validation: Flag to skip validation. Default value is False. @@ -444,9 +436,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Datastore] = kwargs.pop("cls", None) @@ -475,8 +465,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -532,9 +523,7 @@ async def list_secrets( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DatastoreSecrets] = kwargs.pop("cls", None) request = build_list_secrets_request( @@ -550,8 +539,9 @@ async def list_secrets( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py index 0115c7250a43..84a18f64fc6a 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -96,9 +91,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -154,8 +147,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -203,9 +197,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -221,8 +213,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -270,9 +263,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -288,8 +279,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -396,8 +388,8 @@ async def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a EnvironmentContainer type or a + IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -418,9 +410,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) @@ -448,8 +438,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py index 8b4432552f55..f0836386b26b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -104,9 +99,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -165,8 +158,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -216,9 +210,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -235,8 +227,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -286,9 +279,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -305,8 +296,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,7 +414,8 @@ async def create_or_update( :type name: str :param version: Version of EnvironmentVersion. Required. :type version: str - :param body: Definition of EnvironmentVersion. Is either a model type or a IO type. Required. + :param body: Definition of EnvironmentVersion. Is either a EnvironmentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -443,9 +436,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) @@ -474,8 +465,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py index e8e3110d7004..3cf7df6dca87 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -39,10 +38,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -104,9 +99,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.JobBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -164,8 +157,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -196,9 +190,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -214,8 +206,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -270,9 +263,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -295,7 +286,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -342,9 +335,7 @@ async def get(self, resource_group_name: str, workspace_name: str, id: str, **kw _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.JobBase] = kwargs.pop("cls", None) request = build_get_request( @@ -360,8 +351,9 @@ async def get(self, resource_group_name: str, workspace_name: str, id: str, **kw request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -463,7 +455,7 @@ async def create_or_update( :type workspace_name: str :param id: The name and identifier for the Job. This is case-sensitive. Required. :type id: str - :param body: Job definition object. Is either a model type or a IO type. Required. + :param body: Job definition object. Is either a JobBase type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.JobBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -484,9 +476,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.JobBase] = kwargs.pop("cls", None) @@ -514,8 +504,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -554,9 +545,7 @@ async def _cancel_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_cancel_request( @@ -572,8 +561,9 @@ async def _cancel_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -625,9 +615,7 @@ async def begin_cancel( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py index 0f18875a197a..a194c47e9375 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -98,9 +93,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -157,8 +150,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -206,9 +200,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -224,8 +216,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -273,9 +266,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -291,8 +282,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -399,8 +391,8 @@ async def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ModelContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -421,9 +413,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) @@ -451,8 +441,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py index 68a4fd3be570..026d4ce11152 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -124,9 +119,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -191,8 +184,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -242,9 +236,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -261,8 +253,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -312,9 +305,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -331,8 +322,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -448,7 +440,8 @@ async def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ModelVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -469,9 +462,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) @@ -500,8 +491,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py index f78323104bda..dac6914354cc 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -41,10 +40,6 @@ build_update_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -105,9 +100,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -165,8 +158,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -197,9 +191,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -216,8 +208,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -274,9 +267,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -300,7 +291,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -351,9 +344,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) request = build_get_request( @@ -370,8 +361,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -412,9 +404,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.OnlineDeployment]] = kwargs.pop("cls", None) @@ -443,8 +433,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -588,8 +579,8 @@ async def begin_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithSku type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithSku or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -612,9 +603,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -681,9 +670,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) @@ -712,8 +699,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -859,8 +847,8 @@ async def begin_create_or_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Inference Endpoint entity to apply during operation. Is either a model type or a - IO type. Required. + :param body: Inference Endpoint entity to apply during operation. Is either a OnlineDeployment + type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -882,9 +870,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -913,7 +899,10 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -1026,8 +1015,8 @@ async def get_logs( :type endpoint_name: str :param deployment_name: The name and identifier for the endpoint. Required. :type deployment_name: str - :param body: The request containing parameters for retrieving logs. Is either a model type or a - IO type. Required. + :param body: The request containing parameters for retrieving logs. Is either a + DeploymentLogsRequest type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DeploymentLogsRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1048,9 +1037,7 @@ async def get_logs( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DeploymentLogs] = kwargs.pop("cls", None) @@ -1079,8 +1066,9 @@ async def get_logs( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1138,9 +1126,7 @@ def list_skus( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.SkuResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -1198,8 +1184,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py index bb9f50e9e7b8..3d8cb4bace2a 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -42,10 +41,6 @@ build_update_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -121,9 +116,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -184,8 +177,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -216,9 +210,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -234,8 +226,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -290,9 +283,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -315,7 +306,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -364,9 +357,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) request = build_get_request( @@ -382,8 +373,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -423,9 +415,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.OnlineEndpoint]] = kwargs.pop("cls", None) @@ -453,8 +443,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -590,8 +581,8 @@ async def begin_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -614,9 +605,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -681,9 +670,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) @@ -711,8 +698,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -849,8 +837,8 @@ async def begin_create_or_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a OnlineEndpoint type + or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -872,9 +860,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -902,7 +888,10 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -951,9 +940,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -969,8 +956,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1010,9 +998,7 @@ async def _regenerate_keys_initial( # pylint: disable=inconsistent-return-state _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1040,8 +1026,9 @@ async def _regenerate_keys_initial( # pylint: disable=inconsistent-return-state request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1163,7 +1150,8 @@ async def begin_regenerate_keys( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: RegenerateKeys request . Is either a model type or a IO type. Required. + :param body: RegenerateKeys request . Is either a RegenerateEndpointKeysRequest type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.RegenerateEndpointKeysRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1183,9 +1171,7 @@ async def begin_regenerate_keys( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -1235,9 +1221,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- async def get_token( self, resource_group_name: str, workspace_name: str, endpoint_name: str, **kwargs: Any ) -> _models.EndpointAuthToken: - """Retrieve a valid AAD token for an Endpoint using AMLToken-based authentication. + """Retrieve a valid AML token for an Endpoint using AMLToken-based authentication. - Retrieve a valid AAD token for an Endpoint using AMLToken-based authentication. + Retrieve a valid AML token for an Endpoint using AMLToken-based authentication. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. @@ -1262,9 +1248,7 @@ async def get_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EndpointAuthToken] = kwargs.pop("cls", None) request = build_get_token_request( @@ -1280,8 +1264,9 @@ async def get_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py index ab8aec812cd0..3edc6c4bb6de 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse @@ -30,10 +29,6 @@ from ..._vendor import _convert_request from ...operations._operations import build_list_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -70,9 +65,7 @@ def list(self, **kwargs: Any) -> AsyncIterable["_models.AmlOperation"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.AmlOperationListResult] = kwargs.pop("cls", None) error_map = { @@ -123,8 +116,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py index ca1d84b13c3e..99ac1e9cb0d3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -84,9 +79,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PrivateEndpointConnectionListResult] = kwargs.pop("cls", None) error_map = { @@ -140,8 +133,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -188,9 +182,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) request = build_get_request( @@ -206,8 +198,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -311,8 +304,8 @@ async def create_or_update( :param private_endpoint_connection_name: The name of the private endpoint connection associated with the workspace. Required. :type private_endpoint_connection_name: str - :param properties: The private endpoint connection properties. Is either a model type or a IO - type. Required. + :param properties: The private endpoint connection properties. Is either a + PrivateEndpointConnection type or a IO type. Required. :type properties: ~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -333,9 +326,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) @@ -363,8 +354,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -415,9 +407,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -433,8 +423,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py index 8c30d300602a..3e0bfcb8b50c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Optional, TypeVar from azure.core.exceptions import ( @@ -28,10 +27,6 @@ from ..._vendor import _convert_request from ...operations._private_link_resources_operations import build_list_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -82,9 +77,7 @@ async def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PrivateLinkResourceListResult] = kwargs.pop("cls", None) request = build_list_request( @@ -99,8 +92,9 @@ async def list( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py index b101e920473f..2ecd3289b17e 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -31,10 +30,6 @@ from ..._vendor import _convert_request from ...operations._quotas_operations import build_list_request, build_update_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -109,7 +104,8 @@ async def update( :param location: The location for update quota is queried. Required. :type location: str - :param parameters: Quota update parameters. Is either a model type or a IO type. Required. + :param parameters: Quota update parameters. Is either a QuotaUpdateParameters type or a IO + type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.QuotaUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -130,9 +126,7 @@ async def update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.UpdateWorkspaceQuotasResult] = kwargs.pop("cls", None) @@ -158,8 +152,9 @@ async def update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -195,9 +190,7 @@ def list(self, location: str, **kwargs: Any) -> AsyncIterable["_models.ResourceQ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListWorkspaceQuotas] = kwargs.pop("cls", None) error_map = { @@ -250,8 +243,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registries_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registries_operations.py new file mode 100644 index 000000000000..9c1d1aa98366 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registries_operations.py @@ -0,0 +1,1049 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registries_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_by_subscription_request, + build_list_request, + build_remove_regions_request, + build_update_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistriesOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registries` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list_by_subscription(self, **kwargs: Any) -> AsyncIterable["_models.Registry"]: + """List registries by subscription. + + List registries by subscription. + + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_by_subscription_request( + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.list_by_subscription.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list_by_subscription.metadata = { + "url": "/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearningServices/registries" + } + + @distributed_trace + def list(self, resource_group_name: str, **kwargs: Any) -> AsyncIterable["_models.Registry"]: + """List registries. + + List registries. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace_async + async def begin_delete(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> AsyncLROPoller[None]: + """Delete registry. + + Delete registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace_async + async def get(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> _models.Registry: + """Get registry. + + Get registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + async def update( + self, + resource_group_name: str, + registry_name: str, + body: _models.PartialRegistryPartialTrackedResource, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.Registry: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.Registry: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def update( + self, + resource_group_name: str, + registry_name: str, + body: Union[_models.PartialRegistryPartialTrackedResource, IO], + **kwargs: Any + ) -> _models.Registry: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a + PartialRegistryPartialTrackedResource type or a IO type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource or + IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PartialRegistryPartialTrackedResource") + + request = build_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.update.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + async def _create_or_update_initial( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> _models.Registry: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "Registry") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 201: + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: _models.Registry, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a Registry type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "azure-async-operation"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + async def _remove_regions_initial( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> Optional[_models.Registry]: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[Optional[_models.Registry]] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "Registry") + + request = build_remove_regions_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._remove_regions_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = None + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, deserialized, response_headers) + + return deserialized + + _remove_regions_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/removeRegions" + } + + @overload + async def begin_remove_regions( + self, + resource_group_name: str, + registry_name: str, + body: _models.Registry, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Remove regions from registry. + + Remove regions from registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_remove_regions( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Remove regions from registry. + + Remove regions from registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_remove_regions( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Remove regions from registry. + + Remove regions from registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a Registry type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._remove_regions_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_remove_regions.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/removeRegions" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_code_containers_operations.py new file mode 100644 index 000000000000..311d8212a389 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_code_containers_operations.py @@ -0,0 +1,623 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_code_containers_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryCodeContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_code_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, resource_group_name: str, registry_name: str, skip: Optional[str] = None, **kwargs: Any + ) -> AsyncIterable["_models.CodeContainer"]: + """List containers. + + List containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either CodeContainer or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("CodeContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, code_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, code_name: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete Code container. + + Delete Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, code_name: str, **kwargs: Any + ) -> _models.CodeContainer: + """Get Code container. + + Get Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: CodeContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.CodeContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("CodeContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: Union[_models.CodeContainer, IO], + **kwargs: Any + ) -> _models.CodeContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "CodeContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("CodeContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("CodeContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: _models.CodeContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.CodeContainer]: + """Create or update Code container. + + Create or update Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either CodeContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.CodeContainer]: + """Create or update Code container. + + Create or update Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either CodeContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: Union[_models.CodeContainer, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.CodeContainer]: + """Create or update Code container. + + Create or update Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param body: Container entity to create or update. Is either a CodeContainer type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either CodeContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("CodeContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_code_versions_operations.py new file mode 100644 index 000000000000..358d9b586cb4 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_code_versions_operations.py @@ -0,0 +1,831 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_code_versions_operations import ( + build_create_or_get_start_pending_upload_request, + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryCodeVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_code_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + **kwargs: Any + ) -> AsyncIterable["_models.CodeVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either CodeVersion or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("CodeVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, code_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, code_name: str, version: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, code_name: str, version: str, **kwargs: Any + ) -> _models.CodeVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: CodeVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.CodeVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("CodeVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: Union[_models.CodeVersion, IO], + **kwargs: Any + ) -> _models.CodeVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "CodeVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("CodeVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("CodeVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: _models.CodeVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.CodeVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either CodeVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.CodeVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either CodeVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: Union[_models.CodeVersion, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.CodeVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a CodeVersion type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either CodeVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("CodeVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Pending upload name. This is case-sensitive. Required. + :type code_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Pending upload name. This is case-sensitive. Required. + :type code_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Pending upload name. This is case-sensitive. Required. + :type code_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_component_containers_operations.py new file mode 100644 index 000000000000..b81621c705a4 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_component_containers_operations.py @@ -0,0 +1,623 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_component_containers_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryComponentContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_component_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, resource_group_name: str, registry_name: str, skip: Optional[str] = None, **kwargs: Any + ) -> AsyncIterable["_models.ComponentContainer"]: + """List containers. + + List containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ComponentContainer or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("ComponentContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, component_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, component_name: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, component_name: str, **kwargs: Any + ) -> _models.ComponentContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ComponentContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ComponentContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ComponentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: Union[_models.ComponentContainer, IO], + **kwargs: Any + ) -> _models.ComponentContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ComponentContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ComponentContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ComponentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: _models.ComponentContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ComponentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ComponentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ComponentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ComponentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: Union[_models.ComponentContainer, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.ComponentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param body: Container entity to create or update. Is either a ComponentContainer type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ComponentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ComponentContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_component_versions_operations.py new file mode 100644 index 000000000000..b8e965d7432c --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_component_versions_operations.py @@ -0,0 +1,658 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_component_versions_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryComponentVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_component_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + **kwargs: Any + ) -> AsyncIterable["_models.ComponentVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ComponentVersion or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("ComponentVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, component_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, component_name: str, version: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, component_name: str, version: str, **kwargs: Any + ) -> _models.ComponentVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ComponentVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ComponentVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ComponentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: Union[_models.ComponentVersion, IO], + **kwargs: Any + ) -> _models.ComponentVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ComponentVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ComponentVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ComponentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: _models.ComponentVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ComponentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ComponentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ComponentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ComponentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: Union[_models.ComponentVersion, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.ComponentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a ComponentVersion type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ComponentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ComponentVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_containers_operations.py new file mode 100644 index 000000000000..c4461da6d425 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_containers_operations.py @@ -0,0 +1,632 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_data_containers_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryDataContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_data_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> AsyncIterable["_models.DataContainer"]: + """List Data containers. + + List Data containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either DataContainer or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("DataContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, name: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, name: str, **kwargs: Any + ) -> _models.DataContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: DataContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.DataContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("DataContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: Union[_models.DataContainer, IO], + **kwargs: Any + ) -> _models.DataContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "DataContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("DataContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("DataContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: _models.DataContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.DataContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either DataContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.DataContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either DataContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: Union[_models.DataContainer, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.DataContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param body: Container entity to create or update. Is either a DataContainer type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either DataContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("DataContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_versions_operations.py new file mode 100644 index 000000000000..2536b3c95de0 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_data_versions_operations.py @@ -0,0 +1,845 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_data_versions_operations import ( + build_create_or_get_start_pending_upload_request, + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryDataVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_data_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + tags: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> AsyncIterable["_models.DataVersionBase"]: + """List data versions in the data container. + + List data versions in the data container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data container's name. Required. + :type name: str + :param order_by: Please choose OrderBy value from ['createdtime', 'modifiedtime']. Default + value is None. + :type order_by: str + :param top: Top count of results, top count cannot be greater than the page size. + If topCount > page size, results with be default page size count + will be returned. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param tags: Comma-separated list of tag names (and optionally values). Example: + tag1,tag2=value2. Default value is None. + :type tags: str + :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly, + ListViewType.All]View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either DataVersionBase or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataVersionBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + tags=tags, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("DataVersionBaseResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, name: str, version: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, name: str, version: str, **kwargs: Any + ) -> _models.DataVersionBase: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: DataVersionBase or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionBase + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("DataVersionBase", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: Union[_models.DataVersionBase, IO], + **kwargs: Any + ) -> _models.DataVersionBase: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "DataVersionBase") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("DataVersionBase", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("DataVersionBase", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: _models.DataVersionBase, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.DataVersionBase]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either DataVersionBase or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.DataVersionBase]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either DataVersionBase or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: Union[_models.DataVersionBase, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.DataVersionBase]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a DataVersionBase type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either DataVersionBase or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("DataVersionBase", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a data asset to. + + Generate a storage location and credential for the client to upload a data asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data asset name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a data asset to. + + Generate a storage location and credential for the client to upload a data asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data asset name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a data asset to. + + Generate a storage location and credential for the client to upload a data asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data asset name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_environment_containers_operations.py new file mode 100644 index 000000000000..929c488adaee --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_environment_containers_operations.py @@ -0,0 +1,633 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_environment_containers_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryEnvironmentContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_environment_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> AsyncIterable["_models.EnvironmentContainer"]: + """List environment containers. + + List environment containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either EnvironmentContainer or the result of + cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("EnvironmentContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, environment_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, environment_name: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, environment_name: str, **kwargs: Any + ) -> _models.EnvironmentContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. This is case-sensitive. Required. + :type environment_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: EnvironmentContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: Union[_models.EnvironmentContainer, IO], + **kwargs: Any + ) -> _models.EnvironmentContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "EnvironmentContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: _models.EnvironmentContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.EnvironmentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either EnvironmentContainer or the result + of cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.EnvironmentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either EnvironmentContainer or the result + of cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: Union[_models.EnvironmentContainer, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.EnvironmentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param body: Container entity to create or update. Is either a EnvironmentContainer type or a + IO type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either EnvironmentContainer or the result + of cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_environment_versions_operations.py new file mode 100644 index 000000000000..5bcdf001239e --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_environment_versions_operations.py @@ -0,0 +1,663 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_environment_versions_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryEnvironmentVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_environment_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> AsyncIterable["_models.EnvironmentVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. This is case-sensitive. Required. + :type environment_name: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either EnvironmentVersion or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("EnvironmentVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, environment_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, environment_name: str, version: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, environment_name: str, version: str, **kwargs: Any + ) -> _models.EnvironmentVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. This is case-sensitive. Required. + :type environment_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: EnvironmentVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: Union[_models.EnvironmentVersion, IO], + **kwargs: Any + ) -> _models.EnvironmentVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "EnvironmentVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: _models.EnvironmentVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.EnvironmentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either EnvironmentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.EnvironmentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either EnvironmentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: Union[_models.EnvironmentVersion, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.EnvironmentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a EnvironmentVersion type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either EnvironmentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_model_containers_operations.py new file mode 100644 index 000000000000..aed41328969f --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_model_containers_operations.py @@ -0,0 +1,632 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_model_containers_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryModelContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_model_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> AsyncIterable["_models.ModelContainer"]: + """List model containers. + + List model containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ModelContainer or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("ModelContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, model_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, model_name: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, model_name: str, **kwargs: Any + ) -> _models.ModelContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. This is case-sensitive. Required. + :type model_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ModelContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ModelContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ModelContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: Union[_models.ModelContainer, IO], + **kwargs: Any + ) -> _models.ModelContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ModelContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ModelContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ModelContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: _models.ModelContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ModelContainer]: + """Create or update model container. + + Create or update model container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ModelContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ModelContainer]: + """Create or update model container. + + Create or update model container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ModelContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: Union[_models.ModelContainer, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.ModelContainer]: + """Create or update model container. + + Create or update model container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param body: Container entity to create or update. Is either a ModelContainer type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ModelContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ModelContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_model_versions_operations.py new file mode 100644 index 000000000000..d99e7163758d --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registry_model_versions_operations.py @@ -0,0 +1,854 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registry_model_versions_operations import ( + build_create_or_get_start_pending_upload_request, + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_request, +) + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistryModelVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registry_model_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + skip: Optional[str] = None, + order_by: Optional[str] = None, + top: Optional[int] = None, + version: Optional[str] = None, + description: Optional[str] = None, + tags: Optional[str] = None, + properties: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> AsyncIterable["_models.ModelVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. This is case-sensitive. Required. + :type model_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param version: Version identifier. Default value is None. + :type version: str + :param description: Model description. Default value is None. + :type description: str + :param tags: Comma-separated list of tag names (and optionally values). Example: + tag1,tag2=value2. Default value is None. + :type tags: str + :param properties: Comma-separated list of property names (and optionally values). Example: + prop1,prop2=value2. Default value is None. + :type properties: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ModelVersion or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + skip=skip, + order_by=order_by, + top=top, + version=version, + description=description, + tags=tags, + properties=properties, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("ModelVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, model_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @distributed_trace_async + async def begin_delete( + self, resource_group_name: str, registry_name: str, model_name: str, version: str, **kwargs: Any + ) -> AsyncLROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @distributed_trace_async + async def get( + self, resource_group_name: str, registry_name: str, model_name: str, version: str, **kwargs: Any + ) -> _models.ModelVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ModelVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ModelVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ModelVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + async def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: Union[_models.ModelVersion, IO], + **kwargs: Any + ) -> _models.ModelVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ModelVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ModelVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ModelVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: _models.ModelVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ModelVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ModelVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.ModelVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ModelVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: Union[_models.ModelVersion, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.ModelVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a ModelVersion type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either ModelVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ModelVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a model asset to. + + Generate a storage location and credential for the client to upload a model asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Model name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a model asset to. + + Generate a storage location and credential for the client to upload a model asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Model name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a model asset to. + + Generate a storage location and credential for the client to upload a model asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Model name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py index 7e2d8fa6ae15..d0d5c6d20821 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -38,10 +37,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -97,9 +92,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ScheduleResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -155,8 +148,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -187,9 +181,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -205,8 +197,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -261,9 +254,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -286,7 +277,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: @@ -333,9 +326,7 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) request = build_get_request( @@ -351,8 +342,9 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -387,9 +379,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) @@ -417,8 +407,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -548,7 +539,7 @@ async def begin_create_or_update( :type workspace_name: str :param name: Schedule name. Required. :type name: str - :param body: Schedule definition. Is either a model type or a IO type. Required. + :param body: Schedule definition. Is either a Schedule type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Schedule or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -569,9 +560,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -599,7 +588,10 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs), + ) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py index f7db5ff755cf..a8392c596462 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse @@ -30,10 +29,6 @@ from ..._vendor import _convert_request from ...operations._usages_operations import build_list_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -73,9 +68,7 @@ def list(self, location: str, **kwargs: Any) -> AsyncIterable["_models.Usage"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListUsagesResult] = kwargs.pop("cls", None) error_map = { @@ -128,8 +121,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py index e11949599426..dd19432ccc8c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Optional, TypeVar from azure.core.exceptions import ( @@ -28,10 +27,6 @@ from ..._vendor import _convert_request from ...operations._virtual_machine_sizes_operations import build_list_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -77,9 +72,7 @@ async def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSize _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.VirtualMachineSizeListResult] = kwargs.pop("cls", None) request = build_list_request( @@ -93,8 +86,9 @@ async def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSize request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py index d849184954e4..35c65d84d4de 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse @@ -36,10 +35,6 @@ build_list_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -145,7 +140,7 @@ async def create( :param connection_name: Friendly name of the workspace connection. Required. :type connection_name: str :param parameters: The object for creating or updating a new workspace connection. Is either a - model type or a IO type. Required. + WorkspaceConnectionPropertiesV2BasicResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2BasicResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -167,9 +162,7 @@ async def create( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResource] = kwargs.pop("cls", None) @@ -197,8 +190,9 @@ async def create( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -248,9 +242,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResource] = kwargs.pop("cls", None) request = build_get_request( @@ -266,8 +258,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -317,9 +310,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -335,8 +326,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -383,9 +375,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -443,8 +433,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py index a968302c5446..4de434394f7c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse @@ -30,10 +29,6 @@ from ..._vendor import _convert_request from ...operations._workspace_features_operations import build_list_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -77,9 +72,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListAmlUserFeatureResult] = kwargs.pop("cls", None) error_map = { @@ -133,8 +126,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py index 5c6cf54fea4d..e886189a8ad0 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -48,10 +47,6 @@ build_update_request, ) -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] @@ -100,9 +95,7 @@ async def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) request = build_get_request( @@ -117,8 +110,9 @@ async def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -153,9 +147,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.Workspace]] = kwargs.pop("cls", None) @@ -182,8 +174,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -294,7 +287,7 @@ async def begin_create_or_update( :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str :param parameters: The parameters for creating or updating a machine learning workspace. Is - either a model type or a IO type. Required. + either a Workspace type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.Workspace or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -316,9 +309,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -377,9 +368,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -394,8 +383,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -436,9 +426,7 @@ async def begin_delete(self, resource_group_name: str, workspace_name: str, **kw _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -496,9 +484,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.Workspace]] = kwargs.pop("cls", None) @@ -525,8 +511,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -638,8 +625,8 @@ async def begin_update( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameters for updating a machine learning workspace. Is either a model - type or a IO type. Required. + :param parameters: The parameters for updating a machine learning workspace. Is either a + WorkspaceUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -661,9 +648,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -728,9 +713,7 @@ def list_by_resource_group( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) error_map = { @@ -784,8 +767,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -820,9 +804,7 @@ async def _diagnose_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.DiagnoseResponseResult]] = kwargs.pop("cls", None) @@ -852,8 +834,9 @@ async def _diagnose_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -976,8 +959,8 @@ async def begin_diagnose( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameter of diagnosing workspace health. Is either a model type or a IO - type. Default value is None. + :param parameters: The parameter of diagnosing workspace health. Is either a + DiagnoseWorkspaceParameters type or a IO type. Default value is None. :type parameters: ~azure.mgmt.machinelearningservices.models.DiagnoseWorkspaceParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -999,9 +982,7 @@ async def begin_diagnose( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DiagnoseResponseResult] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) @@ -1076,9 +1057,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListWorkspaceKeysResult] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -1093,8 +1072,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1129,9 +1109,7 @@ async def _resync_keys_initial( # pylint: disable=inconsistent-return-statement _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_resync_keys_request( @@ -1146,8 +1124,9 @@ async def _resync_keys_initial( # pylint: disable=inconsistent-return-statement request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1191,9 +1170,7 @@ async def begin_resync_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1248,9 +1225,7 @@ def list_by_subscription(self, skip: Optional[str] = None, **kwargs: Any) -> Asy _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) error_map = { @@ -1303,8 +1278,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1348,9 +1324,7 @@ async def list_notebook_access_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.NotebookAccessTokenResult] = kwargs.pop("cls", None) request = build_list_notebook_access_token_request( @@ -1365,8 +1339,9 @@ async def list_notebook_access_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1401,9 +1376,7 @@ async def _prepare_notebook_initial( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[Optional[_models.NotebookResourceInfo]] = kwargs.pop("cls", None) request = build_prepare_notebook_request( @@ -1418,8 +1391,9 @@ async def _prepare_notebook_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1470,9 +1444,7 @@ async def begin_prepare_notebook( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.NotebookResourceInfo] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1543,9 +1515,7 @@ async def list_storage_account_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListStorageAccountKeysResult] = kwargs.pop("cls", None) request = build_list_storage_account_keys_request( @@ -1560,8 +1530,9 @@ async def list_storage_account_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1609,9 +1580,7 @@ async def list_notebook_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListNotebookKeysResult] = kwargs.pop("cls", None) request = build_list_notebook_keys_request( @@ -1626,8 +1595,9 @@ async def list_notebook_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1649,7 +1619,7 @@ async def list_notebook_keys( } @distributed_trace_async - async def list_outbound_network_dependencies_endpoints( + async def list_outbound_network_dependencies_endpoints( # pylint: disable=name-too-long self, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> _models.ExternalFQDNResponse: """Called by Client (Portal, CLI, etc) to get a list of all external outbound dependencies (FQDNs) @@ -1679,9 +1649,7 @@ async def list_outbound_network_dependencies_endpoints( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ExternalFQDNResponse] = kwargs.pop("cls", None) request = build_list_outbound_network_dependencies_endpoints_request( @@ -1696,8 +1664,9 @@ async def list_outbound_network_dependencies_endpoints( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py index 72bfcc9bc3c2..339c533836e3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py @@ -11,9 +11,11 @@ from ._models_py3 import AKSSchemaProperties from ._models_py3 import AccountKeyDatastoreCredentials from ._models_py3 import AccountKeyDatastoreSecrets +from ._models_py3 import AcrDetails from ._models_py3 import AksComputeSecrets from ._models_py3 import AksComputeSecretsProperties from ._models_py3 import AksNetworkingConfiguration +from ._models_py3 import AllNodes from ._models_py3 import AmlCompute from ._models_py3 import AmlComputeNodeInformation from ._models_py3 import AmlComputeNodesInformation @@ -24,6 +26,7 @@ from ._models_py3 import AmlOperationListResult from ._models_py3 import AmlToken from ._models_py3 import AmlUserFeature +from ._models_py3 import ArmResourceId from ._models_py3 import AssetBase from ._models_py3 import AssetContainer from ._models_py3 import AssetJobInput @@ -53,6 +56,8 @@ from ._models_py3 import BatchEndpointTrackedResourceArmPaginatedResult from ._models_py3 import BatchRetrySettings from ._models_py3 import BayesianSamplingAlgorithm +from ._models_py3 import BindOptions +from ._models_py3 import BlobReferenceForConsumptionDto from ._models_py3 import BuildContext from ._models_py3 import CertificateDatastoreCredentials from ._models_py3 import CertificateDatastoreSecrets @@ -97,12 +102,14 @@ from ._models_py3 import ContainerResourceRequirements from ._models_py3 import ContainerResourceSettings from ._models_py3 import CosmosDbSettings +from ._models_py3 import Cron from ._models_py3 import CronTrigger from ._models_py3 import CustomForecastHorizon from ._models_py3 import CustomModelJobInput from ._models_py3 import CustomModelJobOutput from ._models_py3 import CustomNCrossValidations from ._models_py3 import CustomSeasonality +from ._models_py3 import CustomService from ._models_py3 import CustomTargetLags from ._models_py3 import CustomTargetRollingWindowSize from ._models_py3 import DataContainer @@ -136,9 +143,11 @@ from ._models_py3 import DiagnoseResult from ._models_py3 import DiagnoseWorkspaceParameters from ._models_py3 import DistributionConfiguration +from ._models_py3 import Docker from ._models_py3 import EarlyTerminationPolicy from ._models_py3 import EncryptionKeyVaultProperties from ._models_py3 import EncryptionProperty +from ._models_py3 import Endpoint from ._models_py3 import EndpointAuthKeys from ._models_py3 import EndpointAuthToken from ._models_py3 import EndpointDeploymentPropertiesBase @@ -147,6 +156,7 @@ from ._models_py3 import EnvironmentContainer from ._models_py3 import EnvironmentContainerProperties from ._models_py3 import EnvironmentContainerResourceArmPaginatedResult +from ._models_py3 import EnvironmentVariable from ._models_py3 import EnvironmentVersion from ._models_py3 import EnvironmentVersionProperties from ._models_py3 import EnvironmentVersionResourceArmPaginatedResult @@ -173,11 +183,14 @@ from ._models_py3 import IdAssetReference from ._models_py3 import IdentityConfiguration from ._models_py3 import IdentityForCmk +from ._models_py3 import IdleShutdownSetting +from ._models_py3 import Image from ._models_py3 import ImageClassification from ._models_py3 import ImageClassificationBase from ._models_py3 import ImageClassificationMultilabel from ._models_py3 import ImageInstanceSegmentation from ._models_py3 import ImageLimitSettings +from ._models_py3 import ImageMetadata from ._models_py3 import ImageModelDistributionSettings from ._models_py3 import ImageModelDistributionSettingsClassification from ._models_py3 import ImageModelDistributionSettingsObjectDetection @@ -233,6 +246,7 @@ from ._models_py3 import NlpVerticalFeaturizationSettings from ._models_py3 import NlpVerticalLimitSettings from ._models_py3 import NodeStateCounts +from ._models_py3 import Nodes from ._models_py3 import NoneAuthTypeWorkspaceConnectionProperties from ._models_py3 import NoneDatastoreCredentials from ._models_py3 import NotebookAccessTokenResult @@ -256,13 +270,18 @@ from ._models_py3 import PartialMinimalTrackedResource from ._models_py3 import PartialMinimalTrackedResourceWithIdentity from ._models_py3 import PartialMinimalTrackedResourceWithSku +from ._models_py3 import PartialRegistryPartialTrackedResource from ._models_py3 import PartialSku from ._models_py3 import Password +from ._models_py3 import PendingUploadCredentialDto +from ._models_py3 import PendingUploadRequestDto +from ._models_py3 import PendingUploadResponseDto from ._models_py3 import PersonalComputeInstanceSettings from ._models_py3 import PipelineJob from ._models_py3 import PrivateEndpoint from ._models_py3 import PrivateEndpointConnection from ._models_py3 import PrivateEndpointConnectionListResult +from ._models_py3 import PrivateEndpointResource from ._models_py3 import PrivateLinkResource from ._models_py3 import PrivateLinkResourceListResult from ._models_py3 import PrivateLinkServiceConnectionState @@ -271,10 +290,17 @@ from ._models_py3 import QuotaBaseProperties from ._models_py3 import QuotaUpdateParameters from ._models_py3 import RandomSamplingAlgorithm +from ._models_py3 import Recurrence from ._models_py3 import RecurrenceSchedule from ._models_py3 import RecurrenceTrigger from ._models_py3 import RegenerateEndpointKeysRequest +from ._models_py3 import Registry from ._models_py3 import RegistryListCredentialsResult +from ._models_py3 import RegistryPartialManagedServiceIdentity +from ._models_py3 import RegistryPrivateEndpointConnection +from ._models_py3 import RegistryPrivateLinkServiceConnectionState +from ._models_py3 import RegistryRegionArmDetails +from ._models_py3 import RegistryTrackedResourceArmPaginatedResult from ._models_py3 import Regression from ._models_py3 import RegressionTrainingSettings from ._models_py3 import Resource @@ -285,6 +311,7 @@ from ._models_py3 import ResourceQuota from ._models_py3 import Route from ._models_py3 import SASAuthTypeWorkspaceConnectionProperties +from ._models_py3 import SASCredentialDto from ._models_py3 import SamplingAlgorithm from ._models_py3 import SasDatastoreCredentials from ._models_py3 import SasDatastoreSecrets @@ -310,10 +337,13 @@ from ._models_py3 import SkuSetting from ._models_py3 import SslConfiguration from ._models_py3 import StackEnsembleSettings +from ._models_py3 import StorageAccountDetails from ._models_py3 import SweepJob from ._models_py3 import SweepJobLimits from ._models_py3 import SynapseSpark from ._models_py3 import SynapseSparkProperties +from ._models_py3 import SystemCreatedAcrAccount +from ._models_py3 import SystemCreatedStorageAccount from ._models_py3 import SystemData from ._models_py3 import SystemService from ._models_py3 import TableVertical @@ -326,6 +356,7 @@ from ._models_py3 import TextClassification from ._models_py3 import TextClassificationMultilabel from ._models_py3 import TextNer +from ._models_py3 import TmpfsOptions from ._models_py3 import TrackedResource from ._models_py3 import TrainingSettings from ._models_py3 import TrialComponent @@ -345,6 +376,8 @@ from ._models_py3 import UsageName from ._models_py3 import UserAccountCredentials from ._models_py3 import UserAssignedIdentity +from ._models_py3 import UserCreatedAcrAccount +from ._models_py3 import UserCreatedStorageAccount from ._models_py3 import UserIdentity from ._models_py3 import UsernamePasswordAuthTypeWorkspaceConnectionProperties from ._models_py3 import VirtualMachine @@ -356,6 +389,8 @@ from ._models_py3 import VirtualMachineSize from ._models_py3 import VirtualMachineSizeListResult from ._models_py3 import VirtualMachineSshCredentials +from ._models_py3 import VolumeDefinition +from ._models_py3 import VolumeOptions from ._models_py3 import Workspace from ._models_py3 import WorkspaceConnectionManagedIdentity from ._models_py3 import WorkspaceConnectionPersonalAccessToken @@ -369,6 +404,7 @@ from ._machine_learning_services_mgmt_client_enums import AllocationState from ._machine_learning_services_mgmt_client_enums import ApplicationSharingPolicy +from ._machine_learning_services_mgmt_client_enums import AssetProvisioningState from ._machine_learning_services_mgmt_client_enums import AutoRebuildSetting from ._machine_learning_services_mgmt_client_enums import Autosave from ._machine_learning_services_mgmt_client_enums import BatchLoggingLevel @@ -400,7 +436,9 @@ from ._machine_learning_services_mgmt_client_enums import EndpointAuthMode from ._machine_learning_services_mgmt_client_enums import EndpointComputeType from ._machine_learning_services_mgmt_client_enums import EndpointProvisioningState +from ._machine_learning_services_mgmt_client_enums import EndpointServiceConnectionStatus from ._machine_learning_services_mgmt_client_enums import EnvironmentType +from ._machine_learning_services_mgmt_client_enums import EnvironmentVariableType from ._machine_learning_services_mgmt_client_enums import FeatureLags from ._machine_learning_services_mgmt_client_enums import FeaturizationMode from ._machine_learning_services_mgmt_client_enums import ForecastHorizonMode @@ -408,6 +446,7 @@ from ._machine_learning_services_mgmt_client_enums import ForecastingPrimaryMetrics from ._machine_learning_services_mgmt_client_enums import Goal from ._machine_learning_services_mgmt_client_enums import IdentityConfigurationType +from ._machine_learning_services_mgmt_client_enums import ImageType from ._machine_learning_services_mgmt_client_enums import InputDeliveryMode from ._machine_learning_services_mgmt_client_enums import InstanceSegmentationPrimaryMetrics from ._machine_learning_services_mgmt_client_enums import JobInputType @@ -427,6 +466,7 @@ from ._machine_learning_services_mgmt_client_enums import NCrossValidationsMode from ._machine_learning_services_mgmt_client_enums import Network from ._machine_learning_services_mgmt_client_enums import NodeState +from ._machine_learning_services_mgmt_client_enums import NodesValueType from ._machine_learning_services_mgmt_client_enums import ObjectDetectionPrimaryMetrics from ._machine_learning_services_mgmt_client_enums import OperatingSystemType from ._machine_learning_services_mgmt_client_enums import OperationName @@ -435,8 +475,11 @@ from ._machine_learning_services_mgmt_client_enums import OrderString from ._machine_learning_services_mgmt_client_enums import OsType from ._machine_learning_services_mgmt_client_enums import OutputDeliveryMode +from ._machine_learning_services_mgmt_client_enums import PendingUploadCredentialType +from ._machine_learning_services_mgmt_client_enums import PendingUploadType from ._machine_learning_services_mgmt_client_enums import PrivateEndpointConnectionProvisioningState from ._machine_learning_services_mgmt_client_enums import PrivateEndpointServiceConnectionStatus +from ._machine_learning_services_mgmt_client_enums import Protocol from ._machine_learning_services_mgmt_client_enums import ProvisioningState from ._machine_learning_services_mgmt_client_enums import ProvisioningStatus from ._machine_learning_services_mgmt_client_enums import PublicNetworkAccess @@ -482,6 +525,7 @@ from ._machine_learning_services_mgmt_client_enums import ValidationMetricType from ._machine_learning_services_mgmt_client_enums import ValueFormat from ._machine_learning_services_mgmt_client_enums import VmPriority +from ._machine_learning_services_mgmt_client_enums import VolumeDefinitionType from ._machine_learning_services_mgmt_client_enums import WeekDay from ._patch import __all__ as _patch_all from ._patch import * # pylint: disable=unused-wildcard-import @@ -493,9 +537,11 @@ "AKSSchemaProperties", "AccountKeyDatastoreCredentials", "AccountKeyDatastoreSecrets", + "AcrDetails", "AksComputeSecrets", "AksComputeSecretsProperties", "AksNetworkingConfiguration", + "AllNodes", "AmlCompute", "AmlComputeNodeInformation", "AmlComputeNodesInformation", @@ -506,6 +552,7 @@ "AmlOperationListResult", "AmlToken", "AmlUserFeature", + "ArmResourceId", "AssetBase", "AssetContainer", "AssetJobInput", @@ -535,6 +582,8 @@ "BatchEndpointTrackedResourceArmPaginatedResult", "BatchRetrySettings", "BayesianSamplingAlgorithm", + "BindOptions", + "BlobReferenceForConsumptionDto", "BuildContext", "CertificateDatastoreCredentials", "CertificateDatastoreSecrets", @@ -579,12 +628,14 @@ "ContainerResourceRequirements", "ContainerResourceSettings", "CosmosDbSettings", + "Cron", "CronTrigger", "CustomForecastHorizon", "CustomModelJobInput", "CustomModelJobOutput", "CustomNCrossValidations", "CustomSeasonality", + "CustomService", "CustomTargetLags", "CustomTargetRollingWindowSize", "DataContainer", @@ -618,9 +669,11 @@ "DiagnoseResult", "DiagnoseWorkspaceParameters", "DistributionConfiguration", + "Docker", "EarlyTerminationPolicy", "EncryptionKeyVaultProperties", "EncryptionProperty", + "Endpoint", "EndpointAuthKeys", "EndpointAuthToken", "EndpointDeploymentPropertiesBase", @@ -629,6 +682,7 @@ "EnvironmentContainer", "EnvironmentContainerProperties", "EnvironmentContainerResourceArmPaginatedResult", + "EnvironmentVariable", "EnvironmentVersion", "EnvironmentVersionProperties", "EnvironmentVersionResourceArmPaginatedResult", @@ -655,11 +709,14 @@ "IdAssetReference", "IdentityConfiguration", "IdentityForCmk", + "IdleShutdownSetting", + "Image", "ImageClassification", "ImageClassificationBase", "ImageClassificationMultilabel", "ImageInstanceSegmentation", "ImageLimitSettings", + "ImageMetadata", "ImageModelDistributionSettings", "ImageModelDistributionSettingsClassification", "ImageModelDistributionSettingsObjectDetection", @@ -715,6 +772,7 @@ "NlpVerticalFeaturizationSettings", "NlpVerticalLimitSettings", "NodeStateCounts", + "Nodes", "NoneAuthTypeWorkspaceConnectionProperties", "NoneDatastoreCredentials", "NotebookAccessTokenResult", @@ -738,13 +796,18 @@ "PartialMinimalTrackedResource", "PartialMinimalTrackedResourceWithIdentity", "PartialMinimalTrackedResourceWithSku", + "PartialRegistryPartialTrackedResource", "PartialSku", "Password", + "PendingUploadCredentialDto", + "PendingUploadRequestDto", + "PendingUploadResponseDto", "PersonalComputeInstanceSettings", "PipelineJob", "PrivateEndpoint", "PrivateEndpointConnection", "PrivateEndpointConnectionListResult", + "PrivateEndpointResource", "PrivateLinkResource", "PrivateLinkResourceListResult", "PrivateLinkServiceConnectionState", @@ -753,10 +816,17 @@ "QuotaBaseProperties", "QuotaUpdateParameters", "RandomSamplingAlgorithm", + "Recurrence", "RecurrenceSchedule", "RecurrenceTrigger", "RegenerateEndpointKeysRequest", + "Registry", "RegistryListCredentialsResult", + "RegistryPartialManagedServiceIdentity", + "RegistryPrivateEndpointConnection", + "RegistryPrivateLinkServiceConnectionState", + "RegistryRegionArmDetails", + "RegistryTrackedResourceArmPaginatedResult", "Regression", "RegressionTrainingSettings", "Resource", @@ -767,6 +837,7 @@ "ResourceQuota", "Route", "SASAuthTypeWorkspaceConnectionProperties", + "SASCredentialDto", "SamplingAlgorithm", "SasDatastoreCredentials", "SasDatastoreSecrets", @@ -792,10 +863,13 @@ "SkuSetting", "SslConfiguration", "StackEnsembleSettings", + "StorageAccountDetails", "SweepJob", "SweepJobLimits", "SynapseSpark", "SynapseSparkProperties", + "SystemCreatedAcrAccount", + "SystemCreatedStorageAccount", "SystemData", "SystemService", "TableVertical", @@ -808,6 +882,7 @@ "TextClassification", "TextClassificationMultilabel", "TextNer", + "TmpfsOptions", "TrackedResource", "TrainingSettings", "TrialComponent", @@ -827,6 +902,8 @@ "UsageName", "UserAccountCredentials", "UserAssignedIdentity", + "UserCreatedAcrAccount", + "UserCreatedStorageAccount", "UserIdentity", "UsernamePasswordAuthTypeWorkspaceConnectionProperties", "VirtualMachine", @@ -838,6 +915,8 @@ "VirtualMachineSize", "VirtualMachineSizeListResult", "VirtualMachineSshCredentials", + "VolumeDefinition", + "VolumeOptions", "Workspace", "WorkspaceConnectionManagedIdentity", "WorkspaceConnectionPersonalAccessToken", @@ -850,6 +929,7 @@ "WorkspaceUpdateParameters", "AllocationState", "ApplicationSharingPolicy", + "AssetProvisioningState", "AutoRebuildSetting", "Autosave", "BatchLoggingLevel", @@ -881,7 +961,9 @@ "EndpointAuthMode", "EndpointComputeType", "EndpointProvisioningState", + "EndpointServiceConnectionStatus", "EnvironmentType", + "EnvironmentVariableType", "FeatureLags", "FeaturizationMode", "ForecastHorizonMode", @@ -889,6 +971,7 @@ "ForecastingPrimaryMetrics", "Goal", "IdentityConfigurationType", + "ImageType", "InputDeliveryMode", "InstanceSegmentationPrimaryMetrics", "JobInputType", @@ -908,6 +991,7 @@ "NCrossValidationsMode", "Network", "NodeState", + "NodesValueType", "ObjectDetectionPrimaryMetrics", "OperatingSystemType", "OperationName", @@ -916,8 +1000,11 @@ "OrderString", "OsType", "OutputDeliveryMode", + "PendingUploadCredentialType", + "PendingUploadType", "PrivateEndpointConnectionProvisioningState", "PrivateEndpointServiceConnectionStatus", + "Protocol", "ProvisioningState", "ProvisioningStatus", "PublicNetworkAccess", @@ -963,6 +1050,7 @@ "ValidationMetricType", "ValueFormat", "VmPriority", + "VolumeDefinitionType", "WeekDay", ] __all__.extend([p for p in _patch_all if p not in __all__]) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py index 640b9b12a650..a32b5b391440 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py @@ -32,6 +32,17 @@ class ApplicationSharingPolicy(str, Enum, metaclass=CaseInsensitiveEnumMeta): SHARED = "Shared" +class AssetProvisioningState(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Provisioning state of registry asset.""" + + SUCCEEDED = "Succeeded" + FAILED = "Failed" + CANCELED = "Canceled" + CREATING = "Creating" + UPDATING = "Updating" + DELETING = "Deleting" + + class AutoRebuildSetting(str, Enum, metaclass=CaseInsensitiveEnumMeta): """AutoRebuild setting for the derived image.""" @@ -74,30 +85,30 @@ class BillingCurrency(str, Enum, metaclass=CaseInsensitiveEnumMeta): class BlockedTransformers(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all classification models supported by AutoML.""" - #: Target encoding for text data. TEXT_TARGET_ENCODER = "TextTargetEncoder" - #: Ohe hot encoding creates a binary feature transformation. + """Target encoding for text data.""" ONE_HOT_ENCODER = "OneHotEncoder" - #: Target encoding for categorical data. + """Ohe hot encoding creates a binary feature transformation.""" CAT_TARGET_ENCODER = "CatTargetEncoder" - #: Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term - #: weighting scheme for identifying information from documents. + """Target encoding for categorical data.""" TF_IDF = "TfIdf" - #: Weight of Evidence encoding is a technique used to encode categorical variables. It uses the - #: natural log of the P(1)/P(0) to create weights. + """Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term + #: weighting scheme for identifying information from documents.""" WO_E_TARGET_ENCODER = "WoETargetEncoder" - #: Label encoder converts labels/categorical variables in a numerical form. + """Weight of Evidence encoding is a technique used to encode categorical variables. It uses the + #: natural log of the P(1)/P(0) to create weights.""" LABEL_ENCODER = "LabelEncoder" - #: Word embedding helps represents words or phrases as a vector, or a series of numbers. + """Label encoder converts labels/categorical variables in a numerical form.""" WORD_EMBEDDING = "WordEmbedding" - #: Naive Bayes is a classified that is used for classification of discrete features that are - #: categorically distributed. + """Word embedding helps represents words or phrases as a vector, or a series of numbers.""" NAIVE_BAYES = "NaiveBayes" - #: Count Vectorizer converts a collection of text documents to a matrix of token counts. + """Naive Bayes is a classified that is used for classification of discrete features that are + #: categorically distributed.""" COUNT_VECTORIZER = "CountVectorizer" - #: Hashing One Hot Encoder can turn categorical variables into a limited number of new features. - #: This is often used for high-cardinality categorical features. + """Count Vectorizer converts a collection of text documents to a matrix of token counts.""" HASH_ONE_HOT_ENCODER = "HashOneHotEncoder" + """Hashing One Hot Encoder can turn categorical variables into a limited number of new features. + #: This is often used for high-cardinality categorical features.""" class Caching(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -111,107 +122,107 @@ class Caching(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ClassificationModels(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all classification models supported by AutoML.""" - #: Logistic regression is a fundamental classification technique. + LOGISTIC_REGRESSION = "LogisticRegression" + """Logistic regression is a fundamental classification technique. #: It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear #: regression. #: Logistic regression is fast and relatively uncomplicated, and it's convenient for you to #: interpret the results. #: Although it's essentially a method for binary classification, it can also be applied to - #: multiclass problems. - LOGISTIC_REGRESSION = "LogisticRegression" - #: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning + #: multiclass problems.""" + SGD = "SGD" + """SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning #: applications #: to find the model parameters that correspond to the best fit between predicted and actual - #: outputs. - SGD = "SGD" - #: The multinomial Naive Bayes classifier is suitable for classification with discrete features + #: outputs.""" + MULTINOMIAL_NAIVE_BAYES = "MultinomialNaiveBayes" + """The multinomial Naive Bayes classifier is suitable for classification with discrete features #: (e.g., word counts for text classification). #: The multinomial distribution normally requires integer feature counts. However, in practice, - #: fractional counts such as tf-idf may also work. - MULTINOMIAL_NAIVE_BAYES = "MultinomialNaiveBayes" - #: Naive Bayes classifier for multivariate Bernoulli models. + #: fractional counts such as tf-idf may also work.""" BERNOULLI_NAIVE_BAYES = "BernoulliNaiveBayes" - #: A support vector machine (SVM) is a supervised machine learning model that uses classification + """Naive Bayes classifier for multivariate Bernoulli models.""" + SVM = "SVM" + """A support vector machine (SVM) is a supervised machine learning model that uses classification #: algorithms for two-group classification problems. #: After giving an SVM model sets of labeled training data for each category, they're able to - #: categorize new text. - SVM = "SVM" - #: A support vector machine (SVM) is a supervised machine learning model that uses classification + #: categorize new text.""" + LINEAR_SVM = "LinearSVM" + """A support vector machine (SVM) is a supervised machine learning model that uses classification #: algorithms for two-group classification problems. #: After giving an SVM model sets of labeled training data for each category, they're able to #: categorize new text. #: Linear SVM performs best when input data is linear, i.e., data can be easily classified by - #: drawing the straight line between classified values on a plotted graph. - LINEAR_SVM = "LinearSVM" - #: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new + #: drawing the straight line between classified values on a plotted graph.""" + KNN = "KNN" + """K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new #: datapoints #: which further means that the new data point will be assigned a value based on how closely it - #: matches the points in the training set. - KNN = "KNN" - #: Decision Trees are a non-parametric supervised learning method used for both classification and + #: matches the points in the training set.""" + DECISION_TREE = "DecisionTree" + """Decision Trees are a non-parametric supervised learning method used for both classification and #: regression tasks. #: The goal is to create a model that predicts the value of a target variable by learning simple - #: decision rules inferred from the data features. - DECISION_TREE = "DecisionTree" - #: Random forest is a supervised learning algorithm. + #: decision rules inferred from the data features.""" + RANDOM_FOREST = "RandomForest" + """Random forest is a supervised learning algorithm. #: The "forest"\ it builds, is an ensemble of decision trees, usually trained with the “bagging”\ #: method. #: The general idea of the bagging method is that a combination of learning models increases the - #: overall result. - RANDOM_FOREST = "RandomForest" - #: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many - #: decision trees. It is related to the widely used random forest algorithm. + #: overall result.""" EXTREME_RANDOM_TREES = "ExtremeRandomTrees" - #: LightGBM is a gradient boosting framework that uses tree based learning algorithms. + """Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many + #: decision trees. It is related to the widely used random forest algorithm.""" LIGHT_GBM = "LightGBM" - #: The technique of transiting week learners into a strong learner is called Boosting. The - #: gradient boosting algorithm process works on this theory of execution. + """LightGBM is a gradient boosting framework that uses tree based learning algorithms.""" GRADIENT_BOOSTING = "GradientBoosting" - #: XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where - #: target column values can be divided into distinct class values. + """The technique of transiting week learners into a strong learner is called Boosting. The + #: gradient boosting algorithm process works on this theory of execution.""" XG_BOOST_CLASSIFIER = "XGBoostClassifier" + """XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where + #: target column values can be divided into distinct class values.""" class ClassificationMultilabelPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for classification multilabel tasks.""" - #: AUC is the Area under the curve. - #: This metric represents arithmetic mean of the score for each class, - #: weighted by the number of true instances in each class. AUC_WEIGHTED = "AUCWeighted" - #: Accuracy is the ratio of predictions that exactly match the true class labels. + """AUC is the Area under the curve. + #: This metric represents arithmetic mean of the score for each class, + #: weighted by the number of true instances in each class.""" ACCURACY = "Accuracy" - #: Normalized macro recall is recall macro-averaged and normalized, so that random - #: performance has a score of 0, and perfect performance has a score of 1. + """Accuracy is the ratio of predictions that exactly match the true class labels.""" NORM_MACRO_RECALL = "NormMacroRecall" - #: The arithmetic mean of the average precision score for each class, weighted by - #: the number of true instances in each class. + """Normalized macro recall is recall macro-averaged and normalized, so that random + #: performance has a score of 0, and perfect performance has a score of 1.""" AVERAGE_PRECISION_SCORE_WEIGHTED = "AveragePrecisionScoreWeighted" - #: The arithmetic mean of precision for each class, weighted by number of true instances in each - #: class. + """The arithmetic mean of the average precision score for each class, weighted by + #: the number of true instances in each class.""" PRECISION_SCORE_WEIGHTED = "PrecisionScoreWeighted" - #: Intersection Over Union. Intersection of predictions divided by union of predictions. + """The arithmetic mean of precision for each class, weighted by number of true instances in each + #: class.""" IOU = "IOU" + """Intersection Over Union. Intersection of predictions divided by union of predictions.""" class ClassificationPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for classification tasks.""" - #: AUC is the Area under the curve. - #: This metric represents arithmetic mean of the score for each class, - #: weighted by the number of true instances in each class. AUC_WEIGHTED = "AUCWeighted" - #: Accuracy is the ratio of predictions that exactly match the true class labels. + """AUC is the Area under the curve. + #: This metric represents arithmetic mean of the score for each class, + #: weighted by the number of true instances in each class.""" ACCURACY = "Accuracy" - #: Normalized macro recall is recall macro-averaged and normalized, so that random - #: performance has a score of 0, and perfect performance has a score of 1. + """Accuracy is the ratio of predictions that exactly match the true class labels.""" NORM_MACRO_RECALL = "NormMacroRecall" - #: The arithmetic mean of the average precision score for each class, weighted by - #: the number of true instances in each class. + """Normalized macro recall is recall macro-averaged and normalized, so that random + #: performance has a score of 0, and perfect performance has a score of 1.""" AVERAGE_PRECISION_SCORE_WEIGHTED = "AveragePrecisionScoreWeighted" - #: The arithmetic mean of precision for each class, weighted by number of true instances in each - #: class. + """The arithmetic mean of the average precision score for each class, weighted by + #: the number of true instances in each class.""" PRECISION_SCORE_WEIGHTED = "PrecisionScoreWeighted" + """The arithmetic mean of precision for each class, weighted by number of true instances in each + #: class.""" class ClusterPurpose(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -410,6 +421,15 @@ class EndpointProvisioningState(str, Enum, metaclass=CaseInsensitiveEnumMeta): CANCELED = "Canceled" +class EndpointServiceConnectionStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Connection status of the service consumer with the service provider.""" + + APPROVED = "Approved" + PENDING = "Pending" + REJECTED = "Rejected" + DISCONNECTED = "Disconnected" + + class EnvironmentType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Environment type is either user created or curated by Azure ML service.""" @@ -417,128 +437,134 @@ class EnvironmentType(str, Enum, metaclass=CaseInsensitiveEnumMeta): USER_CREATED = "UserCreated" +class EnvironmentVariableType(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Type of the Environment Variable. Possible values are: local - For local variable.""" + + LOCAL = "local" + + class FeatureLags(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Flag for generating lags for the numeric features.""" - #: No feature lags generated. NONE = "None" - #: System auto-generates feature lags. + """No feature lags generated.""" AUTO = "Auto" + """System auto-generates feature lags.""" class FeaturizationMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Featurization mode - determines data featurization mode.""" - #: Auto mode, system performs featurization without any custom featurization inputs. AUTO = "Auto" - #: Custom featurization. + """Auto mode, system performs featurization without any custom featurization inputs.""" CUSTOM = "Custom" - #: Featurization off. 'Forecasting' task cannot use this value. + """Custom featurization.""" OFF = "Off" + """Featurization off. 'Forecasting' task cannot use this value.""" class ForecastHorizonMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum to determine forecast horizon selection mode.""" - #: Forecast horizon to be determined automatically. AUTO = "Auto" - #: Use the custom forecast horizon. + """Forecast horizon to be determined automatically.""" CUSTOM = "Custom" + """Use the custom forecast horizon.""" class ForecastingModels(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all forecasting models supported by AutoML.""" - #: Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and + AUTO_ARIMA = "AutoArima" + """Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and #: statistical analysis to interpret the data and make future predictions. #: This model aims to explain data by using time series data on its past values and uses linear - #: regression to make predictions. - AUTO_ARIMA = "AutoArima" - #: Prophet is a procedure for forecasting time series data based on an additive model where + #: regression to make predictions.""" + PROPHET = "Prophet" + """Prophet is a procedure for forecasting time series data based on an additive model where #: non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. #: It works best with time series that have strong seasonal effects and several seasons of #: historical data. Prophet is robust to missing data and shifts in the trend, and typically - #: handles outliers well. - PROPHET = "Prophet" - #: The Naive forecasting model makes predictions by carrying forward the latest target value for - #: each time-series in the training data. + #: handles outliers well.""" NAIVE = "Naive" - #: The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of - #: target values for each time-series in the training data. + """The Naive forecasting model makes predictions by carrying forward the latest target value for + #: each time-series in the training data.""" SEASONAL_NAIVE = "SeasonalNaive" - #: The Average forecasting model makes predictions by carrying forward the average of the target - #: values for each time-series in the training data. + """The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of + #: target values for each time-series in the training data.""" AVERAGE = "Average" - #: The Seasonal Average forecasting model makes predictions by carrying forward the average value - #: of the latest season of data for each time-series in the training data. + """The Average forecasting model makes predictions by carrying forward the average of the target + #: values for each time-series in the training data.""" SEASONAL_AVERAGE = "SeasonalAverage" - #: Exponential smoothing is a time series forecasting method for univariate data that can be - #: extended to support data with a systematic trend or seasonal component. + """The Seasonal Average forecasting model makes predictions by carrying forward the average value + #: of the latest season of data for each time-series in the training data.""" EXPONENTIAL_SMOOTHING = "ExponentialSmoothing" - #: An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be + """Exponential smoothing is a time series forecasting method for univariate data that can be + #: extended to support data with a systematic trend or seasonal component.""" + ARIMAX = "Arimax" + """An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be #: viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or #: more moving average (MA) terms. #: This method is suitable for forecasting when data is stationary/non stationary, and - #: multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity. - ARIMAX = "Arimax" - #: TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for - #: brief intro. + #: multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.""" TCN_FORECASTER = "TCNForecaster" - #: Elastic net is a popular type of regularized linear regression that combines two popular - #: penalties, specifically the L1 and L2 penalty functions. + """TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for + #: brief intro.""" ELASTIC_NET = "ElasticNet" - #: The technique of transiting week learners into a strong learner is called Boosting. The - #: gradient boosting algorithm process works on this theory of execution. + """Elastic net is a popular type of regularized linear regression that combines two popular + #: penalties, specifically the L1 and L2 penalty functions.""" GRADIENT_BOOSTING = "GradientBoosting" - #: Decision Trees are a non-parametric supervised learning method used for both classification and + """The technique of transiting week learners into a strong learner is called Boosting. The + #: gradient boosting algorithm process works on this theory of execution.""" + DECISION_TREE = "DecisionTree" + """Decision Trees are a non-parametric supervised learning method used for both classification and #: regression tasks. #: The goal is to create a model that predicts the value of a target variable by learning simple - #: decision rules inferred from the data features. - DECISION_TREE = "DecisionTree" - #: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new + #: decision rules inferred from the data features.""" + KNN = "KNN" + """K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new #: datapoints #: which further means that the new data point will be assigned a value based on how closely it - #: matches the points in the training set. - KNN = "KNN" - #: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an - #: L1 prior as regularizer. + #: matches the points in the training set.""" LASSO_LARS = "LassoLars" - #: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning + """Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an + #: L1 prior as regularizer.""" + SGD = "SGD" + """SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning #: applications #: to find the model parameters that correspond to the best fit between predicted and actual #: outputs. - #: It's an inexact but powerful technique. - SGD = "SGD" - #: Random forest is a supervised learning algorithm. + #: It's an inexact but powerful technique.""" + RANDOM_FOREST = "RandomForest" + """Random forest is a supervised learning algorithm. #: The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” #: method. #: The general idea of the bagging method is that a combination of learning models increases the - #: overall result. - RANDOM_FOREST = "RandomForest" - #: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many - #: decision trees. It is related to the widely used random forest algorithm. + #: overall result.""" EXTREME_RANDOM_TREES = "ExtremeRandomTrees" - #: LightGBM is a gradient boosting framework that uses tree based learning algorithms. + """Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many + #: decision trees. It is related to the widely used random forest algorithm.""" LIGHT_GBM = "LightGBM" - #: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model - #: using ensemble of base learners. + """LightGBM is a gradient boosting framework that uses tree based learning algorithms.""" XG_BOOST_REGRESSOR = "XGBoostRegressor" + """XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model + #: using ensemble of base learners.""" class ForecastingPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for Forecasting task.""" - #: The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. SPEARMAN_CORRELATION = "SpearmanCorrelation" - #: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between - #: models with different scales. + """The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation.""" NORMALIZED_ROOT_MEAN_SQUARED_ERROR = "NormalizedRootMeanSquaredError" - #: The R2 score is one of the performance evaluation measures for forecasting-based machine - #: learning models. + """The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between + #: models with different scales.""" R2_SCORE = "R2Score" - #: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute - #: Error (MAE) of (time) series with different scales. + """The R2 score is one of the performance evaluation measures for forecasting-based machine + #: learning models.""" NORMALIZED_MEAN_ABSOLUTE_ERROR = "NormalizedMeanAbsoluteError" + """The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute + #: Error (MAE) of (time) series with different scales.""" class Goal(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -556,6 +582,15 @@ class IdentityConfigurationType(str, Enum, metaclass=CaseInsensitiveEnumMeta): USER_IDENTITY = "UserIdentity" +class ImageType(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Type of the image. Possible values are: docker - For docker images. azureml - For AzureML + images. + """ + + DOCKER = "docker" + AZUREML = "azureml" + + class InputDeliveryMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum to determine the input data delivery mode.""" @@ -570,9 +605,9 @@ class InputDeliveryMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): class InstanceSegmentationPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for InstanceSegmentation tasks.""" - #: Mean Average Precision (MAP) is the average of AP (Average Precision). - #: AP is calculated for each class and averaged to get the MAP. MEAN_AVERAGE_PRECISION = "MeanAveragePrecision" + """Mean Average Precision (MAP) is the average of AP (Average Precision). + #: AP is calculated for each class and averaged to get the MAP.""" class JobInputType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -608,39 +643,39 @@ class JobOutputType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class JobStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The status of a job.""" - #: Run hasn't started yet. NOT_STARTED = "NotStarted" - #: Run has started. The user has a run ID. + """Run hasn't started yet.""" STARTING = "Starting" - #: (Not used currently) It will be used if ES is creating the compute target. + """Run has started. The user has a run ID.""" PROVISIONING = "Provisioning" - #: The run environment is being prepared. + """(Not used currently) It will be used if ES is creating the compute target.""" PREPARING = "Preparing" - #: The job is queued in the compute target. For example, in BatchAI the job is in queued state, - #: while waiting for all required nodes to be ready. + """The run environment is being prepared.""" QUEUED = "Queued" - #: The job started to run in the compute target. + """The job is queued in the compute target. For example, in BatchAI the job is in queued state, + #: while waiting for all required nodes to be ready.""" RUNNING = "Running" - #: Job is completed in the target. It is in output collection state now. + """The job started to run in the compute target.""" FINALIZING = "Finalizing" - #: Cancellation has been requested for the job. + """Job is completed in the target. It is in output collection state now.""" CANCEL_REQUESTED = "CancelRequested" - #: Job completed successfully. This reflects that both the job itself and output collection states - #: completed successfully + """Cancellation has been requested for the job.""" COMPLETED = "Completed" - #: Job failed. + """Job completed successfully. This reflects that both the job itself and output collection states + #: completed successfully""" FAILED = "Failed" - #: Following cancellation request, the job is now successfully canceled. + """Job failed.""" CANCELED = "Canceled" - #: When heartbeat is enabled, if the run isn't updating any information to RunHistory then the run + """Following cancellation request, the job is now successfully canceled.""" + NOT_RESPONDING = "NotResponding" + """When heartbeat is enabled, if the run isn't updating any information to RunHistory then the run #: goes to NotResponding state. #: NotResponding is the only state that is exempt from strict transition orders. A run can go from - #: NotResponding to any of the previous states. - NOT_RESPONDING = "NotResponding" - #: The job is paused by users. Some adjustment to labeling jobs can be made only in paused state. + #: NotResponding to any of the previous states.""" PAUSED = "Paused" - #: Default job status if not mapped to all other statuses + """The job is paused by users. Some adjustment to labeling jobs can be made only in paused state.""" UNKNOWN = "Unknown" + """Default job status if not mapped to all other statuses""" class JobType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -662,12 +697,12 @@ class KeyType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class LearningRateScheduler(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Learning rate scheduler enum.""" - #: No learning rate scheduler selected. NONE = "None" - #: Cosine Annealing With Warmup. + """No learning rate scheduler selected.""" WARMUP_COSINE = "WarmupCosine" - #: Step learning rate scheduler. + """Cosine Annealing With Warmup.""" STEP = "Step" + """Step learning rate scheduler.""" class ListViewType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -688,18 +723,18 @@ class LoadBalancerType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class LogVerbosity(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for setting log verbosity.""" - #: No logs emitted. NOT_SET = "NotSet" - #: Debug and above log statements logged. + """No logs emitted.""" DEBUG = "Debug" - #: Info and above log statements logged. + """Debug and above log statements logged.""" INFO = "Info" - #: Warning and above log statements logged. + """Info and above log statements logged.""" WARNING = "Warning" - #: Error and above log statements logged. + """Warning and above log statements logged.""" ERROR = "Error" - #: Only critical statements logged. + """Error and above log statements logged.""" CRITICAL = "Critical" + """Only critical statements logged.""" class ManagedServiceIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -716,16 +751,16 @@ class ManagedServiceIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ModelSize(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Image model size.""" - #: No value selected. NONE = "None" - #: Small size. + """No value selected.""" SMALL = "Small" - #: Medium size. + """Small size.""" MEDIUM = "Medium" - #: Large size. + """Medium size.""" LARGE = "Large" - #: Extra large size. + """Large size.""" EXTRA_LARGE = "ExtraLarge" + """Extra large size.""" class MountAction(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -749,11 +784,11 @@ class MountState(str, Enum, metaclass=CaseInsensitiveEnumMeta): class NCrossValidationsMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Determines how N-Cross validations value is determined.""" - #: Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML - #: task. AUTO = "Auto" - #: Use custom N-Cross validations value. + """Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML + #: task.""" CUSTOM = "Custom" + """Use custom N-Cross validations value.""" class Network(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -776,12 +811,18 @@ class NodeState(str, Enum, metaclass=CaseInsensitiveEnumMeta): PREEMPTED = "preempted" +class NodesValueType(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """The enumerated types for the nodes value.""" + + ALL = "All" + + class ObjectDetectionPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for Image ObjectDetection task.""" - #: Mean Average Precision (MAP) is the average of AP (Average Precision). - #: AP is calculated for each class and averaged to get the MAP. MEAN_AVERAGE_PRECISION = "MeanAveragePrecision" + """Mean Average Precision (MAP) is the average of AP (Average Precision). + #: AP is calculated for each class and averaged to get the MAP.""" class OperatingSystemType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -846,6 +887,19 @@ class OutputDeliveryMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): UPLOAD = "Upload" +class PendingUploadCredentialType(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Enum to determine the PendingUpload credentials type.""" + + SAS = "SAS" + + +class PendingUploadType(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Type of storage to use for the pending upload location.""" + + NONE = "None" + TEMPORARY_BLOB_REFERENCE = "TemporaryBlobReference" + + class PrivateEndpointConnectionProvisioningState(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The current provisioning state.""" @@ -865,6 +919,14 @@ class PrivateEndpointServiceConnectionStatus(str, Enum, metaclass=CaseInsensitiv TIMEOUT = "Timeout" +class Protocol(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Protocol over which communication will happen over this endpoint.""" + + TCP = "tcp" + UDP = "udp" + HTTP = "http" + + class ProvisioningState(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The current deployment state of workspace resource. The provisioningState is to indicate states for resource provisioning. @@ -917,16 +979,16 @@ class RandomSamplingAlgorithmRule(str, Enum, metaclass=CaseInsensitiveEnumMeta): class RecurrenceFrequency(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum to describe the frequency of a recurrence schedule.""" - #: Minute frequency MINUTE = "Minute" - #: Hour frequency + """Minute frequency""" HOUR = "Hour" - #: Day frequency + """Hour frequency""" DAY = "Day" - #: Week frequency + """Day frequency""" WEEK = "Week" - #: Month frequency + """Week frequency""" MONTH = "Month" + """Month frequency""" class ReferenceType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -940,61 +1002,61 @@ class ReferenceType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class RegressionModels(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all Regression models supported by AutoML.""" - #: Elastic net is a popular type of regularized linear regression that combines two popular - #: penalties, specifically the L1 and L2 penalty functions. ELASTIC_NET = "ElasticNet" - #: The technique of transiting week learners into a strong learner is called Boosting. The - #: gradient boosting algorithm process works on this theory of execution. + """Elastic net is a popular type of regularized linear regression that combines two popular + #: penalties, specifically the L1 and L2 penalty functions.""" GRADIENT_BOOSTING = "GradientBoosting" - #: Decision Trees are a non-parametric supervised learning method used for both classification and + """The technique of transiting week learners into a strong learner is called Boosting. The + #: gradient boosting algorithm process works on this theory of execution.""" + DECISION_TREE = "DecisionTree" + """Decision Trees are a non-parametric supervised learning method used for both classification and #: regression tasks. #: The goal is to create a model that predicts the value of a target variable by learning simple - #: decision rules inferred from the data features. - DECISION_TREE = "DecisionTree" - #: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new + #: decision rules inferred from the data features.""" + KNN = "KNN" + """K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new #: datapoints #: which further means that the new data point will be assigned a value based on how closely it - #: matches the points in the training set. - KNN = "KNN" - #: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an - #: L1 prior as regularizer. + #: matches the points in the training set.""" LASSO_LARS = "LassoLars" - #: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning + """Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an + #: L1 prior as regularizer.""" + SGD = "SGD" + """SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning #: applications #: to find the model parameters that correspond to the best fit between predicted and actual #: outputs. - #: It's an inexact but powerful technique. - SGD = "SGD" - #: Random forest is a supervised learning algorithm. + #: It's an inexact but powerful technique.""" + RANDOM_FOREST = "RandomForest" + """Random forest is a supervised learning algorithm. #: The "forest"\ it builds, is an ensemble of decision trees, usually trained with the “bagging”\ #: method. #: The general idea of the bagging method is that a combination of learning models increases the - #: overall result. - RANDOM_FOREST = "RandomForest" - #: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many - #: decision trees. It is related to the widely used random forest algorithm. + #: overall result.""" EXTREME_RANDOM_TREES = "ExtremeRandomTrees" - #: LightGBM is a gradient boosting framework that uses tree based learning algorithms. + """Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many + #: decision trees. It is related to the widely used random forest algorithm.""" LIGHT_GBM = "LightGBM" - #: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model - #: using ensemble of base learners. + """LightGBM is a gradient boosting framework that uses tree based learning algorithms.""" XG_BOOST_REGRESSOR = "XGBoostRegressor" + """XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model + #: using ensemble of base learners.""" class RegressionPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for Regression task.""" - #: The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. SPEARMAN_CORRELATION = "SpearmanCorrelation" - #: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between - #: models with different scales. + """The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation.""" NORMALIZED_ROOT_MEAN_SQUARED_ERROR = "NormalizedRootMeanSquaredError" - #: The R2 score is one of the performance evaluation measures for forecasting-based machine - #: learning models. + """The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between + #: models with different scales.""" R2_SCORE = "R2Score" - #: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute - #: Error (MAE) of (time) series with different scales. + """The R2 score is one of the performance evaluation measures for forecasting-based machine + #: learning models.""" NORMALIZED_MEAN_ABSOLUTE_ERROR = "NormalizedMeanAbsoluteError" + """The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute + #: Error (MAE) of (time) series with different scales.""" class RemoteLoginPortPublicAccess(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1070,10 +1132,10 @@ class ScheduleStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta): class SeasonalityMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Forecasting seasonality mode.""" - #: Seasonality to be determined automatically. AUTO = "Auto" - #: Use the custom seasonality value. + """Seasonality to be determined automatically.""" CUSTOM = "Custom" + """Use the custom seasonality value.""" class SecretsType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1088,37 +1150,37 @@ class SecretsType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ServiceDataAccessAuthIdentity(str, Enum, metaclass=CaseInsensitiveEnumMeta): """ServiceDataAccessAuthIdentity.""" - #: Do not use any identity for service data access. NONE = "None" - #: Use the system assigned managed identity of the Workspace to authenticate service data access. + """Do not use any identity for service data access.""" WORKSPACE_SYSTEM_ASSIGNED_IDENTITY = "WorkspaceSystemAssignedIdentity" - #: Use the user assigned managed identity of the Workspace to authenticate service data access. + """Use the system assigned managed identity of the Workspace to authenticate service data access.""" WORKSPACE_USER_ASSIGNED_IDENTITY = "WorkspaceUserAssignedIdentity" + """Use the user assigned managed identity of the Workspace to authenticate service data access.""" class ShortSeriesHandlingConfiguration(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The parameter defining how if AutoML should handle short time series.""" - #: Represents no/null value. NONE = "None" - #: Short series will be padded if there are no long series, otherwise short series will be - #: dropped. + """Represents no/null value.""" AUTO = "Auto" - #: All the short series will be padded. + """Short series will be padded if there are no long series, otherwise short series will be + #: dropped.""" PAD = "Pad" - #: All the short series will be dropped. + """All the short series will be padded.""" DROP = "Drop" + """All the short series will be dropped.""" class SkuScaleType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Node scaling setting for the compute sku.""" - #: Automatically scales node count. AUTOMATIC = "Automatic" - #: Node count scaled upon user request. + """Automatically scales node count.""" MANUAL = "Manual" - #: Fixed set of nodes. + """Node count scaled upon user request.""" NONE = "None" + """Fixed set of nodes.""" class SkuTier(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1168,15 +1230,15 @@ class StackMetaLearnerType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """ NONE = "None" - #: Default meta-learners are LogisticRegression for classification tasks. LOGISTIC_REGRESSION = "LogisticRegression" - #: Default meta-learners are LogisticRegression for classification task when CV is on. + """Default meta-learners are LogisticRegression for classification tasks.""" LOGISTIC_REGRESSION_CV = "LogisticRegressionCV" + """Default meta-learners are LogisticRegression for classification task when CV is on.""" LIGHT_GBM_CLASSIFIER = "LightGBMClassifier" - #: Default meta-learners are LogisticRegression for regression task. ELASTIC_NET = "ElasticNet" - #: Default meta-learners are LogisticRegression for regression task when CV is on. + """Default meta-learners are LogisticRegression for regression task.""" ELASTIC_NET_CV = "ElasticNetCV" + """Default meta-learners are LogisticRegression for regression task when CV is on.""" LIGHT_GBM_REGRESSOR = "LightGBMRegressor" LINEAR_REGRESSION = "LinearRegression" @@ -1197,15 +1259,15 @@ class Status(str, Enum, metaclass=CaseInsensitiveEnumMeta): class StochasticOptimizer(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Stochastic optimizer for image models.""" - #: No optimizer selected. NONE = "None" - #: Stochastic Gradient Descent optimizer. + """No optimizer selected.""" SGD = "Sgd" - #: Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of - #: moments + """Stochastic Gradient Descent optimizer.""" ADAM = "Adam" - #: AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. + """Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of + #: moments""" ADAMW = "Adamw" + """AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay.""" class StorageAccountType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1218,8 +1280,8 @@ class StorageAccountType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class TargetAggregationFunction(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Target aggregate function.""" - #: Represent no value set. NONE = "None" + """Represent no value set.""" SUM = "Sum" MAX = "Max" MIN = "Min" @@ -1229,62 +1291,62 @@ class TargetAggregationFunction(str, Enum, metaclass=CaseInsensitiveEnumMeta): class TargetLagsMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Target lags selection modes.""" - #: Target lags to be determined automatically. AUTO = "Auto" - #: Use the custom target lags. + """Target lags to be determined automatically.""" CUSTOM = "Custom" + """Use the custom target lags.""" class TargetRollingWindowSizeMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Target rolling windows size mode.""" - #: Determine rolling windows size automatically. AUTO = "Auto" - #: Use the specified rolling window size. + """Determine rolling windows size automatically.""" CUSTOM = "Custom" + """Use the specified rolling window size.""" class TaskType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """AutoMLJob Task type.""" - #: Classification in machine learning and statistics is a supervised learning approach in which - #: the computer program learns from the data given to it and make new observations or - #: classifications. CLASSIFICATION = "Classification" - #: Regression means to predict the value using the input data. Regression models are used to - #: predict a continuous value. + """Classification in machine learning and statistics is a supervised learning approach in which + #: the computer program learns from the data given to it and make new observations or + #: classifications.""" REGRESSION = "Regression" - #: Forecasting is a special kind of regression task that deals with time-series data and creates - #: forecasting model - #: that can be used to predict the near future values based on the inputs. + """Regression means to predict the value using the input data. Regression models are used to + #: predict a continuous value.""" FORECASTING = "Forecasting" - #: Image Classification. Multi-class image classification is used when an image is classified with + """Forecasting is a special kind of regression task that deals with time-series data and creates + #: forecasting model + #: that can be used to predict the near future values based on the inputs.""" + IMAGE_CLASSIFICATION = "ImageClassification" + """Image Classification. Multi-class image classification is used when an image is classified with #: only a single label #: from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' - #: or a 'duck'. - IMAGE_CLASSIFICATION = "ImageClassification" - #: Image Classification Multilabel. Multi-label image classification is used when an image could - #: have one or more labels - #: from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. + #: or a 'duck'.""" IMAGE_CLASSIFICATION_MULTILABEL = "ImageClassificationMultilabel" - #: Image Object Detection. Object detection is used to identify objects in an image and locate - #: each object with a - #: bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. + """Image Classification Multilabel. Multi-label image classification is used when an image could + #: have one or more labels + #: from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.""" IMAGE_OBJECT_DETECTION = "ImageObjectDetection" - #: Image Instance Segmentation. Instance segmentation is used to identify objects in an image at - #: the pixel level, - #: drawing a polygon around each object in the image. + """Image Object Detection. Object detection is used to identify objects in an image and locate + #: each object with a + #: bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.""" IMAGE_INSTANCE_SEGMENTATION = "ImageInstanceSegmentation" - #: Text classification (also known as text tagging or text categorization) is the process of - #: sorting texts into categories. - #: Categories are mutually exclusive. + """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at + #: the pixel level, + #: drawing a polygon around each object in the image.""" TEXT_CLASSIFICATION = "TextClassification" - #: Multilabel classification task assigns each sample to a group (zero or more) of target labels. + """Text classification (also known as text tagging or text categorization) is the process of + #: sorting texts into categories. + #: Categories are mutually exclusive.""" TEXT_CLASSIFICATION_MULTILABEL = "TextClassificationMultilabel" - #: Text Named Entity Recognition a.k.a. TextNER. - #: Named Entity Recognition (NER) is the ability to take free-form text and identify the - #: occurrences of entities such as people, locations, organizations, and more. + """Multilabel classification task assigns each sample to a group (zero or more) of target labels.""" TEXT_NER = "TextNER" + """Text Named Entity Recognition a.k.a. TextNER. + #: Named Entity Recognition (NER) is the ability to take free-form text and identify the + #: occurrences of entities such as people, locations, organizations, and more.""" class TriggerType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1316,8 +1378,8 @@ class UsageUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta): class UseStl(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Configure STL Decomposition of the time-series target column.""" - #: No stl decomposition. NONE = "None" + """No stl decomposition.""" SEASON = "Season" SEASON_TREND = "SeasonTrend" @@ -1325,14 +1387,14 @@ class UseStl(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ValidationMetricType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Metric computation method to use for validation metrics in image tasks.""" - #: No metric. NONE = "None" - #: Coco metric. + """No metric.""" COCO = "Coco" - #: Voc metric. + """Coco metric.""" VOC = "Voc" - #: CocoVoc metric. + """Voc metric.""" COCO_VOC = "CocoVoc" + """CocoVoc metric.""" class ValueFormat(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1363,20 +1425,29 @@ class VMTier(str, Enum, metaclass=CaseInsensitiveEnumMeta): SPOT = "Spot" +class VolumeDefinitionType(str, Enum, metaclass=CaseInsensitiveEnumMeta): + """Type of Volume Definition. Possible Values: bind,volume,tmpfs,npipe.""" + + BIND = "bind" + VOLUME = "volume" + TMPFS = "tmpfs" + NPIPE = "npipe" + + class WeekDay(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum of weekday.""" - #: Monday weekday MONDAY = "Monday" - #: Tuesday weekday + """Monday weekday""" TUESDAY = "Tuesday" - #: Wednesday weekday + """Tuesday weekday""" WEDNESDAY = "Wednesday" - #: Thursday weekday + """Wednesday weekday""" THURSDAY = "Thursday" - #: Friday weekday + """Thursday weekday""" FRIDAY = "Friday" - #: Saturday weekday + """Friday weekday""" SATURDAY = "Saturday" - #: Sunday weekday + """Saturday weekday""" SUNDAY = "Sunday" + """Sunday weekday""" diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py index a0c8196e7297..736189ee6853 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py @@ -56,7 +56,7 @@ class DatastoreCredentials(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.credentials_type: Optional[str] = None @@ -84,7 +84,7 @@ class AccountKeyDatastoreCredentials(DatastoreCredentials): "secrets": {"key": "secrets", "type": "AccountKeyDatastoreSecrets"}, } - def __init__(self, *, secrets: "_models.AccountKeyDatastoreSecrets", **kwargs): + def __init__(self, *, secrets: "_models.AccountKeyDatastoreSecrets", **kwargs: Any) -> None: """ :keyword secrets: [Required] Storage account secrets. Required. :paramtype secrets: ~azure.mgmt.machinelearningservices.models.AccountKeyDatastoreSecrets @@ -125,7 +125,7 @@ class DatastoreSecrets(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.secrets_type: Optional[str] = None @@ -152,7 +152,7 @@ class AccountKeyDatastoreSecrets(DatastoreSecrets): "key": {"key": "key", "type": "str"}, } - def __init__(self, *, key: Optional[str] = None, **kwargs): + def __init__(self, *, key: Optional[str] = None, **kwargs: Any) -> None: """ :keyword key: Storage account key. :paramtype key: str @@ -162,6 +162,46 @@ def __init__(self, *, key: Optional[str] = None, **kwargs): self.key = key +class AcrDetails(_serialization.Model): + """Details of ACR account to be used for the Registry. + + :ivar system_created_acr_account: Details of system created ACR account to be used for the + Registry. + :vartype system_created_acr_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedAcrAccount + :ivar user_created_acr_account: Details of user created ACR account to be used for the + Registry. + :vartype user_created_acr_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedAcrAccount + """ + + _attribute_map = { + "system_created_acr_account": {"key": "systemCreatedAcrAccount", "type": "SystemCreatedAcrAccount"}, + "user_created_acr_account": {"key": "userCreatedAcrAccount", "type": "UserCreatedAcrAccount"}, + } + + def __init__( + self, + *, + system_created_acr_account: Optional["_models.SystemCreatedAcrAccount"] = None, + user_created_acr_account: Optional["_models.UserCreatedAcrAccount"] = None, + **kwargs: Any + ) -> None: + """ + :keyword system_created_acr_account: Details of system created ACR account to be used for the + Registry. + :paramtype system_created_acr_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedAcrAccount + :keyword user_created_acr_account: Details of user created ACR account to be used for the + Registry. + :paramtype user_created_acr_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedAcrAccount + """ + super().__init__(**kwargs) + self.system_created_acr_account = system_created_acr_account + self.user_created_acr_account = user_created_acr_account + + class AKSSchema(_serialization.Model): """AKSSchema. @@ -173,7 +213,7 @@ class AKSSchema(_serialization.Model): "properties": {"key": "properties", "type": "AKSSchemaProperties"}, } - def __init__(self, *, properties: Optional["_models.AKSSchemaProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.AKSSchemaProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: AKS properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties @@ -266,8 +306,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword compute_location: Location for the underlying compute. :paramtype compute_location: str @@ -361,8 +401,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: AKS properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties @@ -422,8 +462,8 @@ def __init__( user_kube_config: Optional[str] = None, admin_kube_config: Optional[str] = None, image_pull_secret_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword user_kube_config: Content of kubeconfig file that can be used to connect to the Kubernetes cluster. @@ -470,7 +510,7 @@ class ComputeSecrets(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.compute_type: Optional[str] = None @@ -512,8 +552,8 @@ def __init__( user_kube_config: Optional[str] = None, admin_kube_config: Optional[str] = None, image_pull_secret_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword user_kube_config: Content of kubeconfig file that can be used to connect to the Kubernetes cluster. @@ -574,8 +614,8 @@ def __init__( service_cidr: Optional[str] = None, dns_service_ip: Optional[str] = None, docker_bridge_cidr: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword subnet_id: Virtual network subnet resource ID the compute nodes belong to. :paramtype subnet_id: str @@ -652,8 +692,8 @@ def __init__( aks_networking_configuration: Optional["_models.AksNetworkingConfiguration"] = None, load_balancer_type: Union[str, "_models.LoadBalancerType"] = "PublicIp", load_balancer_subnet: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword cluster_fqdn: Cluster full qualified domain name. :paramtype cluster_fqdn: str @@ -688,6 +728,57 @@ def __init__( self.load_balancer_subnet = load_balancer_subnet +class Nodes(_serialization.Model): + """Abstract Nodes definition. + + You probably want to use the sub-classes and not this class directly. Known sub-classes are: + AllNodes + + All required parameters must be populated in order to send to Azure. + + :ivar nodes_value_type: [Required] Type of the Nodes value. Required. "All" + :vartype nodes_value_type: str or ~azure.mgmt.machinelearningservices.models.NodesValueType + """ + + _validation = { + "nodes_value_type": {"required": True}, + } + + _attribute_map = { + "nodes_value_type": {"key": "nodesValueType", "type": "str"}, + } + + _subtype_map = {"nodes_value_type": {"All": "AllNodes"}} + + def __init__(self, **kwargs: Any) -> None: + """ """ + super().__init__(**kwargs) + self.nodes_value_type: Optional[str] = None + + +class AllNodes(Nodes): + """All nodes means the service will be running on all of the nodes of the job. + + All required parameters must be populated in order to send to Azure. + + :ivar nodes_value_type: [Required] Type of the Nodes value. Required. "All" + :vartype nodes_value_type: str or ~azure.mgmt.machinelearningservices.models.NodesValueType + """ + + _validation = { + "nodes_value_type": {"required": True}, + } + + _attribute_map = { + "nodes_value_type": {"key": "nodesValueType", "type": "str"}, + } + + def __init__(self, **kwargs: Any) -> None: + """ """ + super().__init__(**kwargs) + self.nodes_value_type: str = "All" + + class AmlComputeSchema(_serialization.Model): """Properties(top level) of AmlCompute. @@ -699,7 +790,7 @@ class AmlComputeSchema(_serialization.Model): "properties": {"key": "properties", "type": "AmlComputeProperties"}, } - def __init__(self, *, properties: Optional["_models.AmlComputeProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.AmlComputeProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of AmlCompute. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties @@ -777,8 +868,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of AmlCompute. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties @@ -852,7 +943,7 @@ class AmlComputeNodeInformation(_serialization.Model): "run_id": {"key": "runId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.node_id = None @@ -884,7 +975,7 @@ class AmlComputeNodesInformation(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.nodes = None @@ -996,8 +1087,8 @@ def __init__( remote_login_port_public_access: Union[str, "_models.RemoteLoginPortPublicAccess"] = "NotSpecified", enable_node_public_ip: bool = True, property_bag: Optional[JSON] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword os_type: Compute OS Type. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.machinelearningservices.models.OsType @@ -1079,8 +1170,8 @@ def __init__( name: Optional[str] = None, display: Optional["_models.AmlOperationDisplay"] = None, is_data_action: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: Operation name: {provider}/{resource}/{operation}. :paramtype name: str @@ -1122,8 +1213,8 @@ def __init__( resource: Optional[str] = None, operation: Optional[str] = None, description: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword provider: The resource provider name: Microsoft.MachineLearningExperimentation. :paramtype provider: str @@ -1152,7 +1243,7 @@ class AmlOperationListResult(_serialization.Model): "value": {"key": "value", "type": "[AmlOperation]"}, } - def __init__(self, *, value: Optional[List["_models.AmlOperation"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.AmlOperation"]] = None, **kwargs: Any) -> None: """ :keyword value: List of AML workspace operations supported by the AML workspace resource provider. @@ -1188,7 +1279,7 @@ class IdentityConfiguration(_serialization.Model): "identity_type": {"AMLToken": "AmlToken", "Managed": "ManagedIdentity", "UserIdentity": "UserIdentity"} } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.identity_type: Optional[str] = None @@ -1213,7 +1304,7 @@ class AmlToken(IdentityConfiguration): "identity_type": {"key": "identityType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.identity_type: str = "AMLToken" @@ -1242,8 +1333,8 @@ def __init__( id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, description: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword id: Specifies the feature ID. :paramtype id: str @@ -1258,6 +1349,32 @@ def __init__( self.description = description +class ArmResourceId(_serialization.Model): + """ARM ResourceId of a resource. + + :ivar resource_id: Arm ResourceId is in the format + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.Storage/storageAccounts/{StorageAccountName}" + or + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{AcrName}". + :vartype resource_id: str + """ + + _attribute_map = { + "resource_id": {"key": "resourceId", "type": "str"}, + } + + def __init__(self, *, resource_id: Optional[str] = None, **kwargs: Any) -> None: + """ + :keyword resource_id: Arm ResourceId is in the format + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.Storage/storageAccounts/{StorageAccountName}" + or + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{AcrName}". + :paramtype resource_id: str + """ + super().__init__(**kwargs) + self.resource_id = resource_id + + class ResourceBase(_serialization.Model): """ResourceBase. @@ -1281,8 +1398,8 @@ def __init__( description: Optional[str] = None, properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1328,8 +1445,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1387,8 +1504,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1418,7 +1535,7 @@ class AssetJobInput(_serialization.Model): """ _validation = { - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -1426,7 +1543,9 @@ class AssetJobInput(_serialization.Model): "uri": {"key": "uri", "type": "str"}, } - def __init__(self, *, uri: str, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, **kwargs): + def __init__( + self, *, uri: str, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, **kwargs: Any + ) -> None: """ :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount", "Download", "Direct", "EvalMount", and "EvalDownload". @@ -1454,8 +1573,12 @@ class AssetJobOutput(_serialization.Model): } def __init__( - self, *, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, **kwargs - ): + self, + *, + mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, + uri: Optional[str] = None, + **kwargs: Any + ) -> None: """ :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload". :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode @@ -1496,7 +1619,7 @@ class AssetReferenceBase(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.reference_type: Optional[str] = None @@ -1523,7 +1646,7 @@ class AssignedUser(_serialization.Model): "tenant_id": {"key": "tenantId", "type": "str"}, } - def __init__(self, *, object_id: str, tenant_id: str, **kwargs): + def __init__(self, *, object_id: str, tenant_id: str, **kwargs: Any) -> None: """ :keyword object_id: User’s AAD Object Id. Required. :paramtype object_id: str @@ -1558,7 +1681,7 @@ class ForecastHorizon(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoForecastHorizon", "Custom": "CustomForecastHorizon"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -1582,7 +1705,7 @@ class AutoForecastHorizon(ForecastHorizon): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -1668,8 +1791,8 @@ def __init__( identity: Optional["_models.IdentityConfiguration"] = None, is_archived: bool = False, services: Optional[Dict[str, "_models.JobService"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1713,54 +1836,54 @@ class AutoMLJob(JobBaseProperties): # pylint: disable=too-many-instance-attribu Use this class for executing AutoML tasks like Classification/Regression etc. See TaskType enum for all the tasks supported. - Variables are only populated by the server, and will be ignored when sending a request. - - All required parameters must be populated in order to send to Azure. - - :ivar description: The asset description text. - :vartype description: str - :ivar properties: The asset property dictionary. - :vartype properties: dict[str, str] - :ivar tags: Tag dictionary. Tags can be added, removed, and updated. - :vartype tags: dict[str, str] - :ivar component_id: ARM resource ID of the component resource. - :vartype component_id: str - :ivar compute_id: ARM resource ID of the compute resource. - :vartype compute_id: str - :ivar display_name: Display name of job. - :vartype display_name: str - :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is - placed in the "Default" experiment. - :vartype experiment_name: str - :ivar identity: Identity configuration. If set, this should be one of AmlToken, - ManagedIdentity, UserIdentity or null. - Defaults to AmlToken if null. - :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration - :ivar is_archived: Is the asset archived?. - :vartype is_archived: bool - :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML", - "Command", "Sweep", and "Pipeline". - :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType - :ivar services: List of JobEndpoints. - For local jobs, a job endpoint will have an endpoint value of FileStreamObject. - :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService] - :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning", - "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed", - "Canceled", "NotResponding", "Paused", and "Unknown". - :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus - :ivar environment_id: The ARM resource ID of the Environment specification for the job. - This is optional value to provide, if not provided, AutoML will default this to Production - AutoML curated environment version when running the job. - :vartype environment_id: str - :ivar environment_variables: Environment variables included in the job. - :vartype environment_variables: dict[str, str] - :ivar outputs: Mapping of output data bindings used in the job. - :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput] - :ivar resources: Compute Resource configuration for the job. - :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration - :ivar task_details: [Required] This represents scenario which can be one of Tables/NLP/Image. - Required. - :vartype task_details: ~azure.mgmt.machinelearningservices.models.AutoMLVertical + Variables are only populated by the server, and will be ignored when sending a request. + + All required parameters must be populated in order to send to Azure. + + :ivar description: The asset description text. + :vartype description: str + :ivar properties: The asset property dictionary. + :vartype properties: dict[str, str] + :ivar tags: Tag dictionary. Tags can be added, removed, and updated. + :vartype tags: dict[str, str] + :ivar component_id: ARM resource ID of the component resource. + :vartype component_id: str + :ivar compute_id: ARM resource ID of the compute resource. + :vartype compute_id: str + :ivar display_name: Display name of job. + :vartype display_name: str + :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is + placed in the "Default" experiment. + :vartype experiment_name: str + :ivar identity: Identity configuration. If set, this should be one of AmlToken, + ManagedIdentity, UserIdentity or null. + Defaults to AmlToken if null. + :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration + :ivar is_archived: Is the asset archived?. + :vartype is_archived: bool + :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML", + "Command", "Sweep", and "Pipeline". + :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType + :ivar services: List of JobEndpoints. + For local jobs, a job endpoint will have an endpoint value of FileStreamObject. + :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService] + :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning", + "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed", + "Canceled", "NotResponding", "Paused", and "Unknown". + :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus + :ivar environment_id: The ARM resource ID of the Environment specification for the job. + This is optional value to provide, if not provided, AutoML will default this to Production + AutoML curated environment version when running the job. + :vartype environment_id: str + :ivar environment_variables: Environment variables included in the job. + :vartype environment_variables: dict[str, str] + :ivar outputs: Mapping of output data bindings used in the job. + :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput] + :ivar resources: Compute Resource configuration for the job. + :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration + :ivar task_details: [Required] This represents scenario which can be one of Tables/NLP/Image. + Required. + :vartype task_details: ~azure.mgmt.machinelearningservices.models.AutoMLVertical """ _validation = { @@ -1807,8 +1930,8 @@ def __init__( environment_variables: Optional[Dict[str, str]] = None, outputs: Optional[Dict[str, "_models.JobOutput"]] = None, resources: Optional["_models.JobResourceConfiguration"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1873,26 +1996,26 @@ class AutoMLVertical(_serialization.Model): """AutoML vertical class. Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical. - You probably want to use the sub-classes and not this class directly. Known sub-classes are: - Classification, Forecasting, ImageClassification, ImageClassificationMultilabel, - ImageInstanceSegmentation, ImageObjectDetection, Regression, TextClassification, - TextClassificationMultilabel, TextNer + You probably want to use the sub-classes and not this class directly. Known sub-classes are: + Classification, Forecasting, ImageClassification, ImageClassificationMultilabel, + ImageInstanceSegmentation, ImageObjectDetection, Regression, TextClassification, + TextClassificationMultilabel, TextNer - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput """ _validation = { @@ -1928,8 +2051,8 @@ def __init__( training_data: "_models.MLTableJobInput", log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None, target_column_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -1970,7 +2093,7 @@ class NCrossValidations(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoNCrossValidations", "Custom": "CustomNCrossValidations"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -1994,7 +2117,7 @@ class AutoNCrossValidations(NCrossValidations): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2014,7 +2137,9 @@ class AutoPauseProperties(_serialization.Model): "enabled": {"key": "enabled", "type": "bool"}, } - def __init__(self, *, delay_in_minutes: Optional[int] = None, enabled: Optional[bool] = None, **kwargs): + def __init__( + self, *, delay_in_minutes: Optional[int] = None, enabled: Optional[bool] = None, **kwargs: Any + ) -> None: """ :keyword delay_in_minutes: :paramtype delay_in_minutes: int @@ -2049,8 +2174,8 @@ def __init__( min_node_count: Optional[int] = None, enabled: Optional[bool] = None, max_node_count: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword min_node_count: :paramtype min_node_count: int @@ -2087,7 +2212,7 @@ class Seasonality(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoSeasonality", "Custom": "CustomSeasonality"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -2110,7 +2235,7 @@ class AutoSeasonality(Seasonality): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2139,7 +2264,7 @@ class TargetLags(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoTargetLags", "Custom": "CustomTargetLags"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -2163,7 +2288,7 @@ class AutoTargetLags(TargetLags): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2192,7 +2317,7 @@ class TargetRollingWindowSize(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoTargetRollingWindowSize", "Custom": "CustomTargetRollingWindowSize"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -2216,7 +2341,7 @@ class AutoTargetRollingWindowSize(TargetRollingWindowSize): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2279,8 +2404,8 @@ def __init__( description: Optional[str] = None, properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2365,8 +2490,8 @@ def __init__( endpoint: Optional[str] = None, protocol: Optional[str] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2433,7 +2558,7 @@ class AzureDataLakeGen1Datastore(DatastoreProperties): "credentials": {"required": True}, "datastore_type": {"required": True}, "is_default": {"readonly": True}, - "store_name": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "store_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -2456,8 +2581,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2521,8 +2646,8 @@ class AzureDataLakeGen2Datastore(DatastoreProperties): # pylint: disable=too-ma "credentials": {"required": True}, "datastore_type": {"required": True}, "is_default": {"readonly": True}, - "account_name": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, - "filesystem": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "account_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, + "filesystem": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -2551,8 +2676,8 @@ def __init__( endpoint: Optional[str] = None, protocol: Optional[str] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2626,8 +2751,8 @@ class AzureFileDatastore(DatastoreProperties): # pylint: disable=too-many-insta "credentials": {"required": True}, "datastore_type": {"required": True}, "is_default": {"readonly": True}, - "account_name": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, - "file_share_name": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "account_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, + "file_share_name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -2656,8 +2781,8 @@ def __init__( endpoint: Optional[str] = None, protocol: Optional[str] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2727,7 +2852,7 @@ class EarlyTerminationPolicy(_serialization.Model): } } - def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs): + def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs: Any) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -2741,7 +2866,8 @@ def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, * class BanditPolicy(EarlyTerminationPolicy): - """Defines an early termination policy based on slack criteria, and a frequency and delay interval for evaluation. + """Defines an early termination policy based on slack criteria, and a frequency and delay interval + for evaluation. All required parameters must be populated in order to send to Azure. @@ -2778,8 +2904,8 @@ def __init__( evaluation_interval: int = 0, slack_amount: float = 0, slack_factor: float = 0, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -2828,7 +2954,7 @@ class Resource(_serialization.Model): "system_data": {"key": "systemData", "type": "SystemData"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -2838,7 +2964,8 @@ def __init__(self, **kwargs): class TrackedResource(Resource): - """The resource model definition for an Azure Resource Manager tracked top level resource which has 'tags' and a 'location'. + """The resource model definition for an Azure Resource Manager tracked top level resource which + has 'tags' and a 'location'. Variables are only populated by the server, and will be ignored when sending a request. @@ -2878,7 +3005,7 @@ class TrackedResource(Resource): "location": {"key": "location", "type": "str"}, } - def __init__(self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs): + def __init__(self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -2954,8 +3081,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -3010,8 +3137,8 @@ def __init__( environment_id: Optional[str] = None, environment_variables: Optional[Dict[str, str]] = None, properties: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -3127,8 +3254,8 @@ def __init__( output_file_name: str = "predictions.csv", resources: Optional["_models.DeploymentResourceConfiguration"] = None, retry_settings: Optional["_models.BatchRetrySettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -3211,8 +3338,8 @@ class BatchDeploymentTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchDeployment"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchDeployment"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of BatchDeployment objects. If null, there are no additional pages. @@ -3289,8 +3416,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -3325,7 +3452,7 @@ class BatchEndpointDefaults(_serialization.Model): "deployment_name": {"key": "deploymentName", "type": "str"}, } - def __init__(self, *, deployment_name: Optional[str] = None, **kwargs): + def __init__(self, *, deployment_name: Optional[str] = None, **kwargs: Any) -> None: """ :keyword deployment_name: Name of the deployment that will be default for the endpoint. This deployment will end up getting 100% traffic when the endpoint scoring URL is invoked. @@ -3382,8 +3509,8 @@ def __init__( description: Optional[str] = None, keys: Optional["_models.EndpointAuthKeys"] = None, properties: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does. @@ -3464,8 +3591,8 @@ def __init__( keys: Optional["_models.EndpointAuthKeys"] = None, properties: Optional[Dict[str, str]] = None, defaults: Optional["_models.BatchEndpointDefaults"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does. @@ -3503,8 +3630,8 @@ class BatchEndpointTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchEndpoint"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchEndpoint"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of BatchEndpoint objects. If null, there are no additional pages. @@ -3531,7 +3658,7 @@ class BatchRetrySettings(_serialization.Model): "timeout": {"key": "timeout", "type": "duration"}, } - def __init__(self, *, max_retries: int = 3, timeout: datetime.timedelta = "PT30S", **kwargs): + def __init__(self, *, max_retries: int = 3, timeout: datetime.timedelta = "PT30S", **kwargs: Any) -> None: """ :keyword max_retries: Maximum retry count for a mini-batch. :paramtype max_retries: int @@ -3547,16 +3674,16 @@ class SamplingAlgorithm(_serialization.Model): """The Sampling Algorithm used to generate hyperparameter values, along with properties to configure the algorithm. - You probably want to use the sub-classes and not this class directly. Known sub-classes are: - BayesianSamplingAlgorithm, GridSamplingAlgorithm, RandomSamplingAlgorithm + You probably want to use the sub-classes and not this class directly. Known sub-classes are: + BayesianSamplingAlgorithm, GridSamplingAlgorithm, RandomSamplingAlgorithm - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter - values, along with configuration properties. Required. Known values are: "Grid", "Random", and - "Bayesian". - :vartype sampling_algorithm_type: str or - ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType + :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter + values, along with configuration properties. Required. Known values are: "Grid", "Random", and + "Bayesian". + :vartype sampling_algorithm_type: str or + ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType """ _validation = { @@ -3575,7 +3702,7 @@ class SamplingAlgorithm(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.sampling_algorithm_type: Optional[str] = None @@ -3601,12 +3728,92 @@ class BayesianSamplingAlgorithm(SamplingAlgorithm): "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.sampling_algorithm_type: str = "Bayesian" +class BindOptions(_serialization.Model): + """Describes the bind options for the container. + + :ivar propagation: Type of Bind Option. + :vartype propagation: str + :ivar create_host_path: Indicate whether to create host path. + :vartype create_host_path: bool + :ivar selinux: Mention the selinux options. + :vartype selinux: str + """ + + _attribute_map = { + "propagation": {"key": "propagation", "type": "str"}, + "create_host_path": {"key": "createHostPath", "type": "bool"}, + "selinux": {"key": "selinux", "type": "str"}, + } + + def __init__( + self, + *, + propagation: Optional[str] = None, + create_host_path: Optional[bool] = None, + selinux: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword propagation: Type of Bind Option. + :paramtype propagation: str + :keyword create_host_path: Indicate whether to create host path. + :paramtype create_host_path: bool + :keyword selinux: Mention the selinux options. + :paramtype selinux: str + """ + super().__init__(**kwargs) + self.propagation = propagation + self.create_host_path = create_host_path + self.selinux = selinux + + +class BlobReferenceForConsumptionDto(_serialization.Model): + """BlobReferenceForConsumptionDto. + + :ivar blob_uri: Blob URI path for client to upload data. + Example: https://blob.windows.core.net/Container/Path. + :vartype blob_uri: str + :ivar credential: Credential info to access storage account. + :vartype credential: ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialDto + :ivar storage_account_arm_id: Arm ID of the storage account to use. + :vartype storage_account_arm_id: str + """ + + _attribute_map = { + "blob_uri": {"key": "blobUri", "type": "str"}, + "credential": {"key": "credential", "type": "PendingUploadCredentialDto"}, + "storage_account_arm_id": {"key": "storageAccountArmId", "type": "str"}, + } + + def __init__( + self, + *, + blob_uri: Optional[str] = None, + credential: Optional["_models.PendingUploadCredentialDto"] = None, + storage_account_arm_id: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword blob_uri: Blob URI path for client to upload data. + Example: https://blob.windows.core.net/Container/Path. + :paramtype blob_uri: str + :keyword credential: Credential info to access storage account. + :paramtype credential: ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialDto + :keyword storage_account_arm_id: Arm ID of the storage account to use. + :paramtype storage_account_arm_id: str + """ + super().__init__(**kwargs) + self.blob_uri = blob_uri + self.credential = credential + self.storage_account_arm_id = storage_account_arm_id + + class BuildContext(_serialization.Model): """Configuration settings for Docker build context. @@ -3632,7 +3839,7 @@ class BuildContext(_serialization.Model): """ _validation = { - "context_uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "context_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -3640,7 +3847,7 @@ class BuildContext(_serialization.Model): "dockerfile_path": {"key": "dockerfilePath", "type": "str"}, } - def __init__(self, *, context_uri: str, dockerfile_path: str = "Dockerfile", **kwargs): + def __init__(self, *, context_uri: str, dockerfile_path: str = "Dockerfile", **kwargs: Any) -> None: """ :keyword context_uri: [Required] URI of the Docker build context used to build the image. Supports blob URIs on environment creation and may return blob or Git URIs. @@ -3692,7 +3899,7 @@ class CertificateDatastoreCredentials(DatastoreCredentials): "client_id": {"required": True}, "secrets": {"required": True}, "tenant_id": {"required": True}, - "thumbprint": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "thumbprint": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -3714,8 +3921,8 @@ def __init__( thumbprint: str, authority_url: Optional[str] = None, resource_url: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword authority_url: Authority URL used for authentication. :paramtype authority_url: str @@ -3763,7 +3970,7 @@ class CertificateDatastoreSecrets(DatastoreSecrets): "certificate": {"key": "certificate", "type": "str"}, } - def __init__(self, *, certificate: Optional[str] = None, **kwargs): + def __init__(self, *, certificate: Optional[str] = None, **kwargs: Any) -> None: """ :keyword certificate: Service principal certificate. :paramtype certificate: str @@ -3774,7 +3981,8 @@ def __init__(self, *, certificate: Optional[str] = None, **kwargs): class TableVertical(_serialization.Model): - """Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting. + """Abstract class for AutoML tasks that use table dataset as input - such as + Classification/Regression/Forecasting. :ivar cv_split_column_names: Columns to use for CVSplit data. :vartype cv_split_column_names: list[str] @@ -3829,8 +4037,8 @@ def __init__( validation_data: Optional["_models.MLTableJobInput"] = None, validation_data_size: Optional[float] = None, weight_column_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword cv_split_column_names: Columns to use for CVSplit data. :paramtype cv_split_column_names: list[str] @@ -3972,8 +4180,8 @@ def __init__( positive_label: Optional[str] = None, primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None, training_settings: Optional["_models.ClassificationTrainingSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -4097,8 +4305,8 @@ def __init__( enable_vote_ensemble: bool = True, ensemble_model_download_timeout: datetime.timedelta = "PT5M", stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -4180,8 +4388,8 @@ def __init__( stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, allowed_training_algorithms: Optional[List[Union[str, "_models.ClassificationModels"]]] = None, blocked_training_algorithms: Optional[List[Union[str, "_models.ClassificationModels"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -4232,7 +4440,7 @@ class ClusterUpdateParameters(_serialization.Model): "properties": {"key": "properties.properties", "type": "ScaleSettingsInformation"}, } - def __init__(self, *, properties: Optional["_models.ScaleSettingsInformation"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.ScaleSettingsInformation"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of ClusterUpdate. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ScaleSettingsInformation @@ -4261,7 +4469,7 @@ class CodeConfiguration(_serialization.Model): "scoring_script": {"key": "scoringScript", "type": "str"}, } - def __init__(self, *, scoring_script: str, code_id: Optional[str] = None, **kwargs): + def __init__(self, *, scoring_script: str, code_id: Optional[str] = None, **kwargs: Any) -> None: """ :keyword code_id: ARM resource ID of the code asset. :paramtype code_id: str @@ -4311,7 +4519,7 @@ class CodeContainer(Resource): "properties": {"key": "properties", "type": "CodeContainerProperties"}, } - def __init__(self, *, properties: "_models.CodeContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.CodeContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.CodeContainerProperties @@ -4337,11 +4545,16 @@ class CodeContainerProperties(AssetContainer): :vartype latest_version: str :ivar next_version: The next auto incremental version. :vartype next_version: str + :ivar provisioning_state: Provisioning state for the code container. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState """ _validation = { "latest_version": {"readonly": True}, "next_version": {"readonly": True}, + "provisioning_state": {"readonly": True}, } _attribute_map = { @@ -4351,6 +4564,7 @@ class CodeContainerProperties(AssetContainer): "is_archived": {"key": "isArchived", "type": "bool"}, "latest_version": {"key": "latestVersion", "type": "str"}, "next_version": {"key": "nextVersion", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, } def __init__( @@ -4360,8 +4574,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4373,6 +4587,7 @@ def __init__( :paramtype is_archived: bool """ super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs) + self.provisioning_state = None class CodeContainerResourceArmPaginatedResult(_serialization.Model): @@ -4391,8 +4606,8 @@ class CodeContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeContainer"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeContainer"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of CodeContainer objects. If null, there are no additional pages. @@ -4443,7 +4658,7 @@ class CodeVersion(Resource): "properties": {"key": "properties", "type": "CodeVersionProperties"}, } - def __init__(self, *, properties: "_models.CodeVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.CodeVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.CodeVersionProperties @@ -4455,6 +4670,8 @@ def __init__(self, *, properties: "_models.CodeVersionProperties", **kwargs): class CodeVersionProperties(AssetBase): """Code asset version details. + Variables are only populated by the server, and will be ignored when sending a request. + :ivar description: The asset description text. :vartype description: str :ivar properties: The asset property dictionary. @@ -4467,8 +4684,16 @@ class CodeVersionProperties(AssetBase): :vartype is_archived: bool :ivar code_uri: Uri where code is located. :vartype code_uri: str + :ivar provisioning_state: Provisioning state for the code version. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState """ + _validation = { + "provisioning_state": {"readonly": True}, + } + _attribute_map = { "description": {"key": "description", "type": "str"}, "properties": {"key": "properties", "type": "{str}"}, @@ -4476,6 +4701,7 @@ class CodeVersionProperties(AssetBase): "is_anonymous": {"key": "isAnonymous", "type": "bool"}, "is_archived": {"key": "isArchived", "type": "bool"}, "code_uri": {"key": "codeUri", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, } def __init__( @@ -4487,8 +4713,8 @@ def __init__( is_anonymous: bool = False, is_archived: bool = False, code_uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4512,6 +4738,7 @@ def __init__( **kwargs ) self.code_uri = code_uri + self.provisioning_state = None class CodeVersionResourceArmPaginatedResult(_serialization.Model): @@ -4530,8 +4757,8 @@ class CodeVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeVersion"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeVersion"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of CodeVersion objects. If null, there are no additional pages. @@ -4559,7 +4786,7 @@ class ColumnTransformer(_serialization.Model): "parameters": {"key": "parameters", "type": "object"}, } - def __init__(self, *, fields: Optional[List[str]] = None, parameters: Optional[JSON] = None, **kwargs): + def __init__(self, *, fields: Optional[List[str]] = None, parameters: Optional[JSON] = None, **kwargs: Any) -> None: """ :keyword fields: Fields to apply transformer logic on. :paramtype fields: list[str] @@ -4639,7 +4866,7 @@ class CommandJob(JobBaseProperties): # pylint: disable=too-many-instance-attrib "job_type": {"required": True}, "status": {"readonly": True}, "command": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, - "environment_id": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "environment_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, "parameters": {"readonly": True}, } @@ -4690,8 +4917,8 @@ def __init__( limits: Optional["_models.CommandJobLimits"] = None, outputs: Optional[Dict[str, "_models.JobOutput"]] = None, resources: Optional["_models.JobResourceConfiguration"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4792,7 +5019,7 @@ class JobLimits(_serialization.Model): _subtype_map = {"job_limits_type": {"Command": "CommandJobLimits", "Sweep": "SweepJobLimits"}} - def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs): + def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: Any) -> None: """ :keyword timeout: The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. @@ -4825,7 +5052,7 @@ class CommandJobLimits(JobLimits): "timeout": {"key": "timeout", "type": "duration"}, } - def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs): + def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: Any) -> None: """ :keyword timeout: The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. @@ -4873,7 +5100,7 @@ class ComponentContainer(Resource): "properties": {"key": "properties", "type": "ComponentContainerProperties"}, } - def __init__(self, *, properties: "_models.ComponentContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.ComponentContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComponentContainerProperties @@ -4888,27 +5115,34 @@ class ComponentContainerProperties(AssetContainer): .. raw:: html - . + . - Variables are only populated by the server, and will be ignored when sending a request. + Variables are only populated by the server, and will be ignored when sending a request. - :ivar description: The asset description text. - :vartype description: str - :ivar properties: The asset property dictionary. - :vartype properties: dict[str, str] - :ivar tags: Tag dictionary. Tags can be added, removed, and updated. - :vartype tags: dict[str, str] - :ivar is_archived: Is the asset archived?. - :vartype is_archived: bool - :ivar latest_version: The latest version inside this container. - :vartype latest_version: str - :ivar next_version: The next auto incremental version. - :vartype next_version: str + :ivar description: The asset description text. + :vartype description: str + :ivar properties: The asset property dictionary. + :vartype properties: dict[str, str] + :ivar tags: Tag dictionary. Tags can be added, removed, and updated. + :vartype tags: dict[str, str] + :ivar is_archived: Is the asset archived?. + :vartype is_archived: bool + :ivar latest_version: The latest version inside this container. + :vartype latest_version: str + :ivar next_version: The next auto incremental version. + :vartype next_version: str + :ivar provisioning_state: Provisioning state for the component container. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState """ _validation = { "latest_version": {"readonly": True}, "next_version": {"readonly": True}, + "provisioning_state": {"readonly": True}, } _attribute_map = { @@ -4918,6 +5152,7 @@ class ComponentContainerProperties(AssetContainer): "is_archived": {"key": "isArchived", "type": "bool"}, "latest_version": {"key": "latestVersion", "type": "str"}, "next_version": {"key": "nextVersion", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, } def __init__( @@ -4927,8 +5162,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4940,6 +5175,7 @@ def __init__( :paramtype is_archived: bool """ super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs) + self.provisioning_state = None class ComponentContainerResourceArmPaginatedResult(_serialization.Model): @@ -4958,8 +5194,12 @@ class ComponentContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ComponentContainer"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.ComponentContainer"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ComponentContainer objects. If null, there are no additional pages. @@ -5010,7 +5250,7 @@ class ComponentVersion(Resource): "properties": {"key": "properties", "type": "ComponentVersionProperties"}, } - def __init__(self, *, properties: "_models.ComponentVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.ComponentVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComponentVersionProperties @@ -5022,6 +5262,8 @@ def __init__(self, *, properties: "_models.ComponentVersionProperties", **kwargs class ComponentVersionProperties(AssetBase): """Definition of a component version: defines resources that span component types. + Variables are only populated by the server, and will be ignored when sending a request. + :ivar description: The asset description text. :vartype description: str :ivar properties: The asset property dictionary. @@ -5041,8 +5283,16 @@ class ComponentVersionProperties(AssetBase): href="https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-component-command" />. :vartype component_spec: JSON + :ivar provisioning_state: Provisioning state for the component version. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState """ + _validation = { + "provisioning_state": {"readonly": True}, + } + _attribute_map = { "description": {"key": "description", "type": "str"}, "properties": {"key": "properties", "type": "{str}"}, @@ -5050,6 +5300,7 @@ class ComponentVersionProperties(AssetBase): "is_anonymous": {"key": "isAnonymous", "type": "bool"}, "is_archived": {"key": "isArchived", "type": "bool"}, "component_spec": {"key": "componentSpec", "type": "object"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, } def __init__( @@ -5061,8 +5312,8 @@ def __init__( is_anonymous: bool = False, is_archived: bool = False, component_spec: Optional[JSON] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -5093,6 +5344,7 @@ def __init__( **kwargs ) self.component_spec = component_spec + self.provisioning_state = None class ComponentVersionResourceArmPaginatedResult(_serialization.Model): @@ -5111,8 +5363,12 @@ class ComponentVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ComponentVersion"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.ComponentVersion"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ComponentVersion objects. If null, there are no additional pages. @@ -5136,7 +5392,7 @@ class ComputeInstanceSchema(_serialization.Model): "properties": {"key": "properties", "type": "ComputeInstanceProperties"}, } - def __init__(self, *, properties: Optional["_models.ComputeInstanceProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.ComputeInstanceProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of ComputeInstance. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties @@ -5214,8 +5470,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of ComputeInstance. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties @@ -5264,7 +5520,9 @@ class ComputeInstanceApplication(_serialization.Model): "endpoint_uri": {"key": "endpointUri", "type": "str"}, } - def __init__(self, *, display_name: Optional[str] = None, endpoint_uri: Optional[str] = None, **kwargs): + def __init__( + self, *, display_name: Optional[str] = None, endpoint_uri: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword display_name: Name of the ComputeInstance application. :paramtype display_name: str @@ -5298,7 +5556,7 @@ class ComputeInstanceConnectivityEndpoints(_serialization.Model): "private_ip_address": {"key": "privateIpAddress", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.public_ip_address = None @@ -5345,8 +5603,8 @@ def __init__( gpu: Optional[str] = None, network: Optional[Union[str, "_models.Network"]] = None, environment: Optional["_models.ComputeInstanceEnvironmentInfo"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: Name of the ComputeInstance container. :paramtype name: str @@ -5394,7 +5652,7 @@ class ComputeInstanceCreatedBy(_serialization.Model): "user_id": {"key": "userId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.user_name = None @@ -5433,8 +5691,8 @@ def __init__( disk_size_gb: Optional[int] = None, lun: Optional[int] = None, storage_account_type: Union[str, "_models.StorageAccountType"] = "Standard_LRS", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword caching: Caching type of Data Disk. Known values are: "None", "ReadOnly", and "ReadWrite". @@ -5504,8 +5762,8 @@ def __init__( mount_state: Optional[Union[str, "_models.MountState"]] = None, mounted_on: Optional[datetime.datetime] = None, error: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword source: Source of the ComputeInstance data mount. :paramtype source: str @@ -5553,7 +5811,7 @@ class ComputeInstanceEnvironmentInfo(_serialization.Model): "version": {"key": "version", "type": "str"}, } - def __init__(self, *, name: Optional[str] = None, version: Optional[str] = None, **kwargs): + def __init__(self, *, name: Optional[str] = None, version: Optional[str] = None, **kwargs: Any) -> None: """ :keyword name: name of environment. :paramtype name: str @@ -5596,8 +5854,8 @@ def __init__( operation_time: Optional[datetime.datetime] = None, operation_status: Optional[Union[str, "_models.OperationStatus"]] = None, operation_trigger: Optional[Union[str, "_models.OperationTrigger"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword operation_name: Name of the last operation. Known values are: "Create", "Start", "Stop", "Restart", "Reimage", and "Delete". @@ -5637,6 +5895,11 @@ class ComputeInstanceProperties(_serialization.Model): # pylint: disable=too-ma ~azure.mgmt.machinelearningservices.models.ApplicationSharingPolicy :ivar ssh_settings: Specifies policy and settings for SSH access. :vartype ssh_settings: ~azure.mgmt.machinelearningservices.models.ComputeInstanceSshSettings + :ivar custom_services: List of Custom Services added to the compute. + :vartype custom_services: list[~azure.mgmt.machinelearningservices.models.CustomService] + :ivar os_image_metadata: Returns metadata about the operating system image for this compute + instance. + :vartype os_image_metadata: ~azure.mgmt.machinelearningservices.models.ImageMetadata :ivar connectivity_endpoints: Describes all connectivity endpoints available for this ComputeInstance. :vartype connectivity_endpoints: @@ -5684,13 +5947,13 @@ class ComputeInstanceProperties(_serialization.Model): # pylint: disable=too-ma """ _validation = { + "os_image_metadata": {"readonly": True}, "connectivity_endpoints": {"readonly": True}, "applications": {"readonly": True}, "created_by": {"readonly": True}, "errors": {"readonly": True}, "state": {"readonly": True}, "last_operation": {"readonly": True}, - "schedules": {"readonly": True}, "containers": {"readonly": True}, "data_disks": {"readonly": True}, "data_mounts": {"readonly": True}, @@ -5702,6 +5965,8 @@ class ComputeInstanceProperties(_serialization.Model): # pylint: disable=too-ma "subnet": {"key": "subnet", "type": "ResourceId"}, "application_sharing_policy": {"key": "applicationSharingPolicy", "type": "str"}, "ssh_settings": {"key": "sshSettings", "type": "ComputeInstanceSshSettings"}, + "custom_services": {"key": "customServices", "type": "[CustomService]"}, + "os_image_metadata": {"key": "osImageMetadata", "type": "ImageMetadata"}, "connectivity_endpoints": {"key": "connectivityEndpoints", "type": "ComputeInstanceConnectivityEndpoints"}, "applications": {"key": "applications", "type": "[ComputeInstanceApplication]"}, "created_by": {"key": "createdBy", "type": "ComputeInstanceCreatedBy"}, @@ -5729,12 +5994,14 @@ def __init__( subnet: Optional["_models.ResourceId"] = None, application_sharing_policy: Union[str, "_models.ApplicationSharingPolicy"] = "Shared", ssh_settings: Optional["_models.ComputeInstanceSshSettings"] = None, + custom_services: Optional[List["_models.CustomService"]] = None, compute_instance_authorization_type: Union[str, "_models.ComputeInstanceAuthorizationType"] = "personal", personal_compute_instance_settings: Optional["_models.PersonalComputeInstanceSettings"] = None, setup_scripts: Optional["_models.SetupScripts"] = None, + schedules: Optional["_models.ComputeSchedules"] = None, enable_node_public_ip: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword vm_size: Virtual Machine Size. :paramtype vm_size: str @@ -5748,6 +6015,8 @@ def __init__( ~azure.mgmt.machinelearningservices.models.ApplicationSharingPolicy :keyword ssh_settings: Specifies policy and settings for SSH access. :paramtype ssh_settings: ~azure.mgmt.machinelearningservices.models.ComputeInstanceSshSettings + :keyword custom_services: List of Custom Services added to the compute. + :paramtype custom_services: list[~azure.mgmt.machinelearningservices.models.CustomService] :keyword compute_instance_authorization_type: The Compute Instance Authorization type. Available values are personal (default). "personal" :paramtype compute_instance_authorization_type: str or @@ -5757,6 +6026,8 @@ def __init__( ~azure.mgmt.machinelearningservices.models.PersonalComputeInstanceSettings :keyword setup_scripts: Details of customized scripts to execute for setting up the cluster. :paramtype setup_scripts: ~azure.mgmt.machinelearningservices.models.SetupScripts + :keyword schedules: The list of schedules to be applied on the computes. + :paramtype schedules: ~azure.mgmt.machinelearningservices.models.ComputeSchedules :keyword enable_node_public_ip: Enable or disable node public IP address provisioning. Possible values are: Possible values are: true - Indicates that the compute nodes will have public IPs provisioned. false - Indicates that the compute nodes will have a private endpoint and no @@ -5768,6 +6039,8 @@ def __init__( self.subnet = subnet self.application_sharing_policy = application_sharing_policy self.ssh_settings = ssh_settings + self.custom_services = custom_services + self.os_image_metadata = None self.connectivity_endpoints = None self.applications = None self.created_by = None @@ -5777,7 +6050,7 @@ def __init__( self.personal_compute_instance_settings = personal_compute_instance_settings self.setup_scripts = setup_scripts self.last_operation = None - self.schedules = None + self.schedules = schedules self.enable_node_public_ip = enable_node_public_ip self.containers = None self.data_disks = None @@ -5821,8 +6094,8 @@ def __init__( *, ssh_public_access: Union[str, "_models.SshPublicAccess"] = "Disabled", admin_public_key: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ssh_public_access: State of the public SSH port. Possible values are: Disabled - Indicates that the public ssh port is closed on this instance. Enabled - Indicates that the @@ -5851,7 +6124,7 @@ class ComputeInstanceVersion(_serialization.Model): "runtime": {"key": "runtime", "type": "str"}, } - def __init__(self, *, runtime: Optional[str] = None, **kwargs): + def __init__(self, *, runtime: Optional[str] = None, **kwargs: Any) -> None: """ :keyword runtime: Runtime of compute instance. :paramtype runtime: str @@ -5871,7 +6144,7 @@ class ComputeResourceSchema(_serialization.Model): "properties": {"key": "properties", "type": "Compute"}, } - def __init__(self, *, properties: Optional["_models.Compute"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.Compute"] = None, **kwargs: Any) -> None: """ :keyword properties: Compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.Compute @@ -5935,8 +6208,8 @@ def __init__( location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.Compute @@ -5973,7 +6246,9 @@ class ComputeSchedules(_serialization.Model): "compute_start_stop": {"key": "computeStartStop", "type": "[ComputeStartStopSchedule]"}, } - def __init__(self, *, compute_start_stop: Optional[List["_models.ComputeStartStopSchedule"]] = None, **kwargs): + def __init__( + self, *, compute_start_stop: Optional[List["_models.ComputeStartStopSchedule"]] = None, **kwargs: Any + ) -> None: """ :keyword compute_start_stop: The list of compute start stop schedules to be applied. :paramtype compute_start_stop: @@ -6002,9 +6277,9 @@ class ComputeStartStopSchedule(_serialization.Model): "Cron". :vartype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType :ivar recurrence: Required if triggerType is Recurrence. - :vartype recurrence: ~azure.mgmt.machinelearningservices.models.RecurrenceTrigger + :vartype recurrence: ~azure.mgmt.machinelearningservices.models.Recurrence :ivar cron: Required if triggerType is Cron. - :vartype cron: ~azure.mgmt.machinelearningservices.models.CronTrigger + :vartype cron: ~azure.mgmt.machinelearningservices.models.Cron :ivar schedule: [Deprecated] Not used any more. :vartype schedule: ~azure.mgmt.machinelearningservices.models.ScheduleBase """ @@ -6020,8 +6295,8 @@ class ComputeStartStopSchedule(_serialization.Model): "status": {"key": "status", "type": "str"}, "action": {"key": "action", "type": "str"}, "trigger_type": {"key": "triggerType", "type": "str"}, - "recurrence": {"key": "recurrence", "type": "RecurrenceTrigger"}, - "cron": {"key": "cron", "type": "CronTrigger"}, + "recurrence": {"key": "recurrence", "type": "Recurrence"}, + "cron": {"key": "cron", "type": "Cron"}, "schedule": {"key": "schedule", "type": "ScheduleBase"}, } @@ -6031,11 +6306,11 @@ def __init__( status: Optional[Union[str, "_models.ScheduleStatus"]] = None, action: Optional[Union[str, "_models.ComputePowerAction"]] = None, trigger_type: Optional[Union[str, "_models.TriggerType"]] = None, - recurrence: Optional["_models.RecurrenceTrigger"] = None, - cron: Optional["_models.CronTrigger"] = None, + recurrence: Optional["_models.Recurrence"] = None, + cron: Optional["_models.Cron"] = None, schedule: Optional["_models.ScheduleBase"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Is the schedule enabled or disabled?. Known values are: "Enabled" and "Disabled". @@ -6046,9 +6321,9 @@ def __init__( "Cron". :paramtype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType :keyword recurrence: Required if triggerType is Recurrence. - :paramtype recurrence: ~azure.mgmt.machinelearningservices.models.RecurrenceTrigger + :paramtype recurrence: ~azure.mgmt.machinelearningservices.models.Recurrence :keyword cron: Required if triggerType is Cron. - :paramtype cron: ~azure.mgmt.machinelearningservices.models.CronTrigger + :paramtype cron: ~azure.mgmt.machinelearningservices.models.Cron :keyword schedule: [Deprecated] Not used any more. :paramtype schedule: ~azure.mgmt.machinelearningservices.models.ScheduleBase """ @@ -6084,8 +6359,8 @@ def __init__( *, container_resource_limits: Optional["_models.ContainerResourceSettings"] = None, container_resource_requests: Optional["_models.ContainerResourceSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword container_resource_limits: Container resource limit info:. :paramtype container_resource_limits: @@ -6119,7 +6394,9 @@ class ContainerResourceSettings(_serialization.Model): "memory": {"key": "memory", "type": "str"}, } - def __init__(self, *, cpu: Optional[str] = None, gpu: Optional[str] = None, memory: Optional[str] = None, **kwargs): + def __init__( + self, *, cpu: Optional[str] = None, gpu: Optional[str] = None, memory: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword cpu: Number of vCPUs request/limit for container. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/. @@ -6148,7 +6425,7 @@ class CosmosDbSettings(_serialization.Model): "collections_throughput": {"key": "collectionsThroughput", "type": "int"}, } - def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs): + def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs: Any) -> None: """ :keyword collections_throughput: The throughput of the collections in cosmosdb database. :paramtype collections_throughput: int @@ -6157,6 +6434,51 @@ def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs): self.collections_throughput = collections_throughput +class Cron(_serialization.Model): + """The workflow trigger cron for ComputeStartStop schedule type. + + :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :vartype start_time: str + :ivar time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :vartype time_zone: str + :ivar expression: [Required] Specifies cron expression of schedule. + The expression should follow NCronTab format. + :vartype expression: str + """ + + _attribute_map = { + "start_time": {"key": "startTime", "type": "str"}, + "time_zone": {"key": "timeZone", "type": "str"}, + "expression": {"key": "expression", "type": "str"}, + } + + def __init__( + self, + *, + start_time: Optional[str] = None, + time_zone: str = "UTC", + expression: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :paramtype start_time: str + :keyword time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :paramtype time_zone: str + :keyword expression: [Required] Specifies cron expression of schedule. + The expression should follow NCronTab format. + :paramtype expression: str + """ + super().__init__(**kwargs) + self.start_time = start_time + self.time_zone = time_zone + self.expression = expression + + class TriggerBase(_serialization.Model): """TriggerBase. @@ -6195,8 +6517,8 @@ class TriggerBase(_serialization.Model): _subtype_map = {"trigger_type": {"Cron": "CronTrigger", "Recurrence": "RecurrenceTrigger"}} def __init__( - self, *, end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", **kwargs - ): + self, *, end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", **kwargs: Any + ) -> None: """ :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601. @@ -6244,7 +6566,7 @@ class CronTrigger(TriggerBase): _validation = { "trigger_type": {"required": True}, - "expression": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "expression": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -6262,8 +6584,8 @@ def __init__( end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601. @@ -6308,7 +6630,7 @@ class CustomForecastHorizon(ForecastHorizon): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] Forecast horizon value. Required. :paramtype value: int @@ -6356,7 +6678,7 @@ class JobInput(_serialization.Model): } } - def __init__(self, *, description: Optional[str] = None, **kwargs): + def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -6386,7 +6708,7 @@ class CustomModelJobInput(AssetJobInput, JobInput): _validation = { "job_input_type": {"required": True}, - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -6402,8 +6724,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -6456,7 +6778,7 @@ class JobOutput(_serialization.Model): } } - def __init__(self, *, description: Optional[str] = None, **kwargs): + def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -6499,8 +6821,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -6538,7 +6860,7 @@ class CustomNCrossValidations(NCrossValidations): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] N-Cross validations value. Required. :paramtype value: int @@ -6569,7 +6891,7 @@ class CustomSeasonality(Seasonality): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] Seasonality value. Required. :paramtype value: int @@ -6579,10 +6901,81 @@ def __init__(self, *, value: int, **kwargs): self.value = value -class CustomTargetLags(TargetLags): - """CustomTargetLags. +class CustomService(_serialization.Model): + """Specifies the custom service configuration. - All required parameters must be populated in order to send to Azure. + :ivar additional_properties: Unmatched properties from the message are deserialized to this + collection. + :vartype additional_properties: dict[str, any] + :ivar name: Name of the Custom Service. + :vartype name: str + :ivar image: Describes the Image Specifications. + :vartype image: ~azure.mgmt.machinelearningservices.models.Image + :ivar environment_variables: Environment Variable for the container. + :vartype environment_variables: dict[str, + ~azure.mgmt.machinelearningservices.models.EnvironmentVariable] + :ivar docker: Describes the docker settings for the image. + :vartype docker: ~azure.mgmt.machinelearningservices.models.Docker + :ivar endpoints: Configuring the endpoints for the container. + :vartype endpoints: list[~azure.mgmt.machinelearningservices.models.Endpoint] + :ivar volumes: Configuring the volumes for the container. + :vartype volumes: list[~azure.mgmt.machinelearningservices.models.VolumeDefinition] + """ + + _attribute_map = { + "additional_properties": {"key": "", "type": "{object}"}, + "name": {"key": "name", "type": "str"}, + "image": {"key": "image", "type": "Image"}, + "environment_variables": {"key": "environmentVariables", "type": "{EnvironmentVariable}"}, + "docker": {"key": "docker", "type": "Docker"}, + "endpoints": {"key": "endpoints", "type": "[Endpoint]"}, + "volumes": {"key": "volumes", "type": "[VolumeDefinition]"}, + } + + def __init__( + self, + *, + additional_properties: Optional[Dict[str, Any]] = None, + name: Optional[str] = None, + image: Optional["_models.Image"] = None, + environment_variables: Optional[Dict[str, "_models.EnvironmentVariable"]] = None, + docker: Optional["_models.Docker"] = None, + endpoints: Optional[List["_models.Endpoint"]] = None, + volumes: Optional[List["_models.VolumeDefinition"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword additional_properties: Unmatched properties from the message are deserialized to this + collection. + :paramtype additional_properties: dict[str, any] + :keyword name: Name of the Custom Service. + :paramtype name: str + :keyword image: Describes the Image Specifications. + :paramtype image: ~azure.mgmt.machinelearningservices.models.Image + :keyword environment_variables: Environment Variable for the container. + :paramtype environment_variables: dict[str, + ~azure.mgmt.machinelearningservices.models.EnvironmentVariable] + :keyword docker: Describes the docker settings for the image. + :paramtype docker: ~azure.mgmt.machinelearningservices.models.Docker + :keyword endpoints: Configuring the endpoints for the container. + :paramtype endpoints: list[~azure.mgmt.machinelearningservices.models.Endpoint] + :keyword volumes: Configuring the volumes for the container. + :paramtype volumes: list[~azure.mgmt.machinelearningservices.models.VolumeDefinition] + """ + super().__init__(**kwargs) + self.additional_properties = additional_properties + self.name = name + self.image = image + self.environment_variables = environment_variables + self.docker = docker + self.endpoints = endpoints + self.volumes = volumes + + +class CustomTargetLags(TargetLags): + """CustomTargetLags. + + All required parameters must be populated in order to send to Azure. :ivar mode: [Required] Set target lags mode - Auto/Custom. Required. Known values are: "Auto" and "Custom". @@ -6601,7 +6994,7 @@ class CustomTargetLags(TargetLags): "values": {"key": "values", "type": "[int]"}, } - def __init__(self, *, values: List[int], **kwargs): + def __init__(self, *, values: List[int], **kwargs: Any) -> None: """ :keyword values: [Required] Set target lags values. Required. :paramtype values: list[int] @@ -6633,7 +7026,7 @@ class CustomTargetRollingWindowSize(TargetRollingWindowSize): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] TargetRollingWindowSize value. Required. :paramtype value: int @@ -6654,7 +7047,7 @@ class DatabricksSchema(_serialization.Model): "properties": {"key": "properties", "type": "DatabricksProperties"}, } - def __init__(self, *, properties: Optional["_models.DatabricksProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.DatabricksProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of Databricks. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties @@ -6732,8 +7125,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of Databricks. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties @@ -6779,7 +7172,7 @@ class DatabricksComputeSecretsProperties(_serialization.Model): "databricks_access_token": {"key": "databricksAccessToken", "type": "str"}, } - def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs): + def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs: Any) -> None: """ :keyword databricks_access_token: access token for databricks account. :paramtype databricks_access_token: str @@ -6810,7 +7203,7 @@ class DatabricksComputeSecrets(ComputeSecrets, DatabricksComputeSecretsPropertie "compute_type": {"key": "computeType", "type": "str"}, } - def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs): + def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs: Any) -> None: """ :keyword databricks_access_token: access token for databricks account. :paramtype databricks_access_token: str @@ -6834,7 +7227,9 @@ class DatabricksProperties(_serialization.Model): "workspace_url": {"key": "workspaceUrl", "type": "str"}, } - def __init__(self, *, databricks_access_token: Optional[str] = None, workspace_url: Optional[str] = None, **kwargs): + def __init__( + self, *, databricks_access_token: Optional[str] = None, workspace_url: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword databricks_access_token: Databricks access token. :paramtype databricks_access_token: str @@ -6884,7 +7279,7 @@ class DataContainer(Resource): "properties": {"key": "properties", "type": "DataContainerProperties"}, } - def __init__(self, *, properties: "_models.DataContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.DataContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DataContainerProperties @@ -6941,8 +7336,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -6976,8 +7371,8 @@ class DataContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataContainer"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataContainer"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of DataContainer objects. If null, there are no additional pages. @@ -7055,8 +7450,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword compute_location: Location for the underlying compute. :paramtype compute_location: str @@ -7090,7 +7485,9 @@ class DataLakeAnalyticsSchema(_serialization.Model): "properties": {"key": "properties", "type": "DataLakeAnalyticsSchemaProperties"}, } - def __init__(self, *, properties: Optional["_models.DataLakeAnalyticsSchemaProperties"] = None, **kwargs): + def __init__( + self, *, properties: Optional["_models.DataLakeAnalyticsSchemaProperties"] = None, **kwargs: Any + ) -> None: """ :keyword properties: :paramtype properties: @@ -7170,8 +7567,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: :paramtype properties: @@ -7218,7 +7615,7 @@ class DataLakeAnalyticsSchemaProperties(_serialization.Model): "data_lake_store_account_name": {"key": "dataLakeStoreAccountName", "type": "str"}, } - def __init__(self, *, data_lake_store_account_name: Optional[str] = None, **kwargs): + def __init__(self, *, data_lake_store_account_name: Optional[str] = None, **kwargs: Any) -> None: """ :keyword data_lake_store_account_name: DataLake Store Account Name. :paramtype data_lake_store_account_name: str @@ -7251,7 +7648,7 @@ class DataPathAssetReference(AssetReferenceBase): "path": {"key": "path", "type": "str"}, } - def __init__(self, *, datastore_id: Optional[str] = None, path: Optional[str] = None, **kwargs): + def __init__(self, *, datastore_id: Optional[str] = None, path: Optional[str] = None, **kwargs: Any) -> None: """ :keyword datastore_id: ARM resource ID of the datastore where the asset is located. :paramtype datastore_id: str @@ -7302,7 +7699,7 @@ class Datastore(Resource): "properties": {"key": "properties", "type": "DatastoreProperties"}, } - def __init__(self, *, properties: "_models.DatastoreProperties", **kwargs): + def __init__(self, *, properties: "_models.DatastoreProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatastoreProperties @@ -7326,7 +7723,9 @@ class DatastoreResourceArmPaginatedResult(_serialization.Model): "value": {"key": "value", "type": "[Datastore]"}, } - def __init__(self, *, next_link: Optional[str] = None, value: Optional[List["_models.Datastore"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.Datastore"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of Datastore objects. If null, there are no additional pages. @@ -7377,7 +7776,7 @@ class DataVersionBase(Resource): "properties": {"key": "properties", "type": "DataVersionBaseProperties"}, } - def __init__(self, *, properties: "_models.DataVersionBaseProperties", **kwargs): + def __init__(self, *, properties: "_models.DataVersionBaseProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DataVersionBaseProperties @@ -7407,15 +7806,14 @@ class DataVersionBaseProperties(AssetBase): :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file", "uri_folder", and "mltable". :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType - :ivar data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :ivar data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :vartype data_uri: str """ _validation = { "data_type": {"required": True}, - "data_uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -7441,8 +7839,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -7454,9 +7852,8 @@ def __init__( :paramtype is_anonymous: bool :keyword is_archived: Is the asset archived?. :paramtype is_archived: bool - :keyword data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :keyword data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :paramtype data_uri: str """ super().__init__( @@ -7487,8 +7884,8 @@ class DataVersionBaseResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataVersionBase"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataVersionBase"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of DataVersionBase objects. If null, there are no additional pages. @@ -7526,7 +7923,7 @@ class OnlineScaleSettings(_serialization.Model): "scale_type": {"Default": "DefaultScaleSettings", "TargetUtilization": "TargetUtilizationScaleSettings"} } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.scale_type: Optional[str] = None @@ -7550,7 +7947,7 @@ class DefaultScaleSettings(OnlineScaleSettings): "scale_type": {"key": "scaleType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.scale_type: str = "Default" @@ -7567,7 +7964,7 @@ class DeploymentLogs(_serialization.Model): "content": {"key": "content", "type": "str"}, } - def __init__(self, *, content: Optional[str] = None, **kwargs): + def __init__(self, *, content: Optional[str] = None, **kwargs: Any) -> None: """ :keyword content: The retrieved online deployment logs. :paramtype content: str @@ -7596,8 +7993,8 @@ def __init__( *, container_type: Optional[Union[str, "_models.ContainerType"]] = None, tail: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword container_type: The type of container to retrieve logs from. Known values are: "StorageInitializer" and "InferenceServer". @@ -7633,8 +8030,8 @@ def __init__( instance_count: int = 1, instance_type: Optional[str] = None, properties: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword instance_count: Optional number of instances or nodes used by the compute target. :paramtype instance_count: int @@ -7672,8 +8069,8 @@ def __init__( instance_count: int = 1, instance_type: Optional[str] = None, properties: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword instance_count: Optional number of instances or nodes used by the compute target. :paramtype instance_count: int @@ -7732,8 +8129,8 @@ def __init__( container_registry: Optional[Dict[str, JSON]] = None, application_insights: Optional[Dict[str, JSON]] = None, others: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword udr: Setting for diagnosing user defined routing. :paramtype udr: dict[str, JSON] @@ -7777,7 +8174,7 @@ class DiagnoseResponseResult(_serialization.Model): "value": {"key": "value", "type": "DiagnoseResponseResultValue"}, } - def __init__(self, *, value: Optional["_models.DiagnoseResponseResultValue"] = None, **kwargs): + def __init__(self, *, value: Optional["_models.DiagnoseResponseResultValue"] = None, **kwargs: Any) -> None: """ :keyword value: :paramtype value: ~azure.mgmt.machinelearningservices.models.DiagnoseResponseResultValue @@ -7839,8 +8236,8 @@ def __init__( container_registry_results: Optional[List["_models.DiagnoseResult"]] = None, application_insights_results: Optional[List["_models.DiagnoseResult"]] = None, other_results: Optional[List["_models.DiagnoseResult"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword user_defined_route_results: :paramtype user_defined_route_results: @@ -7906,7 +8303,7 @@ class DiagnoseResult(_serialization.Model): "message": {"key": "message", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.code = None @@ -7925,7 +8322,7 @@ class DiagnoseWorkspaceParameters(_serialization.Model): "value": {"key": "value", "type": "DiagnoseRequestProperties"}, } - def __init__(self, *, value: Optional["_models.DiagnoseRequestProperties"] = None, **kwargs): + def __init__(self, *, value: Optional["_models.DiagnoseRequestProperties"] = None, **kwargs: Any) -> None: """ :keyword value: Value of Parameters. :paramtype value: ~azure.mgmt.machinelearningservices.models.DiagnoseRequestProperties @@ -7957,12 +8354,46 @@ class DistributionConfiguration(_serialization.Model): _subtype_map = {"distribution_type": {"Mpi": "Mpi", "PyTorch": "PyTorch", "TensorFlow": "TensorFlow"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.distribution_type: Optional[str] = None +class Docker(_serialization.Model): + """Docker container configuration. + + :ivar additional_properties: Unmatched properties from the message are deserialized to this + collection. + :vartype additional_properties: dict[str, any] + :ivar privileged: Indicate whether container shall run in privileged or non-privileged mode. + :vartype privileged: bool + """ + + _attribute_map = { + "additional_properties": {"key": "", "type": "{object}"}, + "privileged": {"key": "privileged", "type": "bool"}, + } + + def __init__( + self, + *, + additional_properties: Optional[Dict[str, Any]] = None, + privileged: Optional[bool] = None, + **kwargs: Any + ) -> None: + """ + :keyword additional_properties: Unmatched properties from the message are deserialized to this + collection. + :paramtype additional_properties: dict[str, any] + :keyword privileged: Indicate whether container shall run in privileged or non-privileged mode. + :paramtype privileged: bool + """ + super().__init__(**kwargs) + self.additional_properties = additional_properties + self.privileged = privileged + + class EncryptionKeyVaultProperties(_serialization.Model): """EncryptionKeyVaultProperties. @@ -7990,8 +8421,8 @@ class EncryptionKeyVaultProperties(_serialization.Model): } def __init__( - self, *, key_vault_arm_id: str, key_identifier: str, identity_client_id: Optional[str] = None, **kwargs - ): + self, *, key_vault_arm_id: str, key_identifier: str, identity_client_id: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword key_vault_arm_id: The ArmId of the keyVault where the customer owned encryption key is present. Required. @@ -8040,8 +8471,8 @@ def __init__( status: Union[str, "_models.EncryptionStatus"], key_vault_properties: "_models.EncryptionKeyVaultProperties", identity: Optional["_models.IdentityForCmk"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Indicates whether or not the encryption is enabled for the workspace. Required. Known values are: "Enabled" and "Disabled". @@ -8059,6 +8490,61 @@ def __init__( self.key_vault_properties = key_vault_properties +class Endpoint(_serialization.Model): + """Describes the endpoint configuration for the container. + + :ivar protocol: Protocol over which communication will happen over this endpoint. Known values + are: "tcp", "udp", and "http". + :vartype protocol: str or ~azure.mgmt.machinelearningservices.models.Protocol + :ivar name: Name of the Endpoint. + :vartype name: str + :ivar target: Application port inside the container. + :vartype target: int + :ivar published: Port over which the application is exposed from container. + :vartype published: int + :ivar host_ip: Host IP over which the application is exposed from the container. + :vartype host_ip: str + """ + + _attribute_map = { + "protocol": {"key": "protocol", "type": "str"}, + "name": {"key": "name", "type": "str"}, + "target": {"key": "target", "type": "int"}, + "published": {"key": "published", "type": "int"}, + "host_ip": {"key": "hostIp", "type": "str"}, + } + + def __init__( + self, + *, + protocol: Union[str, "_models.Protocol"] = "tcp", + name: Optional[str] = None, + target: Optional[int] = None, + published: Optional[int] = None, + host_ip: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword protocol: Protocol over which communication will happen over this endpoint. Known + values are: "tcp", "udp", and "http". + :paramtype protocol: str or ~azure.mgmt.machinelearningservices.models.Protocol + :keyword name: Name of the Endpoint. + :paramtype name: str + :keyword target: Application port inside the container. + :paramtype target: int + :keyword published: Port over which the application is exposed from container. + :paramtype published: int + :keyword host_ip: Host IP over which the application is exposed from the container. + :paramtype host_ip: str + """ + super().__init__(**kwargs) + self.protocol = protocol + self.name = name + self.target = target + self.published = published + self.host_ip = host_ip + + class EndpointAuthKeys(_serialization.Model): """Keys for endpoint authentication. @@ -8073,7 +8559,9 @@ class EndpointAuthKeys(_serialization.Model): "secondary_key": {"key": "secondaryKey", "type": "str"}, } - def __init__(self, *, primary_key: Optional[str] = None, secondary_key: Optional[str] = None, **kwargs): + def __init__( + self, *, primary_key: Optional[str] = None, secondary_key: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword primary_key: The primary key. :paramtype primary_key: str @@ -8112,8 +8600,8 @@ def __init__( expiry_time_utc: int = 0, refresh_after_time_utc: int = 0, token_type: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword access_token: Access token for endpoint authentication. :paramtype access_token: str @@ -8154,7 +8642,7 @@ class ScheduleActionBase(_serialization.Model): _subtype_map = {"action_type": {"CreateJob": "JobScheduleAction", "InvokeBatchEndpoint": "EndpointScheduleAction"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.action_type: Optional[str] = None @@ -8187,7 +8675,7 @@ class EndpointScheduleAction(ScheduleActionBase): "endpoint_invocation_definition": {"key": "endpointInvocationDefinition", "type": "object"}, } - def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs): + def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs: Any) -> None: """ :keyword endpoint_invocation_definition: [Required] Defines Schedule action definition details. @@ -8240,7 +8728,7 @@ class EnvironmentContainer(Resource): "properties": {"key": "properties", "type": "EnvironmentContainerProperties"}, } - def __init__(self, *, properties: "_models.EnvironmentContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.EnvironmentContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: @@ -8267,11 +8755,16 @@ class EnvironmentContainerProperties(AssetContainer): :vartype latest_version: str :ivar next_version: The next auto incremental version. :vartype next_version: str + :ivar provisioning_state: Provisioning state for the environment container. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState """ _validation = { "latest_version": {"readonly": True}, "next_version": {"readonly": True}, + "provisioning_state": {"readonly": True}, } _attribute_map = { @@ -8281,6 +8774,7 @@ class EnvironmentContainerProperties(AssetContainer): "is_archived": {"key": "isArchived", "type": "bool"}, "latest_version": {"key": "latestVersion", "type": "str"}, "next_version": {"key": "nextVersion", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, } def __init__( @@ -8290,8 +8784,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -8303,6 +8797,7 @@ def __init__( :paramtype is_archived: bool """ super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs) + self.provisioning_state = None class EnvironmentContainerResourceArmPaginatedResult(_serialization.Model): @@ -8321,8 +8816,12 @@ class EnvironmentContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.EnvironmentContainer"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.EnvironmentContainer"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of EnvironmentContainer objects. If null, there are no additional pages. @@ -8335,6 +8834,49 @@ def __init__( self.value = value +class EnvironmentVariable(_serialization.Model): + """Environment Variables for the container. + + :ivar additional_properties: Unmatched properties from the message are deserialized to this + collection. + :vartype additional_properties: dict[str, any] + :ivar type: Type of the Environment Variable. Possible values are: local - For local variable. + "local" + :vartype type: str or ~azure.mgmt.machinelearningservices.models.EnvironmentVariableType + :ivar value: Value of the Environment variable. + :vartype value: str + """ + + _attribute_map = { + "additional_properties": {"key": "", "type": "{object}"}, + "type": {"key": "type", "type": "str"}, + "value": {"key": "value", "type": "str"}, + } + + def __init__( + self, + *, + additional_properties: Optional[Dict[str, Any]] = None, + type: Union[str, "_models.EnvironmentVariableType"] = "local", + value: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword additional_properties: Unmatched properties from the message are deserialized to this + collection. + :paramtype additional_properties: dict[str, any] + :keyword type: Type of the Environment Variable. Possible values are: local - For local + variable. "local" + :paramtype type: str or ~azure.mgmt.machinelearningservices.models.EnvironmentVariableType + :keyword value: Value of the Environment variable. + :paramtype value: str + """ + super().__init__(**kwargs) + self.additional_properties = additional_properties + self.type = type + self.value = value + + class EnvironmentVersion(Resource): """Azure Resource Manager resource envelope. @@ -8373,7 +8915,7 @@ class EnvironmentVersion(Resource): "properties": {"key": "properties", "type": "EnvironmentVersionProperties"}, } - def __init__(self, *, properties: "_models.EnvironmentVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.EnvironmentVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.EnvironmentVersionProperties @@ -8436,10 +8978,17 @@ class EnvironmentVersionProperties(AssetBase): # pylint: disable=too-many-insta ~azure.mgmt.machinelearningservices.models.InferenceContainerProperties :ivar os_type: The OS type of the environment. Known values are: "Linux" and "Windows". :vartype os_type: str or ~azure.mgmt.machinelearningservices.models.OperatingSystemType + :ivar provisioning_state: Provisioning state for the environment version. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState + :ivar stage: Stage in the environment lifecycle assigned to this environment. + :vartype stage: str """ _validation = { "environment_type": {"readonly": True}, + "provisioning_state": {"readonly": True}, } _attribute_map = { @@ -8455,6 +9004,8 @@ class EnvironmentVersionProperties(AssetBase): # pylint: disable=too-many-insta "image": {"key": "image", "type": "str"}, "inference_config": {"key": "inferenceConfig", "type": "InferenceContainerProperties"}, "os_type": {"key": "osType", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, + "stage": {"key": "stage", "type": "str"}, } def __init__( @@ -8471,8 +9022,9 @@ def __init__( image: Optional[str] = None, inference_config: Optional["_models.InferenceContainerProperties"] = None, os_type: Optional[Union[str, "_models.OperatingSystemType"]] = None, - **kwargs - ): + stage: Optional[str] = None, + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -8513,6 +9065,8 @@ def __init__( ~azure.mgmt.machinelearningservices.models.InferenceContainerProperties :keyword os_type: The OS type of the environment. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.machinelearningservices.models.OperatingSystemType + :keyword stage: Stage in the environment lifecycle assigned to this environment. + :paramtype stage: str """ super().__init__( description=description, @@ -8529,6 +9083,8 @@ def __init__( self.image = image self.inference_config = inference_config self.os_type = os_type + self.provisioning_state = None + self.stage = stage class EnvironmentVersionResourceArmPaginatedResult(_serialization.Model): @@ -8547,8 +9103,12 @@ class EnvironmentVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.EnvironmentVersion"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.EnvironmentVersion"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of EnvironmentVersion objects. If null, there are no additional pages. @@ -8582,7 +9142,7 @@ class ErrorAdditionalInfo(_serialization.Model): "info": {"key": "info", "type": "object"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.type = None @@ -8622,7 +9182,7 @@ class ErrorDetail(_serialization.Model): "additional_info": {"key": "additionalInfo", "type": "[ErrorAdditionalInfo]"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.code = None @@ -8633,7 +9193,8 @@ def __init__(self, **kwargs): class ErrorResponse(_serialization.Model): - """Common error response for all Azure Resource Manager APIs to return error details for failed operations. (This also follows the OData error response format.). + """Common error response for all Azure Resource Manager APIs to return error details for failed + operations. (This also follows the OData error response format.). :ivar error: The error object. :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorDetail @@ -8643,7 +9204,7 @@ class ErrorResponse(_serialization.Model): "error": {"key": "error", "type": "ErrorDetail"}, } - def __init__(self, *, error: Optional["_models.ErrorDetail"] = None, **kwargs): + def __init__(self, *, error: Optional["_models.ErrorDetail"] = None, **kwargs: Any) -> None: """ :keyword error: The error object. :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorDetail @@ -8685,8 +9246,8 @@ def __init__( retail_price: float, os_type: Union[str, "_models.VMPriceOSType"], vm_tier: Union[str, "_models.VMTier"], - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword retail_price: The price charged for using the VM. Required. :paramtype retail_price: float @@ -8737,8 +9298,8 @@ def __init__( billing_currency: Union[str, "_models.BillingCurrency"], unit_of_measure: Union[str, "_models.UnitOfMeasure"], values: List["_models.EstimatedVMPrice"], - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword billing_currency: Three lettered code specifying the currency of the VM price. Example: USD. Required. "USD" @@ -8767,7 +9328,7 @@ class ExternalFQDNResponse(_serialization.Model): "value": {"key": "value", "type": "[FQDNEndpoints]"}, } - def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs: Any) -> None: """ :keyword value: :paramtype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints] @@ -8787,7 +9348,7 @@ class FeaturizationSettings(_serialization.Model): "dataset_language": {"key": "datasetLanguage", "type": "str"}, } - def __init__(self, *, dataset_language: Optional[str] = None, **kwargs): + def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) -> None: """ :keyword dataset_language: Dataset language, useful for the text data. :paramtype dataset_language: str @@ -8807,7 +9368,7 @@ class FlavorData(_serialization.Model): "data": {"key": "data", "type": "{str}"}, } - def __init__(self, *, data: Optional[Dict[str, str]] = None, **kwargs): + def __init__(self, *, data: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword data: Model flavor-specific data. :paramtype data: dict[str, str] @@ -8915,8 +9476,8 @@ def __init__( forecasting_settings: Optional["_models.ForecastingSettings"] = None, primary_metric: Optional[Union[str, "_models.ForecastingPrimaryMetrics"]] = None, training_settings: Optional["_models.ForecastingTrainingSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -9085,8 +9646,8 @@ def __init__( time_column_name: Optional[str] = None, time_series_id_column_names: Optional[List[str]] = None, use_stl: Optional[Union[str, "_models.UseStl"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword country_or_region_for_holidays: Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'. @@ -9208,8 +9769,8 @@ def __init__( stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, allowed_training_algorithms: Optional[List[Union[str, "_models.ForecastingModels"]]] = None, blocked_training_algorithms: Optional[List[Union[str, "_models.ForecastingModels"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -9268,8 +9829,8 @@ def __init__( *, domain_name: Optional[str] = None, endpoint_details: Optional[List["_models.FQDNEndpointDetail"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword domain_name: :paramtype domain_name: str @@ -9293,7 +9854,7 @@ class FQDNEndpointDetail(_serialization.Model): "port": {"key": "port", "type": "int"}, } - def __init__(self, *, port: Optional[int] = None, **kwargs): + def __init__(self, *, port: Optional[int] = None, **kwargs: Any) -> None: """ :keyword port: :paramtype port: int @@ -9313,7 +9874,7 @@ class FQDNEndpoints(_serialization.Model): "properties": {"key": "properties", "type": "FQDNEndpointsProperties"}, } - def __init__(self, *, properties: Optional["_models.FQDNEndpointsProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.FQDNEndpointsProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: :paramtype properties: ~azure.mgmt.machinelearningservices.models.FQDNEndpointsProperties @@ -9337,8 +9898,8 @@ class FQDNEndpointsProperties(_serialization.Model): } def __init__( - self, *, category: Optional[str] = None, endpoints: Optional[List["_models.FQDNEndpoint"]] = None, **kwargs - ): + self, *, category: Optional[str] = None, endpoints: Optional[List["_models.FQDNEndpoint"]] = None, **kwargs: Any + ) -> None: """ :keyword category: :paramtype category: str @@ -9370,7 +9931,7 @@ class GridSamplingAlgorithm(SamplingAlgorithm): "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.sampling_algorithm_type: str = "Grid" @@ -9387,7 +9948,7 @@ class HDInsightSchema(_serialization.Model): "properties": {"key": "properties", "type": "HDInsightProperties"}, } - def __init__(self, *, properties: Optional["_models.HDInsightProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.HDInsightProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: HDInsight compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties @@ -9465,8 +10026,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: HDInsight compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties @@ -9525,8 +10086,8 @@ def __init__( ssh_port: Optional[int] = None, address: Optional[str] = None, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ssh_port: Port open for ssh connections on the master node of the cluster. :paramtype ssh_port: int @@ -9556,7 +10117,7 @@ class IdAssetReference(AssetReferenceBase): _validation = { "reference_type": {"required": True}, - "asset_id": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "asset_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -9564,7 +10125,7 @@ class IdAssetReference(AssetReferenceBase): "asset_id": {"key": "assetId", "type": "str"}, } - def __init__(self, *, asset_id: str, **kwargs): + def __init__(self, *, asset_id: str, **kwargs: Any) -> None: """ :keyword asset_id: [Required] ARM resource ID of the asset. Required. :paramtype asset_id: str @@ -9586,7 +10147,7 @@ class IdentityForCmk(_serialization.Model): "user_assigned_identity": {"key": "userAssignedIdentity", "type": "str"}, } - def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs): + def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs: Any) -> None: """ :keyword user_assigned_identity: The ArmId of the user assigned identity that will be used to access the customer managed key vault. @@ -9596,23 +10157,89 @@ def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs): self.user_assigned_identity = user_assigned_identity +class IdleShutdownSetting(_serialization.Model): + """Stops compute instance after user defined period of inactivity. + + :ivar idle_time_before_shutdown: Time is defined in ISO8601 format. Minimum is 15 min, maximum + is 3 days. + :vartype idle_time_before_shutdown: str + """ + + _attribute_map = { + "idle_time_before_shutdown": {"key": "idleTimeBeforeShutdown", "type": "str"}, + } + + def __init__(self, *, idle_time_before_shutdown: Optional[str] = None, **kwargs: Any) -> None: + """ + :keyword idle_time_before_shutdown: Time is defined in ISO8601 format. Minimum is 15 min, + maximum is 3 days. + :paramtype idle_time_before_shutdown: str + """ + super().__init__(**kwargs) + self.idle_time_before_shutdown = idle_time_before_shutdown + + +class Image(_serialization.Model): + """Describes the Image Specifications. + + :ivar additional_properties: Unmatched properties from the message are deserialized to this + collection. + :vartype additional_properties: dict[str, any] + :ivar type: Type of the image. Possible values are: docker - For docker images. azureml - For + AzureML images. Known values are: "docker" and "azureml". + :vartype type: str or ~azure.mgmt.machinelearningservices.models.ImageType + :ivar reference: Image reference. + :vartype reference: str + """ + + _attribute_map = { + "additional_properties": {"key": "", "type": "{object}"}, + "type": {"key": "type", "type": "str"}, + "reference": {"key": "reference", "type": "str"}, + } + + def __init__( + self, + *, + additional_properties: Optional[Dict[str, Any]] = None, + type: Union[str, "_models.ImageType"] = "docker", + reference: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword additional_properties: Unmatched properties from the message are deserialized to this + collection. + :paramtype additional_properties: dict[str, any] + :keyword type: Type of the image. Possible values are: docker - For docker images. azureml - + For AzureML images. Known values are: "docker" and "azureml". + :paramtype type: str or ~azure.mgmt.machinelearningservices.models.ImageType + :keyword reference: Image reference. + :paramtype reference: str + """ + super().__init__(**kwargs) + self.additional_properties = additional_properties + self.type = type + self.reference = reference + + class ImageVertical(_serialization.Model): """Abstract class for AutoML tasks that train image (computer vision) models - - such as Image Classification / Image Classification Multilabel / Image Object Detection / Image Instance Segmentation. + such as Image Classification / Image Classification Multilabel / Image Object Detection / Image + Instance Segmentation. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float """ _validation = { @@ -9633,8 +10260,8 @@ def __init__( sweep_settings: Optional["_models.ImageSweepSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, validation_data_size: Optional[float] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword limit_settings: [Required] Limit settings for the AutoML job. Required. :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings @@ -9702,8 +10329,8 @@ def __init__( validation_data_size: Optional[float] = None, model_settings: Optional["_models.ImageModelSettingsClassification"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword limit_settings: [Required] Limit settings for the AutoML job. Required. :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings @@ -9736,47 +10363,49 @@ def __init__( class ImageClassification(ImageClassificationBase, AutoMLVertical): # pylint: disable=too-many-instance-attributes - """Image Classification. Multi-class image classification is used when an image is classified with only a single label - from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'. + """Image Classification. Multi-class image classification is used when an image is classified with + only a single label + from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' + or a 'duck'. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] - :ivar primary_metric: Primary metric to optimize for this task. Known values are: - "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and - "PrecisionScoreWeighted". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] + :ivar primary_metric: Primary metric to optimize for this task. Known values are: + "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and + "PrecisionScoreWeighted". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics """ _validation = { @@ -9812,8 +10441,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsClassification"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None, primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -9875,47 +10504,48 @@ def __init__( class ImageClassificationMultilabel( ImageClassificationBase, AutoMLVertical ): # pylint: disable=too-many-instance-attributes - """Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels + """Image Classification Multilabel. Multi-label image classification is used when an image could + have one or more labels from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] - :ivar primary_metric: Primary metric to optimize for this task. Known values are: - "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", - "PrecisionScoreWeighted", and "IOU". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] + :ivar primary_metric: Primary metric to optimize for this task. Known values are: + "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", + "PrecisionScoreWeighted", and "IOU". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics """ _validation = { @@ -9951,8 +10581,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsClassification"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None, primary_metric: Optional[Union[str, "_models.ClassificationMultilabelPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -10058,8 +10688,8 @@ def __init__( validation_data_size: Optional[float] = None, model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword limit_settings: [Required] Limit settings for the AutoML job. Required. :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings @@ -10094,68 +10724,69 @@ def __init__( class ImageInstanceSegmentation( ImageObjectDetectionBase, AutoMLVertical ): # pylint: disable=too-many-instance-attributes - """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level, + """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at + the pixel level, drawing a polygon around each object in the image. - All required parameters must be populated in order to send to Azure. - - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] - :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.InstanceSegmentationPrimaryMetrics - """ - - _validation = { - "task_type": {"required": True}, - "training_data": {"required": True}, - "limit_settings": {"required": True}, - } - - _attribute_map = { - "log_verbosity": {"key": "logVerbosity", "type": "str"}, - "target_column_name": {"key": "targetColumnName", "type": "str"}, - "task_type": {"key": "taskType", "type": "str"}, - "training_data": {"key": "trainingData", "type": "MLTableJobInput"}, - "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"}, - "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"}, - "validation_data": {"key": "validationData", "type": "MLTableJobInput"}, - "validation_data_size": {"key": "validationDataSize", "type": "float"}, - "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"}, - "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"}, - "primary_metric": {"key": "primaryMetric", "type": "str"}, - } + All required parameters must be populated in order to send to Azure. - def __init__( + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] + :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.InstanceSegmentationPrimaryMetrics + """ + + _validation = { + "task_type": {"required": True}, + "training_data": {"required": True}, + "limit_settings": {"required": True}, + } + + _attribute_map = { + "log_verbosity": {"key": "logVerbosity", "type": "str"}, + "target_column_name": {"key": "targetColumnName", "type": "str"}, + "task_type": {"key": "taskType", "type": "str"}, + "training_data": {"key": "trainingData", "type": "MLTableJobInput"}, + "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"}, + "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"}, + "validation_data": {"key": "validationData", "type": "MLTableJobInput"}, + "validation_data_size": {"key": "validationDataSize", "type": "float"}, + "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"}, + "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"}, + "primary_metric": {"key": "primaryMetric", "type": "str"}, + } + + def __init__( self, *, training_data: "_models.MLTableJobInput", @@ -10168,8 +10799,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None, primary_metric: Optional[Union[str, "_models.InstanceSegmentationPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -10244,8 +10875,8 @@ class ImageLimitSettings(_serialization.Model): } def __init__( - self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs - ): + self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs: Any + ) -> None: """ :keyword max_concurrent_trials: Maximum number of concurrent AutoML iterations. :paramtype max_concurrent_trials: int @@ -10260,101 +10891,145 @@ def __init__( self.timeout = timeout +class ImageMetadata(_serialization.Model): + """Returns metadata about the operating system image for this compute instance. + + :ivar current_image_version: Specifies the current operating system image version this compute + instance is running on. + :vartype current_image_version: str + :ivar latest_image_version: Specifies the latest available operating system image version. + :vartype latest_image_version: str + :ivar is_latest_os_image_version: Specifies whether this compute instance is running on the + latest operating system image. + :vartype is_latest_os_image_version: bool + """ + + _attribute_map = { + "current_image_version": {"key": "currentImageVersion", "type": "str"}, + "latest_image_version": {"key": "latestImageVersion", "type": "str"}, + "is_latest_os_image_version": {"key": "isLatestOsImageVersion", "type": "bool"}, + } + + def __init__( + self, + *, + current_image_version: Optional[str] = None, + latest_image_version: Optional[str] = None, + is_latest_os_image_version: Optional[bool] = None, + **kwargs: Any + ) -> None: + """ + :keyword current_image_version: Specifies the current operating system image version this + compute instance is running on. + :paramtype current_image_version: str + :keyword latest_image_version: Specifies the latest available operating system image version. + :paramtype latest_image_version: str + :keyword is_latest_os_image_version: Specifies whether this compute instance is running on the + latest operating system image. + :paramtype is_latest_os_image_version: bool + """ + super().__init__(**kwargs) + self.current_image_version = current_image_version + self.latest_image_version = latest_image_version + self.is_latest_os_image_version = is_latest_os_image_version + + class ImageModelDistributionSettings(_serialization.Model): # pylint: disable=too-many-instance-attributes """Distribution expressions to sweep over values of model settings. :code:` Some examples are: - + ``` ModelName = "choice('seresnext', 'resnest50')"; LearningRate = "uniform(0.001, 0.01)"; LayersToFreeze = "choice(0, 2)"; - ` - All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., valn) + ```` + All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., + valn) where distribution name can be: uniform, quniform, loguniform, etc For more details on how to compose distribution expressions please check the documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: str - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: str - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: str - :ivar distributed: Whether to use distributer training. - :vartype distributed: str - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: str - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: str - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: str - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: str - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: str - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: str - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: str - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: str - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. - :vartype learning_rate_scheduler: str - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: str - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: str - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: str - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: str - :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. - :vartype optimizer: str - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: str - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: str - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: str - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: str - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: str - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: str - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: str - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: str + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: str + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: str + :ivar distributed: Whether to use distributer training. + :vartype distributed: str + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: str + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: str + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: str + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: str + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: str + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: str + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: str + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: str + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. + :vartype learning_rate_scheduler: str + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: str + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: str + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: str + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: str + :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. + :vartype optimizer: str + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: str + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: str + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: str + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: str + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: str + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: str + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: str + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: str """ _attribute_map = { @@ -10419,8 +11094,8 @@ def __init__( # pylint: disable=too-many-locals warmup_cosine_lr_cycles: Optional[str] = None, warmup_cosine_lr_warmup_epochs: Optional[str] = None, weight_decay: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. :paramtype ams_gradient: str @@ -10541,107 +11216,107 @@ class ImageModelDistributionSettingsClassification( :code:` Some examples are: - + ``` ModelName = "choice('seresnext', 'resnest50')"; LearningRate = "uniform(0.001, 0.01)"; LayersToFreeze = "choice(0, 2)"; - ` + ```` For more details on how to compose distribution expressions please check the documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: str - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: str - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: str - :ivar distributed: Whether to use distributer training. - :vartype distributed: str - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: str - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: str - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: str - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: str - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: str - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: str - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: str - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: str - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. - :vartype learning_rate_scheduler: str - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: str - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: str - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: str - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: str - :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. - :vartype optimizer: str - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: str - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: str - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: str - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: str - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: str - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: str - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: str - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: str - :ivar training_crop_size: Image crop size that is input to the neural network for the training - dataset. Must be a positive integer. - :vartype training_crop_size: str - :ivar validation_crop_size: Image crop size that is input to the neural network for the - validation dataset. Must be a positive integer. - :vartype validation_crop_size: str - :ivar validation_resize_size: Image size to which to resize before cropping for validation - dataset. Must be a positive integer. - :vartype validation_resize_size: str - :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. - 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be - 0 or 1 or 2. - :vartype weighted_loss: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: str + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: str + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: str + :ivar distributed: Whether to use distributer training. + :vartype distributed: str + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: str + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: str + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: str + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: str + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: str + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: str + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: str + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: str + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. + :vartype learning_rate_scheduler: str + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: str + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: str + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: str + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: str + :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. + :vartype optimizer: str + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: str + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: str + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: str + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: str + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: str + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: str + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: str + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: str + :ivar training_crop_size: Image crop size that is input to the neural network for the training + dataset. Must be a positive integer. + :vartype training_crop_size: str + :ivar validation_crop_size: Image crop size that is input to the neural network for the + validation dataset. Must be a positive integer. + :vartype validation_crop_size: str + :ivar validation_resize_size: Image size to which to resize before cropping for validation + dataset. Must be a positive integer. + :vartype validation_resize_size: str + :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. + 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be + 0 or 1 or 2. + :vartype weighted_loss: str """ _attribute_map = { @@ -10714,8 +11389,8 @@ def __init__( # pylint: disable=too-many-locals validation_crop_size: Optional[str] = None, validation_resize_size: Optional[str] = None, weighted_loss: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. :paramtype ams_gradient: str @@ -10855,146 +11530,146 @@ class ImageModelDistributionSettingsObjectDetection( :code:` Some examples are: - + ``` ModelName = "choice('seresnext', 'resnest50')"; LearningRate = "uniform(0.001, 0.01)"; LayersToFreeze = "choice(0, 2)"; - ` + ```` For more details on how to compose distribution expressions please check the documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: str - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: str - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: str - :ivar distributed: Whether to use distributer training. - :vartype distributed: str - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: str - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: str - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: str - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: str - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: str - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: str - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: str - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: str - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. - :vartype learning_rate_scheduler: str - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: str - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: str - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: str - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: str - :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. - :vartype optimizer: str - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: str - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: str - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: str - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: str - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: str - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: str - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: str - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: str - :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must - be a positive integer. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype box_detections_per_image: str - :ivar box_score_threshold: During inference, only return proposals with a classification score - greater than - BoxScoreThreshold. Must be a float in the range[0, 1]. - :vartype box_score_threshold: str - :ivar image_size: Image size for train and validation. Must be a positive integer. - Note: The training run may get into CUDA OOM if the size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype image_size: str - :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype max_size: str - :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype min_size: str - :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. - Note: training run may get into CUDA OOM if the model size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype model_size: str - :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. - Note: training run may get into CUDA OOM if no sufficient GPU memory. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype multi_scale: str - :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be - float in the range [0, 1]. - :vartype nms_iou_threshold: str - :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not - be - None to enable small object detection logic. A string containing two integers in mxn format. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_grid_size: str - :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float - in the range [0, 1). - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_overlap_ratio: str - :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging - predictions from tiles and image. - Used in validation/ inference. Must be float in the range [0, 1]. - Note: This settings is not supported for the 'yolov5' algorithm. - NMS: Non-maximum suppression. - :vartype tile_predictions_nms_threshold: str - :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be - float in the range [0, 1]. - :vartype validation_iou_threshold: str - :ivar validation_metric_type: Metric computation method to use for validation metrics. Must be - 'none', 'coco', 'voc', or 'coco_voc'. - :vartype validation_metric_type: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: str + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: str + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: str + :ivar distributed: Whether to use distributer training. + :vartype distributed: str + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: str + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: str + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: str + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: str + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: str + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: str + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: str + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: str + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. + :vartype learning_rate_scheduler: str + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: str + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: str + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: str + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: str + :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. + :vartype optimizer: str + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: str + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: str + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: str + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: str + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: str + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: str + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: str + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: str + :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must + be a positive integer. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype box_detections_per_image: str + :ivar box_score_threshold: During inference, only return proposals with a classification score + greater than + BoxScoreThreshold. Must be a float in the range[0, 1]. + :vartype box_score_threshold: str + :ivar image_size: Image size for train and validation. Must be a positive integer. + Note: The training run may get into CUDA OOM if the size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype image_size: str + :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype max_size: str + :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype min_size: str + :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. + Note: training run may get into CUDA OOM if the model size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype model_size: str + :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. + Note: training run may get into CUDA OOM if no sufficient GPU memory. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype multi_scale: str + :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be + float in the range [0, 1]. + :vartype nms_iou_threshold: str + :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not + be + None to enable small object detection logic. A string containing two integers in mxn format. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_grid_size: str + :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float + in the range [0, 1). + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_overlap_ratio: str + :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging + predictions from tiles and image. + Used in validation/ inference. Must be float in the range [0, 1]. + Note: This settings is not supported for the 'yolov5' algorithm. + NMS: Non-maximum suppression. + :vartype tile_predictions_nms_threshold: str + :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be + float in the range [0, 1]. + :vartype validation_iou_threshold: str + :ivar validation_metric_type: Metric computation method to use for validation metrics. Must be + 'none', 'coco', 'voc', or 'coco_voc'. + :vartype validation_metric_type: str """ _attribute_map = { @@ -11085,8 +11760,8 @@ def __init__( # pylint: disable=too-many-locals tile_predictions_nms_threshold: Optional[str] = None, validation_iou_threshold: Optional[str] = None, validation_metric_type: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. :paramtype ams_gradient: str @@ -11272,94 +11947,94 @@ class ImageModelSettings(_serialization.Model): # pylint: disable=too-many-inst For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar advanced_settings: Settings for advanced scenarios. - :vartype advanced_settings: str - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: bool - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: float - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: float - :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. - :vartype checkpoint_frequency: int - :ivar checkpoint_model: The pretrained checkpoint model for incremental training. - :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput - :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for - incremental training. - :vartype checkpoint_run_id: str - :ivar distributed: Whether to use distributed training. - :vartype distributed: bool - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: bool - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: int - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: int - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: bool - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: int - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: int - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: int - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: float - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. Known values are: "None", "WarmupCosine", and "Step". - :vartype learning_rate_scheduler: str or - ~azure.mgmt.machinelearningservices.models.LearningRateScheduler - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: float - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: bool - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: int - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: int - :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". - :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: int - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: float - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: int - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: int - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: int - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: float - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: int - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: float + :ivar advanced_settings: Settings for advanced scenarios. + :vartype advanced_settings: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: bool + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: float + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: float + :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. + :vartype checkpoint_frequency: int + :ivar checkpoint_model: The pretrained checkpoint model for incremental training. + :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput + :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for + incremental training. + :vartype checkpoint_run_id: str + :ivar distributed: Whether to use distributed training. + :vartype distributed: bool + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: bool + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: int + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: int + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: bool + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: int + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: int + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: int + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: float + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. Known values are: "None", "WarmupCosine", and "Step". + :vartype learning_rate_scheduler: str or + ~azure.mgmt.machinelearningservices.models.LearningRateScheduler + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: float + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: bool + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: int + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: int + :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". + :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: int + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: float + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: int + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: int + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: int + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: float + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: int + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: float """ _attribute_map = { @@ -11432,8 +12107,8 @@ def __init__( # pylint: disable=too-many-locals warmup_cosine_lr_cycles: Optional[float] = None, warmup_cosine_lr_warmup_epochs: Optional[int] = None, weight_decay: Optional[float] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword advanced_settings: Settings for advanced scenarios. :paramtype advanced_settings: str @@ -11567,107 +12242,107 @@ class ImageModelSettingsClassification(ImageModelSettings): # pylint: disable=t For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar advanced_settings: Settings for advanced scenarios. - :vartype advanced_settings: str - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: bool - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: float - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: float - :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. - :vartype checkpoint_frequency: int - :ivar checkpoint_model: The pretrained checkpoint model for incremental training. - :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput - :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for - incremental training. - :vartype checkpoint_run_id: str - :ivar distributed: Whether to use distributed training. - :vartype distributed: bool - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: bool - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: int - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: int - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: bool - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: int - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: int - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: int - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: float - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. Known values are: "None", "WarmupCosine", and "Step". - :vartype learning_rate_scheduler: str or - ~azure.mgmt.machinelearningservices.models.LearningRateScheduler - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: float - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: bool - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: int - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: int - :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". - :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: int - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: float - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: int - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: int - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: int - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: float - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: int - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: float - :ivar training_crop_size: Image crop size that is input to the neural network for the training - dataset. Must be a positive integer. - :vartype training_crop_size: int - :ivar validation_crop_size: Image crop size that is input to the neural network for the - validation dataset. Must be a positive integer. - :vartype validation_crop_size: int - :ivar validation_resize_size: Image size to which to resize before cropping for validation - dataset. Must be a positive integer. - :vartype validation_resize_size: int - :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. - 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be - 0 or 1 or 2. - :vartype weighted_loss: int + :ivar advanced_settings: Settings for advanced scenarios. + :vartype advanced_settings: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: bool + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: float + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: float + :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. + :vartype checkpoint_frequency: int + :ivar checkpoint_model: The pretrained checkpoint model for incremental training. + :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput + :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for + incremental training. + :vartype checkpoint_run_id: str + :ivar distributed: Whether to use distributed training. + :vartype distributed: bool + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: bool + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: int + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: int + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: bool + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: int + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: int + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: int + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: float + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. Known values are: "None", "WarmupCosine", and "Step". + :vartype learning_rate_scheduler: str or + ~azure.mgmt.machinelearningservices.models.LearningRateScheduler + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: float + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: bool + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: int + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: int + :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". + :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: int + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: float + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: int + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: int + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: int + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: float + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: int + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: float + :ivar training_crop_size: Image crop size that is input to the neural network for the training + dataset. Must be a positive integer. + :vartype training_crop_size: int + :ivar validation_crop_size: Image crop size that is input to the neural network for the + validation dataset. Must be a positive integer. + :vartype validation_crop_size: int + :ivar validation_resize_size: Image size to which to resize before cropping for validation + dataset. Must be a positive integer. + :vartype validation_resize_size: int + :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. + 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be + 0 or 1 or 2. + :vartype weighted_loss: int """ _attribute_map = { @@ -11748,8 +12423,8 @@ def __init__( # pylint: disable=too-many-locals validation_crop_size: Optional[int] = None, validation_resize_size: Optional[int] = None, weighted_loss: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword advanced_settings: Settings for advanced scenarios. :paramtype advanced_settings: str @@ -11902,147 +12577,147 @@ class ImageModelSettingsObjectDetection(ImageModelSettings): # pylint: disable= For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar advanced_settings: Settings for advanced scenarios. - :vartype advanced_settings: str - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: bool - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: float - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: float - :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. - :vartype checkpoint_frequency: int - :ivar checkpoint_model: The pretrained checkpoint model for incremental training. - :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput - :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for - incremental training. - :vartype checkpoint_run_id: str - :ivar distributed: Whether to use distributed training. - :vartype distributed: bool - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: bool - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: int - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: int - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: bool - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: int - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: int - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: int - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: float - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. Known values are: "None", "WarmupCosine", and "Step". - :vartype learning_rate_scheduler: str or - ~azure.mgmt.machinelearningservices.models.LearningRateScheduler - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: float - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: bool - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: int - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: int - :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". - :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: int - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: float - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: int - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: int - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: int - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: float - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: int - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: float - :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must - be a positive integer. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype box_detections_per_image: int - :ivar box_score_threshold: During inference, only return proposals with a classification score - greater than - BoxScoreThreshold. Must be a float in the range[0, 1]. - :vartype box_score_threshold: float - :ivar image_size: Image size for train and validation. Must be a positive integer. - Note: The training run may get into CUDA OOM if the size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype image_size: int - :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype max_size: int - :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype min_size: int - :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. - Note: training run may get into CUDA OOM if the model size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. Known values are: "None", - "Small", "Medium", "Large", and "ExtraLarge". - :vartype model_size: str or ~azure.mgmt.machinelearningservices.models.ModelSize - :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. - Note: training run may get into CUDA OOM if no sufficient GPU memory. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype multi_scale: bool - :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be a - float in the range [0, 1]. - :vartype nms_iou_threshold: float - :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not - be - None to enable small object detection logic. A string containing two integers in mxn format. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_grid_size: str - :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float - in the range [0, 1). - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_overlap_ratio: float - :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging - predictions from tiles and image. - Used in validation/ inference. Must be float in the range [0, 1]. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_predictions_nms_threshold: float - :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be - float in the range [0, 1]. - :vartype validation_iou_threshold: float - :ivar validation_metric_type: Metric computation method to use for validation metrics. Known - values are: "None", "Coco", "Voc", and "CocoVoc". - :vartype validation_metric_type: str or - ~azure.mgmt.machinelearningservices.models.ValidationMetricType + :ivar advanced_settings: Settings for advanced scenarios. + :vartype advanced_settings: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: bool + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: float + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: float + :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. + :vartype checkpoint_frequency: int + :ivar checkpoint_model: The pretrained checkpoint model for incremental training. + :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput + :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for + incremental training. + :vartype checkpoint_run_id: str + :ivar distributed: Whether to use distributed training. + :vartype distributed: bool + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: bool + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: int + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: int + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: bool + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: int + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: int + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: int + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: float + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. Known values are: "None", "WarmupCosine", and "Step". + :vartype learning_rate_scheduler: str or + ~azure.mgmt.machinelearningservices.models.LearningRateScheduler + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: float + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: bool + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: int + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: int + :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". + :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: int + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: float + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: int + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: int + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: int + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: float + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: int + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: float + :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must + be a positive integer. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype box_detections_per_image: int + :ivar box_score_threshold: During inference, only return proposals with a classification score + greater than + BoxScoreThreshold. Must be a float in the range[0, 1]. + :vartype box_score_threshold: float + :ivar image_size: Image size for train and validation. Must be a positive integer. + Note: The training run may get into CUDA OOM if the size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype image_size: int + :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype max_size: int + :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype min_size: int + :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. + Note: training run may get into CUDA OOM if the model size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. Known values are: "None", + "Small", "Medium", "Large", and "ExtraLarge". + :vartype model_size: str or ~azure.mgmt.machinelearningservices.models.ModelSize + :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. + Note: training run may get into CUDA OOM if no sufficient GPU memory. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype multi_scale: bool + :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be a + float in the range [0, 1]. + :vartype nms_iou_threshold: float + :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not + be + None to enable small object detection logic. A string containing two integers in mxn format. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_grid_size: str + :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float + in the range [0, 1). + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_overlap_ratio: float + :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging + predictions from tiles and image. + Used in validation/ inference. Must be float in the range [0, 1]. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_predictions_nms_threshold: float + :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be + float in the range [0, 1]. + :vartype validation_iou_threshold: float + :ivar validation_metric_type: Metric computation method to use for validation metrics. Known + values are: "None", "Coco", "Voc", and "CocoVoc". + :vartype validation_metric_type: str or + ~azure.mgmt.machinelearningservices.models.ValidationMetricType """ _attribute_map = { @@ -12141,8 +12816,8 @@ def __init__( # pylint: disable=too-many-locals tile_predictions_nms_threshold: Optional[float] = None, validation_iou_threshold: Optional[float] = None, validation_metric_type: Optional[Union[str, "_models.ValidationMetricType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword advanced_settings: Settings for advanced scenarios. :paramtype advanced_settings: str @@ -12340,72 +13015,73 @@ def __init__( # pylint: disable=too-many-locals class ImageObjectDetection(ImageObjectDetectionBase, AutoMLVertical): # pylint: disable=too-many-instance-attributes - """Image Object Detection. Object detection is used to identify objects in an image and locate each object with a + """Image Object Detection. Object detection is used to identify objects in an image and locate + each object with a bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. - All required parameters must be populated in order to send to Azure. - - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] - :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ObjectDetectionPrimaryMetrics - """ - - _validation = { - "task_type": {"required": True}, - "training_data": {"required": True}, - "limit_settings": {"required": True}, - } - - _attribute_map = { - "log_verbosity": {"key": "logVerbosity", "type": "str"}, - "target_column_name": {"key": "targetColumnName", "type": "str"}, - "task_type": {"key": "taskType", "type": "str"}, - "training_data": {"key": "trainingData", "type": "MLTableJobInput"}, - "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"}, - "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"}, - "validation_data": {"key": "validationData", "type": "MLTableJobInput"}, - "validation_data_size": {"key": "validationDataSize", "type": "float"}, - "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"}, - "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"}, - "primary_metric": {"key": "primaryMetric", "type": "str"}, - } + All required parameters must be populated in order to send to Azure. - def __init__( - self, - *, - training_data: "_models.MLTableJobInput", - limit_settings: "_models.ImageLimitSettings", + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] + :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ObjectDetectionPrimaryMetrics + """ + + _validation = { + "task_type": {"required": True}, + "training_data": {"required": True}, + "limit_settings": {"required": True}, + } + + _attribute_map = { + "log_verbosity": {"key": "logVerbosity", "type": "str"}, + "target_column_name": {"key": "targetColumnName", "type": "str"}, + "task_type": {"key": "taskType", "type": "str"}, + "training_data": {"key": "trainingData", "type": "MLTableJobInput"}, + "limit_settings": {"key": "limitSettings", "type": "ImageLimitSettings"}, + "sweep_settings": {"key": "sweepSettings", "type": "ImageSweepSettings"}, + "validation_data": {"key": "validationData", "type": "MLTableJobInput"}, + "validation_data_size": {"key": "validationDataSize", "type": "float"}, + "model_settings": {"key": "modelSettings", "type": "ImageModelSettingsObjectDetection"}, + "search_space": {"key": "searchSpace", "type": "[ImageModelDistributionSettingsObjectDetection]"}, + "primary_metric": {"key": "primaryMetric", "type": "str"}, + } + + def __init__( + self, + *, + training_data: "_models.MLTableJobInput", + limit_settings: "_models.ImageLimitSettings", log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None, target_column_name: Optional[str] = None, sweep_settings: Optional["_models.ImageSweepSettings"] = None, @@ -12414,8 +13090,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None, primary_metric: Optional[Union[str, "_models.ObjectDetectionPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -12499,8 +13175,8 @@ def __init__( *, sampling_algorithm: Union[str, "_models.SamplingAlgorithmType"], early_termination: Optional["_models.EarlyTerminationPolicy"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword early_termination: Type of early termination policy. :paramtype early_termination: ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicy @@ -12538,8 +13214,8 @@ def __init__( liveness_route: Optional["_models.Route"] = None, readiness_route: Optional["_models.Route"] = None, scoring_route: Optional["_models.Route"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword liveness_route: The route to check the liveness of the inference server container. :paramtype liveness_route: ~azure.mgmt.machinelearningservices.models.Route @@ -12574,8 +13250,8 @@ def __init__( *, node_selector: Optional[Dict[str, str]] = None, resources: Optional["_models.InstanceTypeSchemaResources"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword node_selector: Node Selector. :paramtype node_selector: dict[str, str] @@ -12601,7 +13277,9 @@ class InstanceTypeSchemaResources(_serialization.Model): "limits": {"key": "limits", "type": "{str}"}, } - def __init__(self, *, requests: Optional[Dict[str, str]] = None, limits: Optional[Dict[str, str]] = None, **kwargs): + def __init__( + self, *, requests: Optional[Dict[str, str]] = None, limits: Optional[Dict[str, str]] = None, **kwargs: Any + ) -> None: """ :keyword requests: Resource requests for this instance type. :paramtype requests: dict[str, str] @@ -12651,7 +13329,7 @@ class JobBase(Resource): "properties": {"key": "properties", "type": "JobBaseProperties"}, } - def __init__(self, *, properties: "_models.JobBaseProperties", **kwargs): + def __init__(self, *, properties: "_models.JobBaseProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.JobBaseProperties @@ -12675,7 +13353,9 @@ class JobBaseResourceArmPaginatedResult(_serialization.Model): "value": {"key": "value", "type": "[JobBase]"}, } - def __init__(self, *, next_link: Optional[str] = None, value: Optional[List["_models.JobBase"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.JobBase"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of JobBase objects. If null, there are no additional pages. @@ -12727,8 +13407,8 @@ def __init__( properties: Optional[Dict[str, JSON]] = None, docker_args: Optional[str] = None, shm_size: str = "2g", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword instance_count: Optional number of instances or nodes used by the compute target. :paramtype instance_count: int @@ -12772,7 +13452,7 @@ class JobScheduleAction(ScheduleActionBase): "job_definition": {"key": "jobDefinition", "type": "JobBaseProperties"}, } - def __init__(self, *, job_definition: "_models.JobBaseProperties", **kwargs): + def __init__(self, *, job_definition: "_models.JobBaseProperties", **kwargs: Any) -> None: """ :keyword job_definition: [Required] Defines Schedule action definition details. Required. :paramtype job_definition: ~azure.mgmt.machinelearningservices.models.JobBaseProperties @@ -12793,6 +13473,9 @@ class JobService(_serialization.Model): :vartype error_message: str :ivar job_service_type: Endpoint type. :vartype job_service_type: str + :ivar nodes: Nodes that user would like to start the service on. + If Nodes is not set or set to null, the service will only be started on leader node. + :vartype nodes: ~azure.mgmt.machinelearningservices.models.Nodes :ivar port: Port for endpoint. :vartype port: int :ivar properties: Additional properties to set on the endpoint. @@ -12810,6 +13493,7 @@ class JobService(_serialization.Model): "endpoint": {"key": "endpoint", "type": "str"}, "error_message": {"key": "errorMessage", "type": "str"}, "job_service_type": {"key": "jobServiceType", "type": "str"}, + "nodes": {"key": "nodes", "type": "Nodes"}, "port": {"key": "port", "type": "int"}, "properties": {"key": "properties", "type": "{str}"}, "status": {"key": "status", "type": "str"}, @@ -12820,15 +13504,19 @@ def __init__( *, endpoint: Optional[str] = None, job_service_type: Optional[str] = None, + nodes: Optional["_models.Nodes"] = None, port: Optional[int] = None, properties: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword endpoint: Url for endpoint. :paramtype endpoint: str :keyword job_service_type: Endpoint type. :paramtype job_service_type: str + :keyword nodes: Nodes that user would like to start the service on. + If Nodes is not set or set to null, the service will only be started on leader node. + :paramtype nodes: ~azure.mgmt.machinelearningservices.models.Nodes :keyword port: Port for endpoint. :paramtype port: int :keyword properties: Additional properties to set on the endpoint. @@ -12838,6 +13526,7 @@ def __init__( self.endpoint = endpoint self.error_message = None self.job_service_type = job_service_type + self.nodes = nodes self.port = port self.properties = properties self.status = None @@ -12854,7 +13543,7 @@ class KubernetesSchema(_serialization.Model): "properties": {"key": "properties", "type": "KubernetesProperties"}, } - def __init__(self, *, properties: Optional["_models.KubernetesProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.KubernetesProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of Kubernetes. :paramtype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties @@ -12932,8 +13621,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of Kubernetes. :paramtype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties @@ -13069,8 +13758,8 @@ def __init__( readiness_probe: Optional["_models.ProbeSettings"] = None, request_settings: Optional["_models.OnlineRequestSettings"] = None, scale_settings: Optional["_models.OnlineScaleSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -13233,8 +13922,8 @@ def __init__( request_settings: Optional["_models.OnlineRequestSettings"] = None, scale_settings: Optional["_models.OnlineScaleSettings"] = None, container_resource_requirements: Optional["_models.ContainerResourceRequirements"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -13342,8 +14031,8 @@ def __init__( namespace: str = "default", default_instance_type: Optional[str] = None, instance_types: Optional[Dict[str, "_models.InstanceTypeSchema"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword relay_connection_string: Relay connection string. :paramtype relay_connection_string: str @@ -13396,7 +14085,7 @@ class ListAmlUserFeatureResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -13424,7 +14113,7 @@ class ListNotebookKeysResult(_serialization.Model): "secondary_access_key": {"key": "secondaryAccessKey", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.primary_access_key = None @@ -13448,7 +14137,7 @@ class ListStorageAccountKeysResult(_serialization.Model): "user_storage_key": {"key": "userStorageKey", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.user_storage_key = None @@ -13476,7 +14165,7 @@ class ListUsagesResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -13521,7 +14210,7 @@ class ListWorkspaceKeysResult(_serialization.Model): "notebook_access_keys": {"key": "notebookAccessKeys", "type": "ListNotebookKeysResult"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.user_storage_key = None @@ -13553,7 +14242,7 @@ class ListWorkspaceQuotas(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -13577,7 +14266,7 @@ class LiteralJobInput(JobInput): _validation = { "job_input_type": {"required": True}, - "value": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "value": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -13586,7 +14275,7 @@ class LiteralJobInput(JobInput): "value": {"key": "value", "type": "str"}, } - def __init__(self, *, value: str, description: Optional[str] = None, **kwargs): + def __init__(self, *, value: str, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -13635,8 +14324,8 @@ def __init__( client_id: Optional[str] = None, object_id: Optional[str] = None, resource_id: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword client_id: Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. @@ -13708,8 +14397,8 @@ def __init__( target: Optional[str] = None, value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -13772,8 +14461,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionManagedIdentity"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -13887,8 +14576,8 @@ def __init__( readiness_probe: Optional["_models.ProbeSettings"] = None, request_settings: Optional["_models.OnlineRequestSettings"] = None, scale_settings: Optional["_models.OnlineScaleSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -13990,8 +14679,8 @@ def __init__( *, type: Union[str, "_models.ManagedServiceIdentityType"], user_assigned_identities: Optional[Dict[str, "_models.UserAssignedIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword type: Type of managed service identity (where both SystemAssigned and UserAssigned types are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and @@ -14012,7 +14701,8 @@ def __init__( class MedianStoppingPolicy(EarlyTerminationPolicy): - """Defines an early termination policy based on running averages of the primary metric of all runs. + """Defines an early termination policy based on running averages of the primary metric of all + runs. All required parameters must be populated in order to send to Azure. @@ -14036,7 +14726,7 @@ class MedianStoppingPolicy(EarlyTerminationPolicy): "policy_type": {"key": "policyType", "type": "str"}, } - def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs): + def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs: Any) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -14067,7 +14757,7 @@ class MLFlowModelJobInput(AssetJobInput, JobInput): _validation = { "job_input_type": {"required": True}, - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -14083,8 +14773,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -14134,8 +14824,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -14169,9 +14859,8 @@ class MLTableData(DataVersionBaseProperties): :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file", "uri_folder", and "mltable". :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType - :ivar data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :ivar data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :vartype data_uri: str :ivar referenced_uris: Uris referenced in the MLTable definition (required for lineage). :vartype referenced_uris: list[str] @@ -14179,7 +14868,7 @@ class MLTableData(DataVersionBaseProperties): _validation = { "data_type": {"required": True}, - "data_uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -14203,8 +14892,8 @@ def __init__( is_anonymous: bool = False, is_archived: bool = False, referenced_uris: Optional[List[str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -14216,9 +14905,8 @@ def __init__( :paramtype is_anonymous: bool :keyword is_archived: Is the asset archived?. :paramtype is_archived: bool - :keyword data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :keyword data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :paramtype data_uri: str :keyword referenced_uris: Uris referenced in the MLTable definition (required for lineage). :paramtype referenced_uris: list[str] @@ -14256,7 +14944,7 @@ class MLTableJobInput(AssetJobInput, JobInput): _validation = { "job_input_type": {"required": True}, - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -14272,8 +14960,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -14323,8 +15011,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -14378,7 +15066,7 @@ class ModelContainer(Resource): "properties": {"key": "properties", "type": "ModelContainerProperties"}, } - def __init__(self, *, properties: "_models.ModelContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.ModelContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ModelContainerProperties @@ -14404,11 +15092,16 @@ class ModelContainerProperties(AssetContainer): :vartype latest_version: str :ivar next_version: The next auto incremental version. :vartype next_version: str + :ivar provisioning_state: Provisioning state for the model container. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState """ _validation = { "latest_version": {"readonly": True}, "next_version": {"readonly": True}, + "provisioning_state": {"readonly": True}, } _attribute_map = { @@ -14418,6 +15111,7 @@ class ModelContainerProperties(AssetContainer): "is_archived": {"key": "isArchived", "type": "bool"}, "latest_version": {"key": "latestVersion", "type": "str"}, "next_version": {"key": "nextVersion", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, } def __init__( @@ -14427,8 +15121,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -14440,6 +15134,7 @@ def __init__( :paramtype is_archived: bool """ super().__init__(description=description, properties=properties, tags=tags, is_archived=is_archived, **kwargs) + self.provisioning_state = None class ModelContainerResourceArmPaginatedResult(_serialization.Model): @@ -14458,8 +15153,8 @@ class ModelContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelContainer"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelContainer"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ModelContainer objects. If null, there are no additional pages. @@ -14510,7 +15205,7 @@ class ModelVersion(Resource): "properties": {"key": "properties", "type": "ModelVersionProperties"}, } - def __init__(self, *, properties: "_models.ModelVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.ModelVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ModelVersionProperties @@ -14519,9 +15214,11 @@ def __init__(self, *, properties: "_models.ModelVersionProperties", **kwargs): self.properties = properties -class ModelVersionProperties(AssetBase): +class ModelVersionProperties(AssetBase): # pylint: disable=too-many-instance-attributes """Model asset version details. + Variables are only populated by the server, and will be ignored when sending a request. + :ivar description: The asset description text. :vartype description: str :ivar properties: The asset property dictionary. @@ -14540,8 +15237,18 @@ class ModelVersionProperties(AssetBase): :vartype model_type: str :ivar model_uri: The URI path to the model contents. :vartype model_uri: str + :ivar provisioning_state: Provisioning state for the model version. Known values are: + "Succeeded", "Failed", "Canceled", "Creating", "Updating", and "Deleting". + :vartype provisioning_state: str or + ~azure.mgmt.machinelearningservices.models.AssetProvisioningState + :ivar stage: Stage in the model lifecycle assigned to this model. + :vartype stage: str """ + _validation = { + "provisioning_state": {"readonly": True}, + } + _attribute_map = { "description": {"key": "description", "type": "str"}, "properties": {"key": "properties", "type": "{str}"}, @@ -14552,6 +15259,8 @@ class ModelVersionProperties(AssetBase): "job_name": {"key": "jobName", "type": "str"}, "model_type": {"key": "modelType", "type": "str"}, "model_uri": {"key": "modelUri", "type": "str"}, + "provisioning_state": {"key": "provisioningState", "type": "str"}, + "stage": {"key": "stage", "type": "str"}, } def __init__( @@ -14566,8 +15275,9 @@ def __init__( job_name: Optional[str] = None, model_type: Optional[str] = None, model_uri: Optional[str] = None, - **kwargs - ): + stage: Optional[str] = None, + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -14587,6 +15297,8 @@ def __init__( :paramtype model_type: str :keyword model_uri: The URI path to the model contents. :paramtype model_uri: str + :keyword stage: Stage in the model lifecycle assigned to this model. + :paramtype stage: str """ super().__init__( description=description, @@ -14600,6 +15312,8 @@ def __init__( self.job_name = job_name self.model_type = model_type self.model_uri = model_uri + self.provisioning_state = None + self.stage = stage class ModelVersionResourceArmPaginatedResult(_serialization.Model): @@ -14618,8 +15332,8 @@ class ModelVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ModelVersion objects. If null, there are no additional pages. @@ -14653,7 +15367,7 @@ class Mpi(DistributionConfiguration): "process_count_per_instance": {"key": "processCountPerInstance", "type": "int"}, } - def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs): + def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs: Any) -> None: """ :keyword process_count_per_instance: Number of processes per MPI node. :paramtype process_count_per_instance: int @@ -14667,13 +15381,13 @@ class NlpVertical(_serialization.Model): """Abstract class for NLP related AutoML tasks. NLP - Natural Language Processing. - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput """ _attribute_map = { @@ -14688,8 +15402,8 @@ def __init__( featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None, limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword featurization_settings: Featurization inputs needed for AutoML job. :paramtype featurization_settings: @@ -14716,7 +15430,7 @@ class NlpVerticalFeaturizationSettings(FeaturizationSettings): "dataset_language": {"key": "datasetLanguage", "type": "str"}, } - def __init__(self, *, dataset_language: Optional[str] = None, **kwargs): + def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) -> None: """ :keyword dataset_language: Dataset language, useful for the text data. :paramtype dataset_language: str @@ -14742,13 +15456,8 @@ class NlpVerticalLimitSettings(_serialization.Model): } def __init__( - self, - *, - max_concurrent_trials: int = 1, - max_trials: int = 1, - timeout: Optional[datetime.timedelta] = None, - **kwargs - ): + self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs: Any + ) -> None: """ :keyword max_concurrent_trials: Maximum Concurrent AutoML iterations. :paramtype max_concurrent_trials: int @@ -14800,7 +15509,7 @@ class NodeStateCounts(_serialization.Model): "preempted_node_count": {"key": "preemptedNodeCount", "type": "int"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.idle_node_count = None @@ -14849,8 +15558,8 @@ def __init__( target: Optional[str] = None, value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -14884,7 +15593,7 @@ class NoneDatastoreCredentials(DatastoreCredentials): "credentials_type": {"key": "credentialsType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.credentials_type: str = "None" @@ -14935,7 +15644,7 @@ class NotebookAccessTokenResult(_serialization.Model): "scope": {"key": "scope", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.notebook_resource_id = None @@ -14962,7 +15671,9 @@ class NotebookPreparationError(_serialization.Model): "status_code": {"key": "statusCode", "type": "int"}, } - def __init__(self, *, error_message: Optional[str] = None, status_code: Optional[int] = None, **kwargs): + def __init__( + self, *, error_message: Optional[str] = None, status_code: Optional[int] = None, **kwargs: Any + ) -> None: """ :keyword error_message: :paramtype error_message: str @@ -14998,8 +15709,8 @@ def __init__( fqdn: Optional[str] = None, resource_id: Optional[str] = None, notebook_preparation_error: Optional["_models.NotebookPreparationError"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword fqdn: :paramtype fqdn: str @@ -15029,7 +15740,7 @@ class Objective(_serialization.Model): _validation = { "goal": {"required": True}, - "primary_metric": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "primary_metric": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -15037,7 +15748,7 @@ class Objective(_serialization.Model): "primary_metric": {"key": "primaryMetric", "type": "str"}, } - def __init__(self, *, goal: Union[str, "_models.Goal"], primary_metric: str, **kwargs): + def __init__(self, *, goal: Union[str, "_models.Goal"], primary_metric: str, **kwargs: Any) -> None: """ :keyword goal: [Required] Defines supported metric goals for hyperparameter tuning. Required. Known values are: "Minimize" and "Maximize". @@ -15114,8 +15825,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15154,8 +15865,12 @@ class OnlineDeploymentTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineDeployment"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.OnlineDeployment"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of OnlineDeployment objects. If null, there are no additional pages. @@ -15232,8 +15947,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15256,7 +15971,7 @@ def __init__( self.sku = sku -class OnlineEndpointProperties(EndpointPropertiesBase): +class OnlineEndpointProperties(EndpointPropertiesBase): # pylint: disable=too-many-instance-attributes """Online endpoint configuration. Variables are only populated by the server, and will be ignored when sending a request. @@ -15282,6 +15997,9 @@ class OnlineEndpointProperties(EndpointPropertiesBase): :ivar compute: ARM resource ID of the compute if it exists. optional. :vartype compute: str + :ivar mirror_traffic: Percentage of traffic to be mirrored to each deployment without using + returned scoring. Traffic values need to sum to utmost 50. + :vartype mirror_traffic: dict[str, int] :ivar provisioning_state: Provisioning state for the endpoint. Known values are: "Creating", "Deleting", "Succeeded", "Failed", "Updating", and "Canceled". :vartype provisioning_state: str or @@ -15310,6 +16028,7 @@ class OnlineEndpointProperties(EndpointPropertiesBase): "scoring_uri": {"key": "scoringUri", "type": "str"}, "swagger_uri": {"key": "swaggerUri", "type": "str"}, "compute": {"key": "compute", "type": "str"}, + "mirror_traffic": {"key": "mirrorTraffic", "type": "{int}"}, "provisioning_state": {"key": "provisioningState", "type": "str"}, "public_network_access": {"key": "publicNetworkAccess", "type": "str"}, "traffic": {"key": "traffic", "type": "{int}"}, @@ -15323,10 +16042,11 @@ def __init__( keys: Optional["_models.EndpointAuthKeys"] = None, properties: Optional[Dict[str, str]] = None, compute: Optional[str] = None, + mirror_traffic: Optional[Dict[str, int]] = None, public_network_access: Optional[Union[str, "_models.PublicNetworkAccessType"]] = None, traffic: Optional[Dict[str, int]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does. @@ -15343,6 +16063,9 @@ def __init__( :keyword compute: ARM resource ID of the compute if it exists. optional. :paramtype compute: str + :keyword mirror_traffic: Percentage of traffic to be mirrored to each deployment without using + returned scoring. Traffic values need to sum to utmost 50. + :paramtype mirror_traffic: dict[str, int] :keyword public_network_access: Set to "Enabled" for endpoints that should allow public access when Private Link is enabled. Known values are: "Enabled" and "Disabled". :paramtype public_network_access: str or @@ -15353,6 +16076,7 @@ def __init__( """ super().__init__(auth_mode=auth_mode, description=description, keys=keys, properties=properties, **kwargs) self.compute = compute + self.mirror_traffic = mirror_traffic self.provisioning_state = None self.public_network_access = public_network_access self.traffic = traffic @@ -15374,8 +16098,8 @@ class OnlineEndpointTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineEndpoint"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineEndpoint"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of OnlineEndpoint objects. If null, there are no additional pages. @@ -15415,8 +16139,8 @@ def __init__( max_concurrent_requests_per_instance: int = 1, max_queue_wait: datetime.timedelta = "PT0.5S", request_timeout: datetime.timedelta = "PT5S", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_concurrent_requests_per_instance: The number of maximum concurrent requests per node allowed per deployment. Defaults to 1. @@ -15459,7 +16183,7 @@ class OutputPathAssetReference(AssetReferenceBase): "path": {"key": "path", "type": "str"}, } - def __init__(self, *, job_id: Optional[str] = None, path: Optional[str] = None, **kwargs): + def __init__(self, *, job_id: Optional[str] = None, path: Optional[str] = None, **kwargs: Any) -> None: """ :keyword job_id: ARM resource ID of the job. :paramtype job_id: str @@ -15487,8 +16211,8 @@ class PaginatedComputeResourcesList(_serialization.Model): } def __init__( - self, *, value: Optional[List["_models.ComputeResource"]] = None, next_link: Optional[str] = None, **kwargs - ): + self, *, value: Optional[List["_models.ComputeResource"]] = None, next_link: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword value: An array of Machine Learning compute objects wrapped in ARM resource envelope. :paramtype value: list[~azure.mgmt.machinelearningservices.models.ComputeResource] @@ -15511,7 +16235,7 @@ class PartialBatchDeployment(_serialization.Model): "description": {"key": "description", "type": "str"}, } - def __init__(self, *, description: Optional[str] = None, **kwargs): + def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description of the endpoint deployment. :paramtype description: str @@ -15539,8 +16263,8 @@ def __init__( *, properties: Optional["_models.PartialBatchDeployment"] = None, tags: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Additional attributes of the entity. :paramtype properties: ~azure.mgmt.machinelearningservices.models.PartialBatchDeployment @@ -15575,8 +16299,8 @@ def __init__( *, type: Optional[Union[str, "_models.ManagedServiceIdentityType"]] = None, user_assigned_identities: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword type: Managed service identity (system assigned and/or user assigned identities). Known values are: "None", "SystemAssigned", "UserAssigned", and "SystemAssigned,UserAssigned". @@ -15603,7 +16327,7 @@ class PartialMinimalTrackedResource(_serialization.Model): "tags": {"key": "tags", "type": "{str}"}, } - def __init__(self, *, tags: Optional[Dict[str, str]] = None, **kwargs): + def __init__(self, *, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15631,8 +16355,8 @@ def __init__( *, tags: Optional[Dict[str, str]] = None, identity: Optional["_models.PartialManagedServiceIdentity"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15657,7 +16381,9 @@ class PartialMinimalTrackedResourceWithSku(PartialMinimalTrackedResource): "sku": {"key": "sku", "type": "PartialSku"}, } - def __init__(self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.PartialSku"] = None, **kwargs): + def __init__( + self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.PartialSku"] = None, **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15668,6 +16394,47 @@ def __init__(self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_mod self.sku = sku +class PartialRegistryPartialTrackedResource(_serialization.Model): + """Strictly used in update requests. + + :ivar identity: Managed service identity (system assigned and/or user assigned identities). + :vartype identity: + ~azure.mgmt.machinelearningservices.models.RegistryPartialManagedServiceIdentity + :ivar sku: Sku details required for ARM contract for Autoscaling. + :vartype sku: ~azure.mgmt.machinelearningservices.models.PartialSku + :ivar tags: Resource tags. + :vartype tags: dict[str, str] + """ + + _attribute_map = { + "identity": {"key": "identity", "type": "RegistryPartialManagedServiceIdentity"}, + "sku": {"key": "sku", "type": "PartialSku"}, + "tags": {"key": "tags", "type": "{str}"}, + } + + def __init__( + self, + *, + identity: Optional["_models.RegistryPartialManagedServiceIdentity"] = None, + sku: Optional["_models.PartialSku"] = None, + tags: Optional[Dict[str, str]] = None, + **kwargs: Any + ) -> None: + """ + :keyword identity: Managed service identity (system assigned and/or user assigned identities). + :paramtype identity: + ~azure.mgmt.machinelearningservices.models.RegistryPartialManagedServiceIdentity + :keyword sku: Sku details required for ARM contract for Autoscaling. + :paramtype sku: ~azure.mgmt.machinelearningservices.models.PartialSku + :keyword tags: Resource tags. + :paramtype tags: dict[str, str] + """ + super().__init__(**kwargs) + self.identity = identity + self.sku = sku + self.tags = tags + + class PartialSku(_serialization.Model): """Common SKU definition. @@ -15704,8 +16471,8 @@ def __init__( name: Optional[str] = None, size: Optional[str] = None, tier: Optional[Union[str, "_models.SkuTier"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword capacity: If the SKU supports scale out/in then the capacity integer should be included. If scale out/in is not possible for the resource this may be omitted. @@ -15752,7 +16519,7 @@ class Password(_serialization.Model): "value": {"key": "value", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.name = None @@ -15802,8 +16569,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionPersonalAccessToken"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -15823,6 +16590,120 @@ def __init__( self.credentials = credentials +class PendingUploadCredentialDto(_serialization.Model): + """PendingUploadCredentialDto. + + You probably want to use the sub-classes and not this class directly. Known sub-classes are: + SASCredentialDto + + All required parameters must be populated in order to send to Azure. + + :ivar credential_type: [Required] Credential type used to authentication with storage. + Required. "SAS" + :vartype credential_type: str or + ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialType + """ + + _validation = { + "credential_type": {"required": True}, + } + + _attribute_map = { + "credential_type": {"key": "credentialType", "type": "str"}, + } + + _subtype_map = {"credential_type": {"SAS": "SASCredentialDto"}} + + def __init__(self, **kwargs: Any) -> None: + """ """ + super().__init__(**kwargs) + self.credential_type: Optional[str] = None + + +class PendingUploadRequestDto(_serialization.Model): + """PendingUploadRequestDto. + + :ivar pending_upload_id: If PendingUploadId = null then random guid will be used. + :vartype pending_upload_id: str + :ivar pending_upload_type: TemporaryBlobReference is the only supported type. Known values are: + "None" and "TemporaryBlobReference". + :vartype pending_upload_type: str or + ~azure.mgmt.machinelearningservices.models.PendingUploadType + """ + + _attribute_map = { + "pending_upload_id": {"key": "pendingUploadId", "type": "str"}, + "pending_upload_type": {"key": "pendingUploadType", "type": "str"}, + } + + def __init__( + self, + *, + pending_upload_id: Optional[str] = None, + pending_upload_type: Optional[Union[str, "_models.PendingUploadType"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword pending_upload_id: If PendingUploadId = null then random guid will be used. + :paramtype pending_upload_id: str + :keyword pending_upload_type: TemporaryBlobReference is the only supported type. Known values + are: "None" and "TemporaryBlobReference". + :paramtype pending_upload_type: str or + ~azure.mgmt.machinelearningservices.models.PendingUploadType + """ + super().__init__(**kwargs) + self.pending_upload_id = pending_upload_id + self.pending_upload_type = pending_upload_type + + +class PendingUploadResponseDto(_serialization.Model): + """PendingUploadResponseDto. + + :ivar blob_reference_for_consumption: Container level read, write, list SAS. + :vartype blob_reference_for_consumption: + ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto + :ivar pending_upload_id: ID for this upload request. + :vartype pending_upload_id: str + :ivar pending_upload_type: TemporaryBlobReference is the only supported type. Known values are: + "None" and "TemporaryBlobReference". + :vartype pending_upload_type: str or + ~azure.mgmt.machinelearningservices.models.PendingUploadType + """ + + _attribute_map = { + "blob_reference_for_consumption": { + "key": "blobReferenceForConsumption", + "type": "BlobReferenceForConsumptionDto", + }, + "pending_upload_id": {"key": "pendingUploadId", "type": "str"}, + "pending_upload_type": {"key": "pendingUploadType", "type": "str"}, + } + + def __init__( + self, + *, + blob_reference_for_consumption: Optional["_models.BlobReferenceForConsumptionDto"] = None, + pending_upload_id: Optional[str] = None, + pending_upload_type: Optional[Union[str, "_models.PendingUploadType"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword blob_reference_for_consumption: Container level read, write, list SAS. + :paramtype blob_reference_for_consumption: + ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto + :keyword pending_upload_id: ID for this upload request. + :paramtype pending_upload_id: str + :keyword pending_upload_type: TemporaryBlobReference is the only supported type. Known values + are: "None" and "TemporaryBlobReference". + :paramtype pending_upload_type: str or + ~azure.mgmt.machinelearningservices.models.PendingUploadType + """ + super().__init__(**kwargs) + self.blob_reference_for_consumption = blob_reference_for_consumption + self.pending_upload_id = pending_upload_id + self.pending_upload_type = pending_upload_type + + class PersonalComputeInstanceSettings(_serialization.Model): """Settings for a personal compute instance. @@ -15834,7 +16715,7 @@ class PersonalComputeInstanceSettings(_serialization.Model): "assigned_user": {"key": "assignedUser", "type": "AssignedUser"}, } - def __init__(self, *, assigned_user: Optional["_models.AssignedUser"] = None, **kwargs): + def __init__(self, *, assigned_user: Optional["_models.AssignedUser"] = None, **kwargs: Any) -> None: """ :keyword assigned_user: A user explicitly assigned to a personal compute instance. :paramtype assigned_user: ~azure.mgmt.machinelearningservices.models.AssignedUser @@ -15936,8 +16817,8 @@ def __init__( outputs: Optional[Dict[str, "_models.JobOutput"]] = None, settings: Optional[JSON] = None, source_job_id: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -16002,25 +16883,20 @@ class PrivateEndpoint(_serialization.Model): :ivar id: The ARM identifier for Private Endpoint. :vartype id: str - :ivar subnet_arm_id: The ARM identifier for Subnet resource that private endpoint links to. - :vartype subnet_arm_id: str """ _validation = { "id": {"readonly": True}, - "subnet_arm_id": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, - "subnet_arm_id": {"key": "subnetArmId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None - self.subnet_arm_id = None class PrivateEndpointConnection(Resource): # pylint: disable=too-many-instance-attributes @@ -16093,8 +16969,8 @@ def __init__( sku: Optional["_models.Sku"] = None, private_endpoint: Optional["_models.PrivateEndpoint"] = None, private_link_service_connection_state: Optional["_models.PrivateLinkServiceConnectionState"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword identity: The identity of the resource. :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity @@ -16132,7 +17008,7 @@ class PrivateEndpointConnectionListResult(_serialization.Model): "value": {"key": "value", "type": "[PrivateEndpointConnection]"}, } - def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] = None, **kwargs: Any) -> None: """ :keyword value: Array of private endpoint connections. :paramtype value: list[~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection] @@ -16141,6 +17017,35 @@ def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] self.value = value +class PrivateEndpointResource(PrivateEndpoint): + """The PE network resource that is linked to this PE connection. + + Variables are only populated by the server, and will be ignored when sending a request. + + :ivar id: The ARM identifier for Private Endpoint. + :vartype id: str + :ivar subnet_arm_id: The subnetId that the private endpoint is connected to. + :vartype subnet_arm_id: str + """ + + _validation = { + "id": {"readonly": True}, + } + + _attribute_map = { + "id": {"key": "id", "type": "str"}, + "subnet_arm_id": {"key": "subnetArmId", "type": "str"}, + } + + def __init__(self, *, subnet_arm_id: Optional[str] = None, **kwargs: Any) -> None: + """ + :keyword subnet_arm_id: The subnetId that the private endpoint is connected to. + :paramtype subnet_arm_id: str + """ + super().__init__(**kwargs) + self.subnet_arm_id = subnet_arm_id + + class PrivateLinkResource(Resource): # pylint: disable=too-many-instance-attributes """A private link resource. @@ -16204,8 +17109,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, sku: Optional["_models.Sku"] = None, required_zone_names: Optional[List[str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword identity: The identity of the resource. :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity @@ -16239,7 +17144,7 @@ class PrivateLinkResourceListResult(_serialization.Model): "value": {"key": "value", "type": "[PrivateLinkResource]"}, } - def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = None, **kwargs: Any) -> None: """ :keyword value: Array of private link resources. :paramtype value: list[~azure.mgmt.machinelearningservices.models.PrivateLinkResource] @@ -16249,7 +17154,8 @@ def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = Non class PrivateLinkServiceConnectionState(_serialization.Model): - """A collection of information about the state of the connection between service consumer and provider. + """A collection of information about the state of the connection between service consumer and + provider. :ivar status: Indicates whether the connection has been Approved/Rejected/Removed by the owner of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and @@ -16275,8 +17181,8 @@ def __init__( status: Optional[Union[str, "_models.PrivateEndpointServiceConnectionStatus"]] = None, description: Optional[str] = None, actions_required: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Indicates whether the connection has been Approved/Rejected/Removed by the owner of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and @@ -16326,8 +17232,8 @@ def __init__( period: datetime.timedelta = "PT10S", success_threshold: int = 1, timeout: datetime.timedelta = "PT2S", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword failure_threshold: The number of failures to allow before returning an unhealthy status. @@ -16370,7 +17276,7 @@ class PyTorch(DistributionConfiguration): "process_count_per_instance": {"key": "processCountPerInstance", "type": "int"}, } - def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs): + def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs: Any) -> None: """ :keyword process_count_per_instance: Number of processes per node. :paramtype process_count_per_instance: int @@ -16407,8 +17313,8 @@ def __init__( type: Optional[str] = None, limit: Optional[int] = None, unit: Optional[Union[str, "_models.QuotaUnit"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword id: Specifies the resource ID. :paramtype id: str @@ -16441,8 +17347,12 @@ class QuotaUpdateParameters(_serialization.Model): } def __init__( - self, *, value: Optional[List["_models.QuotaBaseProperties"]] = None, location: Optional[str] = None, **kwargs - ): + self, + *, + value: Optional[List["_models.QuotaBaseProperties"]] = None, + location: Optional[str] = None, + **kwargs: Any + ) -> None: """ :keyword value: The list for update quota. :paramtype value: list[~azure.mgmt.machinelearningservices.models.QuotaBaseProperties] @@ -16485,8 +17395,8 @@ def __init__( *, rule: Optional[Union[str, "_models.RandomSamplingAlgorithmRule"]] = None, seed: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword rule: The specific type of random algorithm. Known values are: "Random" and "Sobol". :paramtype rule: str or ~azure.mgmt.machinelearningservices.models.RandomSamplingAlgorithmRule @@ -16499,6 +17409,65 @@ def __init__( self.seed = seed +class Recurrence(_serialization.Model): + """The workflow trigger recurrence for ComputeStartStop schedule type. + + :ivar frequency: [Required] The frequency to trigger schedule. Known values are: "Minute", + "Hour", "Day", "Week", and "Month". + :vartype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency + :ivar interval: [Required] Specifies schedule interval in conjunction with frequency. + :vartype interval: int + :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :vartype start_time: str + :ivar time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :vartype time_zone: str + :ivar schedule: [Required] The recurrence schedule. + :vartype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule + """ + + _attribute_map = { + "frequency": {"key": "frequency", "type": "str"}, + "interval": {"key": "interval", "type": "int"}, + "start_time": {"key": "startTime", "type": "str"}, + "time_zone": {"key": "timeZone", "type": "str"}, + "schedule": {"key": "schedule", "type": "RecurrenceSchedule"}, + } + + def __init__( + self, + *, + frequency: Optional[Union[str, "_models.RecurrenceFrequency"]] = None, + interval: Optional[int] = None, + start_time: Optional[str] = None, + time_zone: str = "UTC", + schedule: Optional["_models.RecurrenceSchedule"] = None, + **kwargs: Any + ) -> None: + """ + :keyword frequency: [Required] The frequency to trigger schedule. Known values are: "Minute", + "Hour", "Day", "Week", and "Month". + :paramtype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency + :keyword interval: [Required] Specifies schedule interval in conjunction with frequency. + :paramtype interval: int + :keyword start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :paramtype start_time: str + :keyword time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :paramtype time_zone: str + :keyword schedule: [Required] The recurrence schedule. + :paramtype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule + """ + super().__init__(**kwargs) + self.frequency = frequency + self.interval = interval + self.start_time = start_time + self.time_zone = time_zone + self.schedule = schedule + + class RecurrenceSchedule(_serialization.Model): """RecurrenceSchedule. @@ -16533,8 +17502,8 @@ def __init__( minutes: List[int], month_days: Optional[List[int]] = None, week_days: Optional[List[Union[str, "_models.WeekDay"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword hours: [Required] List of hours for the schedule. Required. :paramtype hours: list[int] @@ -16605,8 +17574,8 @@ def __init__( start_time: Optional[str] = None, time_zone: str = "UTC", schedule: Optional["_models.RecurrenceSchedule"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601. @@ -16653,56 +17622,449 @@ class RegenerateEndpointKeysRequest(_serialization.Model): } _attribute_map = { - "key_type": {"key": "keyType", "type": "str"}, - "key_value": {"key": "keyValue", "type": "str"}, + "key_type": {"key": "keyType", "type": "str"}, + "key_value": {"key": "keyValue", "type": "str"}, + } + + def __init__( + self, *, key_type: Union[str, "_models.KeyType"], key_value: Optional[str] = None, **kwargs: Any + ) -> None: + """ + :keyword key_type: [Required] Specification for which type of key to generate. Primary or + Secondary. Required. Known values are: "Primary" and "Secondary". + :paramtype key_type: str or ~azure.mgmt.machinelearningservices.models.KeyType + :keyword key_value: The value the key is set to. + :paramtype key_value: str + """ + super().__init__(**kwargs) + self.key_type = key_type + self.key_value = key_value + + +class Registry(TrackedResource): # pylint: disable=too-many-instance-attributes + """Registry. + + Variables are only populated by the server, and will be ignored when sending a request. + + All required parameters must be populated in order to send to Azure. + + :ivar id: Fully qualified resource ID for the resource. Ex - + /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. + :vartype id: str + :ivar name: The name of the resource. + :vartype name: str + :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or + "Microsoft.Storage/storageAccounts". + :vartype type: str + :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy + information. + :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData + :ivar tags: Resource tags. + :vartype tags: dict[str, str] + :ivar location: The geo-location where the resource lives. Required. + :vartype location: str + :ivar identity: Managed service identity (system assigned and/or user assigned identities). + :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity + :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for + resources of the same type. + :vartype kind: str + :ivar sku: Sku details required for ARM contract for Autoscaling. + :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku + :ivar discovery_url: Discovery URL for the Registry. + :vartype discovery_url: str + :ivar intellectual_property_publisher: IntellectualPropertyPublisher for the registry. + :vartype intellectual_property_publisher: str + :ivar managed_resource_group: ResourceId of the managed RG if the registry has system created + resources. + :vartype managed_resource_group: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :ivar ml_flow_registry_uri: MLFlow Registry URI for the Registry. + :vartype ml_flow_registry_uri: str + :ivar registry_private_endpoint_connections: Private endpoint connections info used for pending + connections in private link portal. + :vartype registry_private_endpoint_connections: + list[~azure.mgmt.machinelearningservices.models.RegistryPrivateEndpointConnection] + :ivar public_network_access: Is the Registry accessible from the internet? + Possible values: "Enabled" or "Disabled". + :vartype public_network_access: str + :ivar region_details: Details of each region the registry is in. + :vartype region_details: + list[~azure.mgmt.machinelearningservices.models.RegistryRegionArmDetails] + """ + + _validation = { + "id": {"readonly": True}, + "name": {"readonly": True}, + "type": {"readonly": True}, + "system_data": {"readonly": True}, + "location": {"required": True}, + } + + _attribute_map = { + "id": {"key": "id", "type": "str"}, + "name": {"key": "name", "type": "str"}, + "type": {"key": "type", "type": "str"}, + "system_data": {"key": "systemData", "type": "SystemData"}, + "tags": {"key": "tags", "type": "{str}"}, + "location": {"key": "location", "type": "str"}, + "identity": {"key": "identity", "type": "ManagedServiceIdentity"}, + "kind": {"key": "kind", "type": "str"}, + "sku": {"key": "sku", "type": "Sku"}, + "discovery_url": {"key": "properties.discoveryUrl", "type": "str"}, + "intellectual_property_publisher": {"key": "properties.intellectualPropertyPublisher", "type": "str"}, + "managed_resource_group": {"key": "properties.managedResourceGroup", "type": "ArmResourceId"}, + "ml_flow_registry_uri": {"key": "properties.mlFlowRegistryUri", "type": "str"}, + "registry_private_endpoint_connections": { + "key": "properties.registryPrivateEndpointConnections", + "type": "[RegistryPrivateEndpointConnection]", + }, + "public_network_access": {"key": "properties.publicNetworkAccess", "type": "str"}, + "region_details": {"key": "properties.regionDetails", "type": "[RegistryRegionArmDetails]"}, + } + + def __init__( + self, + *, + location: str, + tags: Optional[Dict[str, str]] = None, + identity: Optional["_models.ManagedServiceIdentity"] = None, + kind: Optional[str] = None, + sku: Optional["_models.Sku"] = None, + discovery_url: Optional[str] = None, + intellectual_property_publisher: Optional[str] = None, + managed_resource_group: Optional["_models.ArmResourceId"] = None, + ml_flow_registry_uri: Optional[str] = None, + registry_private_endpoint_connections: Optional[List["_models.RegistryPrivateEndpointConnection"]] = None, + public_network_access: Optional[str] = None, + region_details: Optional[List["_models.RegistryRegionArmDetails"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword tags: Resource tags. + :paramtype tags: dict[str, str] + :keyword location: The geo-location where the resource lives. Required. + :paramtype location: str + :keyword identity: Managed service identity (system assigned and/or user assigned identities). + :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity + :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for + resources of the same type. + :paramtype kind: str + :keyword sku: Sku details required for ARM contract for Autoscaling. + :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku + :keyword discovery_url: Discovery URL for the Registry. + :paramtype discovery_url: str + :keyword intellectual_property_publisher: IntellectualPropertyPublisher for the registry. + :paramtype intellectual_property_publisher: str + :keyword managed_resource_group: ResourceId of the managed RG if the registry has system + created resources. + :paramtype managed_resource_group: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :keyword ml_flow_registry_uri: MLFlow Registry URI for the Registry. + :paramtype ml_flow_registry_uri: str + :keyword registry_private_endpoint_connections: Private endpoint connections info used for + pending connections in private link portal. + :paramtype registry_private_endpoint_connections: + list[~azure.mgmt.machinelearningservices.models.RegistryPrivateEndpointConnection] + :keyword public_network_access: Is the Registry accessible from the internet? + Possible values: "Enabled" or "Disabled". + :paramtype public_network_access: str + :keyword region_details: Details of each region the registry is in. + :paramtype region_details: + list[~azure.mgmt.machinelearningservices.models.RegistryRegionArmDetails] + """ + super().__init__(tags=tags, location=location, **kwargs) + self.identity = identity + self.kind = kind + self.sku = sku + self.discovery_url = discovery_url + self.intellectual_property_publisher = intellectual_property_publisher + self.managed_resource_group = managed_resource_group + self.ml_flow_registry_uri = ml_flow_registry_uri + self.registry_private_endpoint_connections = registry_private_endpoint_connections + self.public_network_access = public_network_access + self.region_details = region_details + + +class RegistryListCredentialsResult(_serialization.Model): + """RegistryListCredentialsResult. + + Variables are only populated by the server, and will be ignored when sending a request. + + :ivar location: + :vartype location: str + :ivar username: + :vartype username: str + :ivar passwords: + :vartype passwords: list[~azure.mgmt.machinelearningservices.models.Password] + """ + + _validation = { + "location": {"readonly": True}, + "username": {"readonly": True}, + } + + _attribute_map = { + "location": {"key": "location", "type": "str"}, + "username": {"key": "username", "type": "str"}, + "passwords": {"key": "passwords", "type": "[Password]"}, + } + + def __init__(self, *, passwords: Optional[List["_models.Password"]] = None, **kwargs: Any) -> None: + """ + :keyword passwords: + :paramtype passwords: list[~azure.mgmt.machinelearningservices.models.Password] + """ + super().__init__(**kwargs) + self.location = None + self.username = None + self.passwords = passwords + + +class RegistryPartialManagedServiceIdentity(ManagedServiceIdentity): + """Managed service identity (system assigned and/or user assigned identities). + + Variables are only populated by the server, and will be ignored when sending a request. + + All required parameters must be populated in order to send to Azure. + + :ivar principal_id: The service principal ID of the system assigned identity. This property + will only be provided for a system assigned identity. + :vartype principal_id: str + :ivar tenant_id: The tenant ID of the system assigned identity. This property will only be + provided for a system assigned identity. + :vartype tenant_id: str + :ivar type: Type of managed service identity (where both SystemAssigned and UserAssigned types + are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and + "SystemAssigned,UserAssigned". + :vartype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType + :ivar user_assigned_identities: The set of user assigned identities associated with the + resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form: + '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. + The dictionary values can be empty objects ({}) in requests. + :vartype user_assigned_identities: dict[str, + ~azure.mgmt.machinelearningservices.models.UserAssignedIdentity] + """ + + _validation = { + "principal_id": {"readonly": True}, + "tenant_id": {"readonly": True}, + "type": {"required": True}, + } + + _attribute_map = { + "principal_id": {"key": "principalId", "type": "str"}, + "tenant_id": {"key": "tenantId", "type": "str"}, + "type": {"key": "type", "type": "str"}, + "user_assigned_identities": {"key": "userAssignedIdentities", "type": "{UserAssignedIdentity}"}, + } + + def __init__( + self, + *, + type: Union[str, "_models.ManagedServiceIdentityType"], + user_assigned_identities: Optional[Dict[str, "_models.UserAssignedIdentity"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword type: Type of managed service identity (where both SystemAssigned and UserAssigned + types are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and + "SystemAssigned,UserAssigned". + :paramtype type: str or ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentityType + :keyword user_assigned_identities: The set of user assigned identities associated with the + resource. The userAssignedIdentities dictionary keys will be ARM resource ids in the form: + '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. + The dictionary values can be empty objects ({}) in requests. + :paramtype user_assigned_identities: dict[str, + ~azure.mgmt.machinelearningservices.models.UserAssignedIdentity] + """ + super().__init__(type=type, user_assigned_identities=user_assigned_identities, **kwargs) + + +class RegistryPrivateEndpointConnection(_serialization.Model): + """Private endpoint connection definition. + + :ivar id: This is the private endpoint connection name created on SRP + Full resource id: + /subscriptions/{subId}/resourceGroups/{rgName}/providers/Microsoft.MachineLearningServices/{resourceType}/{resourceName}/registryPrivateEndpointConnections/{peConnectionName}. + :vartype id: str + :ivar location: Same as workspace location. + :vartype location: str + :ivar group_ids: The group ids. + :vartype group_ids: list[str] + :ivar private_endpoint: The PE network resource that is linked to this PE connection. + :vartype private_endpoint: ~azure.mgmt.machinelearningservices.models.PrivateEndpointResource + :ivar registry_private_link_service_connection_state: The connection state. + :vartype registry_private_link_service_connection_state: + ~azure.mgmt.machinelearningservices.models.RegistryPrivateLinkServiceConnectionState + :ivar provisioning_state: One of null, "Succeeded", "Provisioning", "Failed". While not + approved, it's null. + :vartype provisioning_state: str + """ + + _attribute_map = { + "id": {"key": "id", "type": "str"}, + "location": {"key": "location", "type": "str"}, + "group_ids": {"key": "properties.groupIds", "type": "[str]"}, + "private_endpoint": {"key": "properties.privateEndpoint", "type": "PrivateEndpointResource"}, + "registry_private_link_service_connection_state": { + "key": "properties.registryPrivateLinkServiceConnectionState", + "type": "RegistryPrivateLinkServiceConnectionState", + }, + "provisioning_state": {"key": "properties.provisioningState", "type": "str"}, + } + + def __init__( + self, + *, + id: Optional[str] = None, # pylint: disable=redefined-builtin + location: Optional[str] = None, + group_ids: Optional[List[str]] = None, + private_endpoint: Optional["_models.PrivateEndpointResource"] = None, + registry_private_link_service_connection_state: Optional[ + "_models.RegistryPrivateLinkServiceConnectionState" + ] = None, + provisioning_state: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword id: This is the private endpoint connection name created on SRP + Full resource id: + /subscriptions/{subId}/resourceGroups/{rgName}/providers/Microsoft.MachineLearningServices/{resourceType}/{resourceName}/registryPrivateEndpointConnections/{peConnectionName}. + :paramtype id: str + :keyword location: Same as workspace location. + :paramtype location: str + :keyword group_ids: The group ids. + :paramtype group_ids: list[str] + :keyword private_endpoint: The PE network resource that is linked to this PE connection. + :paramtype private_endpoint: ~azure.mgmt.machinelearningservices.models.PrivateEndpointResource + :keyword registry_private_link_service_connection_state: The connection state. + :paramtype registry_private_link_service_connection_state: + ~azure.mgmt.machinelearningservices.models.RegistryPrivateLinkServiceConnectionState + :keyword provisioning_state: One of null, "Succeeded", "Provisioning", "Failed". While not + approved, it's null. + :paramtype provisioning_state: str + """ + super().__init__(**kwargs) + self.id = id + self.location = location + self.group_ids = group_ids + self.private_endpoint = private_endpoint + self.registry_private_link_service_connection_state = registry_private_link_service_connection_state + self.provisioning_state = provisioning_state + + +class RegistryPrivateLinkServiceConnectionState(_serialization.Model): + """The connection state. + + :ivar actions_required: Some RP chose "None". Other RPs use this for region expansion. + :vartype actions_required: str + :ivar description: User-defined message that, per NRP doc, may be used for approval-related + message. + :vartype description: str + :ivar status: Connection status of the service consumer with the service provider. Known values + are: "Approved", "Pending", "Rejected", and "Disconnected". + :vartype status: str or + ~azure.mgmt.machinelearningservices.models.EndpointServiceConnectionStatus + """ + + _attribute_map = { + "actions_required": {"key": "actionsRequired", "type": "str"}, + "description": {"key": "description", "type": "str"}, + "status": {"key": "status", "type": "str"}, + } + + def __init__( + self, + *, + actions_required: Optional[str] = None, + description: Optional[str] = None, + status: Optional[Union[str, "_models.EndpointServiceConnectionStatus"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword actions_required: Some RP chose "None". Other RPs use this for region expansion. + :paramtype actions_required: str + :keyword description: User-defined message that, per NRP doc, may be used for approval-related + message. + :paramtype description: str + :keyword status: Connection status of the service consumer with the service provider. Known + values are: "Approved", "Pending", "Rejected", and "Disconnected". + :paramtype status: str or + ~azure.mgmt.machinelearningservices.models.EndpointServiceConnectionStatus + """ + super().__init__(**kwargs) + self.actions_required = actions_required + self.description = description + self.status = status + + +class RegistryRegionArmDetails(_serialization.Model): + """Details for each region the registry is in. + + :ivar acr_details: List of ACR accounts. + :vartype acr_details: list[~azure.mgmt.machinelearningservices.models.AcrDetails] + :ivar location: The location where the registry exists. + :vartype location: str + :ivar storage_account_details: List of storage accounts. + :vartype storage_account_details: + list[~azure.mgmt.machinelearningservices.models.StorageAccountDetails] + """ + + _attribute_map = { + "acr_details": {"key": "acrDetails", "type": "[AcrDetails]"}, + "location": {"key": "location", "type": "str"}, + "storage_account_details": {"key": "storageAccountDetails", "type": "[StorageAccountDetails]"}, } - def __init__(self, *, key_type: Union[str, "_models.KeyType"], key_value: Optional[str] = None, **kwargs): + def __init__( + self, + *, + acr_details: Optional[List["_models.AcrDetails"]] = None, + location: Optional[str] = None, + storage_account_details: Optional[List["_models.StorageAccountDetails"]] = None, + **kwargs: Any + ) -> None: """ - :keyword key_type: [Required] Specification for which type of key to generate. Primary or - Secondary. Required. Known values are: "Primary" and "Secondary". - :paramtype key_type: str or ~azure.mgmt.machinelearningservices.models.KeyType - :keyword key_value: The value the key is set to. - :paramtype key_value: str + :keyword acr_details: List of ACR accounts. + :paramtype acr_details: list[~azure.mgmt.machinelearningservices.models.AcrDetails] + :keyword location: The location where the registry exists. + :paramtype location: str + :keyword storage_account_details: List of storage accounts. + :paramtype storage_account_details: + list[~azure.mgmt.machinelearningservices.models.StorageAccountDetails] """ super().__init__(**kwargs) - self.key_type = key_type - self.key_value = key_value - + self.acr_details = acr_details + self.location = location + self.storage_account_details = storage_account_details -class RegistryListCredentialsResult(_serialization.Model): - """RegistryListCredentialsResult. - Variables are only populated by the server, and will be ignored when sending a request. +class RegistryTrackedResourceArmPaginatedResult(_serialization.Model): + """A paginated list of Registry entities. - :ivar location: - :vartype location: str - :ivar username: - :vartype username: str - :ivar passwords: - :vartype passwords: list[~azure.mgmt.machinelearningservices.models.Password] + :ivar next_link: The link to the next page of Registry objects. If null, there are no + additional pages. + :vartype next_link: str + :ivar value: An array of objects of type Registry. + :vartype value: list[~azure.mgmt.machinelearningservices.models.Registry] """ - _validation = { - "location": {"readonly": True}, - "username": {"readonly": True}, - } - _attribute_map = { - "location": {"key": "location", "type": "str"}, - "username": {"key": "username", "type": "str"}, - "passwords": {"key": "passwords", "type": "[Password]"}, + "next_link": {"key": "nextLink", "type": "str"}, + "value": {"key": "value", "type": "[Registry]"}, } - def __init__(self, *, passwords: Optional[List["_models.Password"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.Registry"]] = None, **kwargs: Any + ) -> None: """ - :keyword passwords: - :paramtype passwords: list[~azure.mgmt.machinelearningservices.models.Password] + :keyword next_link: The link to the next page of Registry objects. If null, there are no + additional pages. + :paramtype next_link: str + :keyword value: An array of objects of type Registry. + :paramtype value: list[~azure.mgmt.machinelearningservices.models.Registry] """ super().__init__(**kwargs) - self.location = None - self.username = None - self.passwords = passwords + self.next_link = next_link + self.value = value class Regression(TableVertical, AutoMLVertical): # pylint: disable=too-many-instance-attributes @@ -16800,8 +18162,8 @@ def __init__( weight_column_name: Optional[str] = None, primary_metric: Optional[Union[str, "_models.RegressionPrimaryMetrics"]] = None, training_settings: Optional["_models.RegressionTrainingSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -16933,8 +18295,8 @@ def __init__( stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, allowed_training_algorithms: Optional[List[Union[str, "_models.RegressionModels"]]] = None, blocked_training_algorithms: Optional[List[Union[str, "_models.RegressionModels"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -16991,7 +18353,7 @@ class ResourceId(_serialization.Model): "id": {"key": "id", "type": "str"}, } - def __init__(self, *, id: str, **kwargs): # pylint: disable=redefined-builtin + def __init__(self, *, id: str, **kwargs: Any) -> None: # pylint: disable=redefined-builtin """ :keyword id: The ID of the resource. Required. :paramtype id: str @@ -17021,7 +18383,7 @@ class ResourceName(_serialization.Model): "localized_value": {"key": "localizedValue", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -17065,7 +18427,7 @@ class ResourceQuota(_serialization.Model): "unit": {"key": "unit", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -17088,7 +18450,7 @@ class Route(_serialization.Model): """ _validation = { - "path": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "path": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, "port": {"required": True}, } @@ -17097,7 +18459,7 @@ class Route(_serialization.Model): "port": {"key": "port", "type": "int"}, } - def __init__(self, *, path: str, port: int, **kwargs): + def __init__(self, *, path: str, port: int, **kwargs: Any) -> None: """ :keyword path: [Required] The path for the route. Required. :paramtype path: str @@ -17152,8 +18514,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionSharedAccessSignature"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -17173,6 +18535,38 @@ def __init__( self.credentials = credentials +class SASCredentialDto(PendingUploadCredentialDto): + """SASCredentialDto. + + All required parameters must be populated in order to send to Azure. + + :ivar credential_type: [Required] Credential type used to authentication with storage. + Required. "SAS" + :vartype credential_type: str or + ~azure.mgmt.machinelearningservices.models.PendingUploadCredentialType + :ivar sas_uri: Full SAS Uri, including the storage, container/blob path and SAS token. + :vartype sas_uri: str + """ + + _validation = { + "credential_type": {"required": True}, + } + + _attribute_map = { + "credential_type": {"key": "credentialType", "type": "str"}, + "sas_uri": {"key": "sasUri", "type": "str"}, + } + + def __init__(self, *, sas_uri: Optional[str] = None, **kwargs: Any) -> None: + """ + :keyword sas_uri: Full SAS Uri, including the storage, container/blob path and SAS token. + :paramtype sas_uri: str + """ + super().__init__(**kwargs) + self.credential_type: str = "SAS" + self.sas_uri = sas_uri + + class SasDatastoreCredentials(DatastoreCredentials): """SAS datastore credentials configuration. @@ -17195,7 +18589,7 @@ class SasDatastoreCredentials(DatastoreCredentials): "secrets": {"key": "secrets", "type": "SasDatastoreSecrets"}, } - def __init__(self, *, secrets: "_models.SasDatastoreSecrets", **kwargs): + def __init__(self, *, secrets: "_models.SasDatastoreSecrets", **kwargs: Any) -> None: """ :keyword secrets: [Required] Storage container secrets. Required. :paramtype secrets: ~azure.mgmt.machinelearningservices.models.SasDatastoreSecrets @@ -17226,7 +18620,7 @@ class SasDatastoreSecrets(DatastoreSecrets): "sas_token": {"key": "sasToken", "type": "str"}, } - def __init__(self, *, sas_token: Optional[str] = None, **kwargs): + def __init__(self, *, sas_token: Optional[str] = None, **kwargs: Any) -> None: """ :keyword sas_token: Storage container SAS token. :paramtype sas_token: str @@ -17266,8 +18660,8 @@ def __init__( max_node_count: int, min_node_count: int = 0, node_idle_time_before_scale_down: Optional[datetime.timedelta] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_node_count: Max number of nodes to use. Required. :paramtype max_node_count: int @@ -17294,7 +18688,7 @@ class ScaleSettingsInformation(_serialization.Model): "scale_settings": {"key": "scaleSettings", "type": "ScaleSettings"}, } - def __init__(self, *, scale_settings: Optional["_models.ScaleSettings"] = None, **kwargs): + def __init__(self, *, scale_settings: Optional["_models.ScaleSettings"] = None, **kwargs: Any) -> None: """ :keyword scale_settings: scale settings for AML Compute. :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.ScaleSettings @@ -17341,7 +18735,7 @@ class Schedule(Resource): "properties": {"key": "properties", "type": "ScheduleProperties"}, } - def __init__(self, *, properties: "_models.ScheduleProperties", **kwargs): + def __init__(self, *, properties: "_models.ScheduleProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ScheduleProperties @@ -17375,8 +18769,8 @@ def __init__( id: Optional[str] = None, # pylint: disable=redefined-builtin provisioning_status: Optional[Union[str, "_models.ScheduleProvisioningState"]] = None, status: Optional[Union[str, "_models.ScheduleStatus"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword id: A system assigned id for the schedule. :paramtype id: str @@ -17448,8 +18842,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, display_name: Optional[str] = None, is_enabled: bool = True, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -17489,7 +18883,9 @@ class ScheduleResourceArmPaginatedResult(_serialization.Model): "value": {"key": "value", "type": "[Schedule]"}, } - def __init__(self, *, next_link: Optional[str] = None, value: Optional[List["_models.Schedule"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.Schedule"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of Schedule objects. If null, there are no additional pages. @@ -17529,8 +18925,8 @@ def __init__( script_data: Optional[str] = None, script_arguments: Optional[str] = None, timeout: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword script_source: The storage source of the script: workspace. :paramtype script_source: str @@ -17567,8 +18963,8 @@ def __init__( *, startup_script: Optional["_models.ScriptReference"] = None, creation_script: Optional["_models.ScriptReference"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword startup_script: Script that's run every time the machine starts. :paramtype startup_script: ~azure.mgmt.machinelearningservices.models.ScriptReference @@ -17591,7 +18987,7 @@ class ServiceManagedResourcesSettings(_serialization.Model): "cosmos_db": {"key": "cosmosDb", "type": "CosmosDbSettings"}, } - def __init__(self, *, cosmos_db: Optional["_models.CosmosDbSettings"] = None, **kwargs): + def __init__(self, *, cosmos_db: Optional["_models.CosmosDbSettings"] = None, **kwargs: Any) -> None: """ :keyword cosmos_db: The settings for the service managed cosmosdb account. :paramtype cosmos_db: ~azure.mgmt.machinelearningservices.models.CosmosDbSettings @@ -17644,8 +19040,8 @@ def __init__( tenant_id: str, authority_url: Optional[str] = None, resource_url: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword authority_url: Authority URL used for authentication. :paramtype authority_url: str @@ -17689,7 +19085,7 @@ class ServicePrincipalDatastoreSecrets(DatastoreSecrets): "client_secret": {"key": "clientSecret", "type": "str"}, } - def __init__(self, *, client_secret: Optional[str] = None, **kwargs): + def __init__(self, *, client_secret: Optional[str] = None, **kwargs: Any) -> None: """ :keyword client_secret: Service principal secret. :paramtype client_secret: str @@ -17710,7 +19106,7 @@ class SetupScripts(_serialization.Model): "scripts": {"key": "scripts", "type": "ScriptsToExecute"}, } - def __init__(self, *, scripts: Optional["_models.ScriptsToExecute"] = None, **kwargs): + def __init__(self, *, scripts: Optional["_models.ScriptsToExecute"] = None, **kwargs: Any) -> None: """ :keyword scripts: Customized setup scripts. :paramtype scripts: ~azure.mgmt.machinelearningservices.models.ScriptsToExecute @@ -17753,8 +19149,8 @@ def __init__( group_id: Optional[str] = None, request_message: Optional[str] = None, status: Optional[Union[str, "_models.PrivateEndpointServiceConnectionStatus"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: Unique name of the private link. :paramtype name: str @@ -17820,8 +19216,8 @@ def __init__( size: Optional[str] = None, family: Optional[str] = None, capacity: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: The name of the SKU. Ex - P3. It is typically a letter+number code. Required. :paramtype name: str @@ -17875,8 +19271,8 @@ def __init__( maximum: int = 0, minimum: int = 0, scale_type: Optional[Union[str, "_models.SkuScaleType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword default: Gets or sets the default capacity. :paramtype default: int @@ -17919,8 +19315,12 @@ class SkuResource(_serialization.Model): } def __init__( - self, *, capacity: Optional["_models.SkuCapacity"] = None, sku: Optional["_models.SkuSetting"] = None, **kwargs - ): + self, + *, + capacity: Optional["_models.SkuCapacity"] = None, + sku: Optional["_models.SkuSetting"] = None, + **kwargs: Any + ) -> None: """ :keyword capacity: Gets or sets the Sku Capacity. :paramtype capacity: ~azure.mgmt.machinelearningservices.models.SkuCapacity @@ -17949,8 +19349,8 @@ class SkuResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.SkuResource"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.SkuResource"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of SkuResource objects. If null, there are no additional pages. @@ -17978,7 +19378,7 @@ class SkuSetting(_serialization.Model): """ _validation = { - "name": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "name": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -17986,7 +19386,7 @@ class SkuSetting(_serialization.Model): "tier": {"key": "tier", "type": "str"}, } - def __init__(self, *, name: str, tier: Optional[Union[str, "_models.SkuTier"]] = None, **kwargs): + def __init__(self, *, name: str, tier: Optional[Union[str, "_models.SkuTier"]] = None, **kwargs: Any) -> None: """ :keyword name: [Required] The name of the SKU. Ex - P3. It is typically a letter+number code. Required. @@ -18037,8 +19437,8 @@ def __init__( cname: Optional[str] = None, leaf_domain_label: Optional[str] = None, overwrite_existing_domain: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Enable or disable ssl for scoring. Known values are: "Disabled", "Enabled", and "Auto". @@ -18093,8 +19493,8 @@ def __init__( stack_meta_learner_k_wargs: Optional[JSON] = None, stack_meta_learner_train_percentage: float = 0.2, stack_meta_learner_type: Optional[Union[str, "_models.StackMetaLearnerType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword stack_meta_learner_k_wargs: Optional parameters to pass to the initializer of the meta-learner. @@ -18116,6 +19516,46 @@ def __init__( self.stack_meta_learner_type = stack_meta_learner_type +class StorageAccountDetails(_serialization.Model): + """Details of storage account to be used for the Registry. + + :ivar system_created_storage_account: Details of system created storage account to be used for + the registry. + :vartype system_created_storage_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedStorageAccount + :ivar user_created_storage_account: Details of user created storage account to be used for the + registry. + :vartype user_created_storage_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedStorageAccount + """ + + _attribute_map = { + "system_created_storage_account": {"key": "systemCreatedStorageAccount", "type": "SystemCreatedStorageAccount"}, + "user_created_storage_account": {"key": "userCreatedStorageAccount", "type": "UserCreatedStorageAccount"}, + } + + def __init__( + self, + *, + system_created_storage_account: Optional["_models.SystemCreatedStorageAccount"] = None, + user_created_storage_account: Optional["_models.UserCreatedStorageAccount"] = None, + **kwargs: Any + ) -> None: + """ + :keyword system_created_storage_account: Details of system created storage account to be used + for the registry. + :paramtype system_created_storage_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedStorageAccount + :keyword user_created_storage_account: Details of user created storage account to be used for + the registry. + :paramtype user_created_storage_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedStorageAccount + """ + super().__init__(**kwargs) + self.system_created_storage_account = system_created_storage_account + self.user_created_storage_account = user_created_storage_account + + class SweepJob(JobBaseProperties): # pylint: disable=too-many-instance-attributes """Sweep job definition. @@ -18227,8 +19667,8 @@ def __init__( inputs: Optional[Dict[str, "_models.JobInput"]] = None, limits: Optional["_models.SweepJobLimits"] = None, outputs: Optional[Dict[str, "_models.JobOutput"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -18335,8 +19775,8 @@ def __init__( max_concurrent_trials: Optional[int] = None, max_total_trials: Optional[int] = None, trial_timeout: Optional[datetime.timedelta] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword timeout: The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. @@ -18424,8 +19864,8 @@ def __init__( resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, properties: Optional["_models.SynapseSparkProperties"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword compute_location: Location for the underlying compute. :paramtype compute_location: str @@ -18501,8 +19941,8 @@ def __init__( resource_group: Optional[str] = None, workspace_name: Optional[str] = None, pool_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auto_scale_properties: Auto scale properties. :paramtype auto_scale_properties: @@ -18540,6 +19980,114 @@ def __init__( self.pool_name = pool_name +class SystemCreatedAcrAccount(_serialization.Model): + """SystemCreatedAcrAccount. + + :ivar acr_account_name: Name of the ACR account. + :vartype acr_account_name: str + :ivar acr_account_sku: SKU of the ACR account. + :vartype acr_account_sku: str + :ivar arm_resource_id: This is populated once the ACR account is created. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + + _attribute_map = { + "acr_account_name": {"key": "acrAccountName", "type": "str"}, + "acr_account_sku": {"key": "acrAccountSku", "type": "str"}, + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + } + + def __init__( + self, + *, + acr_account_name: Optional[str] = None, + acr_account_sku: Optional[str] = None, + arm_resource_id: Optional["_models.ArmResourceId"] = None, + **kwargs: Any + ) -> None: + """ + :keyword acr_account_name: Name of the ACR account. + :paramtype acr_account_name: str + :keyword acr_account_sku: SKU of the ACR account. + :paramtype acr_account_sku: str + :keyword arm_resource_id: This is populated once the ACR account is created. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + super().__init__(**kwargs) + self.acr_account_name = acr_account_name + self.acr_account_sku = acr_account_sku + self.arm_resource_id = arm_resource_id + + +class SystemCreatedStorageAccount(_serialization.Model): + """SystemCreatedStorageAccount. + + :ivar allow_blob_public_access: Public blob access allowed. + :vartype allow_blob_public_access: bool + :ivar arm_resource_id: This is populated once the storage account is created. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :ivar storage_account_hns_enabled: HNS enabled for storage account. + :vartype storage_account_hns_enabled: bool + :ivar storage_account_name: Name of the storage account. + :vartype storage_account_name: str + :ivar storage_account_type: Allowed values: + "Standard_LRS", + "Standard_GRS", + "Standard_RAGRS", + "Standard_ZRS", + "Standard_GZRS", + "Standard_RAGZRS", + "Premium_LRS", + "Premium_ZRS". + :vartype storage_account_type: str + """ + + _attribute_map = { + "allow_blob_public_access": {"key": "allowBlobPublicAccess", "type": "bool"}, + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + "storage_account_hns_enabled": {"key": "storageAccountHnsEnabled", "type": "bool"}, + "storage_account_name": {"key": "storageAccountName", "type": "str"}, + "storage_account_type": {"key": "storageAccountType", "type": "str"}, + } + + def __init__( + self, + *, + allow_blob_public_access: Optional[bool] = None, + arm_resource_id: Optional["_models.ArmResourceId"] = None, + storage_account_hns_enabled: Optional[bool] = None, + storage_account_name: Optional[str] = None, + storage_account_type: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword allow_blob_public_access: Public blob access allowed. + :paramtype allow_blob_public_access: bool + :keyword arm_resource_id: This is populated once the storage account is created. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :keyword storage_account_hns_enabled: HNS enabled for storage account. + :paramtype storage_account_hns_enabled: bool + :keyword storage_account_name: Name of the storage account. + :paramtype storage_account_name: str + :keyword storage_account_type: Allowed values: + "Standard_LRS", + "Standard_GRS", + "Standard_RAGRS", + "Standard_ZRS", + "Standard_GZRS", + "Standard_RAGZRS", + "Premium_LRS", + "Premium_ZRS". + :paramtype storage_account_type: str + """ + super().__init__(**kwargs) + self.allow_blob_public_access = allow_blob_public_access + self.arm_resource_id = arm_resource_id + self.storage_account_hns_enabled = storage_account_hns_enabled + self.storage_account_name = storage_account_name + self.storage_account_type = storage_account_type + + class SystemData(_serialization.Model): """Metadata pertaining to creation and last modification of the resource. @@ -18577,8 +20125,8 @@ def __init__( last_modified_by: Optional[str] = None, last_modified_by_type: Optional[Union[str, "_models.CreatedByType"]] = None, last_modified_at: Optional[datetime.datetime] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword created_by: The identity that created the resource. :paramtype created_by: str @@ -18630,7 +20178,7 @@ class SystemService(_serialization.Model): "version": {"key": "version", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.system_service_type = None @@ -18682,8 +20230,8 @@ def __init__( enable_dnn_featurization: bool = False, mode: Optional[Union[str, "_models.FeaturizationMode"]] = None, transformer_params: Optional[Dict[str, List["_models.ColumnTransformer"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword dataset_language: Dataset language, useful for the text data. :paramtype dataset_language: str @@ -18755,8 +20303,8 @@ def __init__( max_trials: int = 1000, timeout: datetime.timedelta = "PT6H", trial_timeout: datetime.timedelta = "PT30M", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_early_termination: Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. @@ -18823,8 +20371,8 @@ def __init__( min_instances: int = 1, polling_interval: datetime.timedelta = "PT1S", target_utilization_percentage: int = 70, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_instances: The maximum number of instances that the deployment can scale to. The quota will be reserved for max_instances. @@ -18869,7 +20417,7 @@ class TensorFlow(DistributionConfiguration): "worker_count": {"key": "workerCount", "type": "int"}, } - def __init__(self, *, parameter_server_count: int = 0, worker_count: Optional[int] = None, **kwargs): + def __init__(self, *, parameter_server_count: int = 0, worker_count: Optional[int] = None, **kwargs: Any) -> None: """ :keyword parameter_server_count: Number of parameter server tasks. :paramtype parameter_server_count: int @@ -18886,33 +20434,33 @@ class TextClassification(NlpVertical, AutoMLVertical): """Text Classification task in AutoML NLP vertical. NLP - Natural Language Processing. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar primary_metric: Primary metric for Text-Classification task. Known values are: - "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and - "PrecisionScoreWeighted". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar primary_metric: Primary metric for Text-Classification task. Known values are: + "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and + "PrecisionScoreWeighted". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics """ _validation = { @@ -18941,8 +20489,8 @@ def __init__( limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -18988,36 +20536,36 @@ class TextClassificationMultilabel(NlpVertical, AutoMLVertical): """Text Classification Multilabel task in AutoML NLP vertical. NLP - Natural Language Processing. - Variables are only populated by the server, and will be ignored when sending a request. + Variables are only populated by the server, and will be ignored when sending a request. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar primary_metric: Primary metric for Text-Classification-Multilabel task. - Currently only Accuracy is supported as primary metric, hence user need not set it explicitly. - Known values are: "AUCWeighted", "Accuracy", "NormMacroRecall", - "AveragePrecisionScoreWeighted", "PrecisionScoreWeighted", and "IOU". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar primary_metric: Primary metric for Text-Classification-Multilabel task. + Currently only Accuracy is supported as primary metric, hence user need not set it explicitly. + Known values are: "AUCWeighted", "Accuracy", "NormMacroRecall", + "AveragePrecisionScoreWeighted", "PrecisionScoreWeighted", and "IOU". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics """ _validation = { @@ -19046,8 +20594,8 @@ def __init__( featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None, limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -19089,36 +20637,36 @@ class TextNer(NlpVertical, AutoMLVertical): NER - Named Entity Recognition. NLP - Natural Language Processing. - Variables are only populated by the server, and will be ignored when sending a request. + Variables are only populated by the server, and will be ignored when sending a request. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar primary_metric: Primary metric for Text-NER task. - Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly. Known values - are: "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and - "PrecisionScoreWeighted". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar primary_metric: Primary metric for Text-NER task. + Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly. Known values + are: "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and + "PrecisionScoreWeighted". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics """ _validation = { @@ -19147,8 +20695,8 @@ def __init__( featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None, limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -19185,6 +20733,26 @@ def __init__( self.validation_data = validation_data +class TmpfsOptions(_serialization.Model): + """Describes the tmpfs options for the container. + + :ivar size: Mention the Tmpfs size. + :vartype size: int + """ + + _attribute_map = { + "size": {"key": "size", "type": "int"}, + } + + def __init__(self, *, size: Optional[int] = None, **kwargs: Any) -> None: + """ + :keyword size: Mention the Tmpfs size. + :paramtype size: int + """ + super().__init__(**kwargs) + self.size = size + + class TrialComponent(_serialization.Model): """Trial component definition. @@ -19209,7 +20777,7 @@ class TrialComponent(_serialization.Model): _validation = { "command": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, - "environment_id": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "environment_id": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -19230,8 +20798,8 @@ def __init__( distribution: Optional["_models.DistributionConfiguration"] = None, environment_variables: Optional[Dict[str, str]] = None, resources: Optional["_models.JobResourceConfiguration"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_id: ARM resource ID of the code asset. :paramtype code_id: str @@ -19278,7 +20846,7 @@ class TritonModelJobInput(AssetJobInput, JobInput): _validation = { "job_input_type": {"required": True}, - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -19294,8 +20862,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -19345,8 +20913,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -19363,7 +20931,8 @@ def __init__( class TruncationSelectionPolicy(EarlyTerminationPolicy): - """Defines an early termination policy that cancels a given percentage of runs at each evaluation interval. + """Defines an early termination policy that cancels a given percentage of runs at each evaluation + interval. All required parameters must be populated in order to send to Azure. @@ -19391,8 +20960,8 @@ class TruncationSelectionPolicy(EarlyTerminationPolicy): } def __init__( - self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0, **kwargs - ): + self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0, **kwargs: Any + ) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -19439,7 +21008,9 @@ class UpdateWorkspaceQuotas(_serialization.Model): "status": {"key": "status", "type": "str"}, } - def __init__(self, *, limit: Optional[int] = None, status: Optional[Union[str, "_models.Status"]] = None, **kwargs): + def __init__( + self, *, limit: Optional[int] = None, status: Optional[Union[str, "_models.Status"]] = None, **kwargs: Any + ) -> None: """ :keyword limit: The maximum permitted quota of the resource. :paramtype limit: int @@ -19478,7 +21049,7 @@ class UpdateWorkspaceQuotasResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -19503,15 +21074,14 @@ class UriFileDataVersion(DataVersionBaseProperties): :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file", "uri_folder", and "mltable". :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType - :ivar data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :ivar data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :vartype data_uri: str """ _validation = { "data_type": {"required": True}, - "data_uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -19533,8 +21103,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -19546,9 +21116,8 @@ def __init__( :paramtype is_anonymous: bool :keyword is_archived: Is the asset archived?. :paramtype is_archived: bool - :keyword data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :keyword data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :paramtype data_uri: str """ super().__init__( @@ -19583,7 +21152,7 @@ class UriFileJobInput(AssetJobInput, JobInput): _validation = { "job_input_type": {"required": True}, - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -19599,8 +21168,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -19650,8 +21219,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -19685,15 +21254,14 @@ class UriFolderDataVersion(DataVersionBaseProperties): :ivar data_type: [Required] Specifies the type of data. Required. Known values are: "uri_file", "uri_folder", and "mltable". :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.DataType - :ivar data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :ivar data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :vartype data_uri: str """ _validation = { "data_type": {"required": True}, - "data_uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "data_uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -19715,8 +21283,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -19728,9 +21296,8 @@ def __init__( :paramtype is_anonymous: bool :keyword is_archived: Is the asset archived?. :paramtype is_archived: bool - :keyword data_uri: [Required] Uri of the data. Usage/meaning depends on - Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType. - Required. + :keyword data_uri: [Required] Uri of the data. Example: + https://go.microsoft.com/fwlink/?linkid=2202330. Required. :paramtype data_uri: str """ super().__init__( @@ -19765,7 +21332,7 @@ class UriFolderJobInput(AssetJobInput, JobInput): _validation = { "job_input_type": {"required": True}, - "uri": {"required": True, "pattern": r"[a-zA-Z0-9_]"}, + "uri": {"required": True, "min_length": 1, "pattern": r"[a-zA-Z0-9_]"}, } _attribute_map = { @@ -19781,8 +21348,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -19832,8 +21399,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -19890,7 +21457,7 @@ class Usage(_serialization.Model): "name": {"key": "name", "type": "UsageName"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -19923,7 +21490,7 @@ class UsageName(_serialization.Model): "localized_value": {"key": "localizedValue", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -19960,8 +21527,8 @@ def __init__( admin_user_name: str, admin_user_ssh_public_key: Optional[str] = None, admin_user_password: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword admin_user_name: Name of the administrator user account which can be used to SSH to nodes. Required. @@ -19998,13 +21565,53 @@ class UserAssignedIdentity(_serialization.Model): "client_id": {"key": "clientId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.principal_id = None self.client_id = None +class UserCreatedAcrAccount(_serialization.Model): + """UserCreatedAcrAccount. + + :ivar arm_resource_id: ARM ResourceId of a resource. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + + _attribute_map = { + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + } + + def __init__(self, *, arm_resource_id: Optional["_models.ArmResourceId"] = None, **kwargs: Any) -> None: + """ + :keyword arm_resource_id: ARM ResourceId of a resource. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + super().__init__(**kwargs) + self.arm_resource_id = arm_resource_id + + +class UserCreatedStorageAccount(_serialization.Model): + """UserCreatedStorageAccount. + + :ivar arm_resource_id: ARM ResourceId of a resource. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + + _attribute_map = { + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + } + + def __init__(self, *, arm_resource_id: Optional["_models.ArmResourceId"] = None, **kwargs: Any) -> None: + """ + :keyword arm_resource_id: ARM ResourceId of a resource. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + super().__init__(**kwargs) + self.arm_resource_id = arm_resource_id + + class UserIdentity(IdentityConfiguration): """User identity configuration. @@ -20024,7 +21631,7 @@ class UserIdentity(IdentityConfiguration): "identity_type": {"key": "identityType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.identity_type: str = "UserIdentity" @@ -20073,8 +21680,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionUsernamePassword"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -20105,7 +21712,7 @@ class VirtualMachineSchema(_serialization.Model): "properties": {"key": "properties", "type": "VirtualMachineSchemaProperties"}, } - def __init__(self, *, properties: Optional["_models.VirtualMachineSchemaProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.VirtualMachineSchemaProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: :paramtype properties: @@ -20184,8 +21791,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: :paramtype properties: @@ -20238,7 +21845,7 @@ class VirtualMachineImage(_serialization.Model): "id": {"key": "id", "type": "str"}, } - def __init__(self, *, id: str, **kwargs): # pylint: disable=redefined-builtin + def __init__(self, *, id: str, **kwargs: Any) -> None: # pylint: disable=redefined-builtin """ :keyword id: Virtual Machine image path. Required. :paramtype id: str @@ -20284,8 +21891,8 @@ def __init__( address: Optional[str] = None, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, is_notebook_instance_compute: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword virtual_machine_size: Virtual Machine size. :paramtype virtual_machine_size: str @@ -20323,7 +21930,9 @@ class VirtualMachineSecretsSchema(_serialization.Model): "administrator_account": {"key": "administratorAccount", "type": "VirtualMachineSshCredentials"}, } - def __init__(self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs): + def __init__( + self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs: Any + ) -> None: """ :keyword administrator_account: Admin credentials for virtual machine. :paramtype administrator_account: @@ -20356,7 +21965,9 @@ class VirtualMachineSecrets(ComputeSecrets, VirtualMachineSecretsSchema): "compute_type": {"key": "computeType", "type": "str"}, } - def __init__(self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs): + def __init__( + self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs: Any + ) -> None: """ :keyword administrator_account: Admin credentials for virtual machine. :paramtype administrator_account: @@ -20429,8 +22040,8 @@ def __init__( *, estimated_vm_prices: Optional["_models.EstimatedVMPrices"] = None, supported_compute_types: Optional[List[str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword estimated_vm_prices: The estimated price information for using a VM. :paramtype estimated_vm_prices: ~azure.mgmt.machinelearningservices.models.EstimatedVMPrices @@ -20463,7 +22074,7 @@ class VirtualMachineSizeListResult(_serialization.Model): "value": {"key": "value", "type": "[VirtualMachineSize]"}, } - def __init__(self, *, value: Optional[List["_models.VirtualMachineSize"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.VirtualMachineSize"]] = None, **kwargs: Any) -> None: """ :keyword value: The list of virtual machine sizes supported by AmlCompute. :paramtype value: list[~azure.mgmt.machinelearningservices.models.VirtualMachineSize] @@ -20499,8 +22110,8 @@ def __init__( password: Optional[str] = None, public_key_data: Optional[str] = None, private_key_data: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword username: Username of admin account. :paramtype username: str @@ -20518,6 +22129,103 @@ def __init__( self.private_key_data = private_key_data +class VolumeDefinition(_serialization.Model): + """Describes the volume configuration for the container. + + :ivar type: Type of Volume Definition. Possible Values: bind,volume,tmpfs,npipe. Known values + are: "bind", "volume", "tmpfs", and "npipe". + :vartype type: str or ~azure.mgmt.machinelearningservices.models.VolumeDefinitionType + :ivar read_only: Indicate whether to mount volume as readOnly. Default value for this is false. + :vartype read_only: bool + :ivar source: Source of the mount. For bind mounts this is the host path. + :vartype source: str + :ivar target: Target of the mount. For bind mounts this is the path in the container. + :vartype target: str + :ivar consistency: Consistency of the volume. + :vartype consistency: str + :ivar bind: Bind Options of the mount. + :vartype bind: ~azure.mgmt.machinelearningservices.models.BindOptions + :ivar volume: Volume Options of the mount. + :vartype volume: ~azure.mgmt.machinelearningservices.models.VolumeOptions + :ivar tmpfs: tmpfs option of the mount. + :vartype tmpfs: ~azure.mgmt.machinelearningservices.models.TmpfsOptions + """ + + _attribute_map = { + "type": {"key": "type", "type": "str"}, + "read_only": {"key": "readOnly", "type": "bool"}, + "source": {"key": "source", "type": "str"}, + "target": {"key": "target", "type": "str"}, + "consistency": {"key": "consistency", "type": "str"}, + "bind": {"key": "bind", "type": "BindOptions"}, + "volume": {"key": "volume", "type": "VolumeOptions"}, + "tmpfs": {"key": "tmpfs", "type": "TmpfsOptions"}, + } + + def __init__( + self, + *, + type: Union[str, "_models.VolumeDefinitionType"] = "bind", + read_only: Optional[bool] = None, + source: Optional[str] = None, + target: Optional[str] = None, + consistency: Optional[str] = None, + bind: Optional["_models.BindOptions"] = None, + volume: Optional["_models.VolumeOptions"] = None, + tmpfs: Optional["_models.TmpfsOptions"] = None, + **kwargs: Any + ) -> None: + """ + :keyword type: Type of Volume Definition. Possible Values: bind,volume,tmpfs,npipe. Known + values are: "bind", "volume", "tmpfs", and "npipe". + :paramtype type: str or ~azure.mgmt.machinelearningservices.models.VolumeDefinitionType + :keyword read_only: Indicate whether to mount volume as readOnly. Default value for this is + false. + :paramtype read_only: bool + :keyword source: Source of the mount. For bind mounts this is the host path. + :paramtype source: str + :keyword target: Target of the mount. For bind mounts this is the path in the container. + :paramtype target: str + :keyword consistency: Consistency of the volume. + :paramtype consistency: str + :keyword bind: Bind Options of the mount. + :paramtype bind: ~azure.mgmt.machinelearningservices.models.BindOptions + :keyword volume: Volume Options of the mount. + :paramtype volume: ~azure.mgmt.machinelearningservices.models.VolumeOptions + :keyword tmpfs: tmpfs option of the mount. + :paramtype tmpfs: ~azure.mgmt.machinelearningservices.models.TmpfsOptions + """ + super().__init__(**kwargs) + self.type = type + self.read_only = read_only + self.source = source + self.target = target + self.consistency = consistency + self.bind = bind + self.volume = volume + self.tmpfs = tmpfs + + +class VolumeOptions(_serialization.Model): + """Describes the volume options for the container. + + :ivar nocopy: Indicate whether volume is nocopy. + :vartype nocopy: bool + """ + + _attribute_map = { + "nocopy": {"key": "nocopy", "type": "bool"}, + } + + def __init__(self, *, nocopy: Optional[bool] = None, **kwargs: Any) -> None: + """ + :keyword nocopy: Indicate whether volume is nocopy. + :paramtype nocopy: bool + """ + super().__init__(**kwargs) + self.nocopy = nocopy + + class Workspace(Resource): # pylint: disable=too-many-instance-attributes """An object that represents a machine learning workspace. @@ -20697,8 +22405,8 @@ def __init__( # pylint: disable=too-many-locals service_managed_resources_settings: Optional["_models.ServiceManagedResourcesSettings"] = None, primary_user_assigned_identity: Optional[str] = None, v1_legacy_mode: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword identity: The identity of the resource. :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity @@ -20800,7 +22508,7 @@ class WorkspaceConnectionManagedIdentity(_serialization.Model): "client_id": {"key": "clientId", "type": "str"}, } - def __init__(self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, **kwargs): + def __init__(self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, **kwargs: Any) -> None: """ :keyword resource_id: :paramtype resource_id: str @@ -20823,7 +22531,7 @@ class WorkspaceConnectionPersonalAccessToken(_serialization.Model): "pat": {"key": "pat", "type": "str"}, } - def __init__(self, *, pat: Optional[str] = None, **kwargs): + def __init__(self, *, pat: Optional[str] = None, **kwargs: Any) -> None: """ :keyword pat: :paramtype pat: str @@ -20870,7 +22578,7 @@ class WorkspaceConnectionPropertiesV2BasicResource(Resource): "properties": {"key": "properties", "type": "WorkspaceConnectionPropertiesV2"}, } - def __init__(self, *, properties: "_models.WorkspaceConnectionPropertiesV2", **kwargs): + def __init__(self, *, properties: "_models.WorkspaceConnectionPropertiesV2", **kwargs: Any) -> None: """ :keyword properties: Required. :paramtype properties: @@ -20902,8 +22610,8 @@ class WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult(_serializat } def __init__( - self, *, value: Optional[List["_models.WorkspaceConnectionPropertiesV2BasicResource"]] = None, **kwargs - ): + self, *, value: Optional[List["_models.WorkspaceConnectionPropertiesV2BasicResource"]] = None, **kwargs: Any + ) -> None: """ :keyword value: :paramtype value: @@ -20925,7 +22633,7 @@ class WorkspaceConnectionSharedAccessSignature(_serialization.Model): "sas": {"key": "sas", "type": "str"}, } - def __init__(self, *, sas: Optional[str] = None, **kwargs): + def __init__(self, *, sas: Optional[str] = None, **kwargs: Any) -> None: """ :keyword sas: :paramtype sas: str @@ -20948,7 +22656,7 @@ class WorkspaceConnectionUsernamePassword(_serialization.Model): "password": {"key": "password", "type": "str"}, } - def __init__(self, *, username: Optional[str] = None, password: Optional[str] = None, **kwargs): + def __init__(self, *, username: Optional[str] = None, password: Optional[str] = None, **kwargs: Any) -> None: """ :keyword username: :paramtype username: str @@ -20976,7 +22684,9 @@ class WorkspaceListResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, *, value: Optional[List["_models.Workspace"]] = None, next_link: Optional[str] = None, **kwargs): + def __init__( + self, *, value: Optional[List["_models.Workspace"]] = None, next_link: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword value: The list of machine learning workspaces. Since this list may be incomplete, the nextLink field should be used to request the next list of machine learning workspaces. @@ -21052,8 +22762,8 @@ def __init__( public_network_access: Optional[Union[str, "_models.PublicNetworkAccess"]] = None, application_insights: Optional[str] = None, container_registry: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: The resource tags for the machine learning workspace. :paramtype tags: dict[str, str] diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py index 0065485916d9..4967e3af6930 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py @@ -15,6 +15,16 @@ from ._private_endpoint_connections_operations import PrivateEndpointConnectionsOperations from ._private_link_resources_operations import PrivateLinkResourcesOperations from ._workspace_connections_operations import WorkspaceConnectionsOperations +from ._registry_code_containers_operations import RegistryCodeContainersOperations +from ._registry_code_versions_operations import RegistryCodeVersionsOperations +from ._registry_component_containers_operations import RegistryComponentContainersOperations +from ._registry_component_versions_operations import RegistryComponentVersionsOperations +from ._registry_data_containers_operations import RegistryDataContainersOperations +from ._registry_data_versions_operations import RegistryDataVersionsOperations +from ._registry_environment_containers_operations import RegistryEnvironmentContainersOperations +from ._registry_environment_versions_operations import RegistryEnvironmentVersionsOperations +from ._registry_model_containers_operations import RegistryModelContainersOperations +from ._registry_model_versions_operations import RegistryModelVersionsOperations from ._batch_endpoints_operations import BatchEndpointsOperations from ._batch_deployments_operations import BatchDeploymentsOperations from ._code_containers_operations import CodeContainersOperations @@ -32,6 +42,7 @@ from ._online_endpoints_operations import OnlineEndpointsOperations from ._online_deployments_operations import OnlineDeploymentsOperations from ._schedules_operations import SchedulesOperations +from ._registries_operations import RegistriesOperations from ._workspace_features_operations import WorkspaceFeaturesOperations from ._patch import __all__ as _patch_all @@ -48,6 +59,16 @@ "PrivateEndpointConnectionsOperations", "PrivateLinkResourcesOperations", "WorkspaceConnectionsOperations", + "RegistryCodeContainersOperations", + "RegistryCodeVersionsOperations", + "RegistryComponentContainersOperations", + "RegistryComponentVersionsOperations", + "RegistryDataContainersOperations", + "RegistryDataVersionsOperations", + "RegistryEnvironmentContainersOperations", + "RegistryEnvironmentVersionsOperations", + "RegistryModelContainersOperations", + "RegistryModelVersionsOperations", "BatchEndpointsOperations", "BatchDeploymentsOperations", "CodeContainersOperations", @@ -65,6 +86,7 @@ "OnlineEndpointsOperations", "OnlineDeploymentsOperations", "SchedulesOperations", + "RegistriesOperations", "WorkspaceFeaturesOperations", ] __all__.extend([p for p in _patch_all if p not in __all__]) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py index 944b8300d2f5..4156f1f82974 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -57,7 +52,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -70,7 +65,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -102,7 +99,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -115,7 +112,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), "deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"), } @@ -142,7 +141,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -155,7 +154,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), "deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"), } @@ -182,7 +183,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -196,7 +197,9 @@ def build_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -229,7 +232,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -243,7 +246,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -321,9 +326,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -381,8 +384,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -413,9 +417,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -432,8 +434,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -490,9 +493,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -516,7 +517,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -567,9 +570,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) request = build_get_request( @@ -586,8 +587,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -628,9 +630,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.BatchDeployment]] = kwargs.pop("cls", None) @@ -659,8 +659,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -805,8 +806,8 @@ def begin_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a + PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties or IO @@ -830,9 +831,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -899,9 +898,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) @@ -930,8 +927,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1077,8 +1075,8 @@ def begin_create_or_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a BatchDeployment type or + a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1100,9 +1098,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1131,7 +1127,9 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py index 5813ab488a03..746fda3ea073 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -55,7 +50,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -68,7 +63,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -92,7 +89,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -105,7 +102,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -126,7 +125,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -139,7 +138,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -160,7 +161,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -174,7 +175,9 @@ def build_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -199,7 +202,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -213,7 +216,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -238,7 +243,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -251,7 +256,9 @@ def build_list_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -315,9 +322,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -373,8 +378,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -405,9 +411,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -423,8 +427,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -479,9 +484,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -504,7 +507,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -553,9 +558,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) request = build_get_request( @@ -571,8 +574,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -612,9 +616,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.BatchEndpoint]] = kwargs.pop("cls", None) @@ -642,8 +644,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -777,8 +780,8 @@ def begin_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Mutable batch inference endpoint definition object. Is either a model type or a IO - type. Required. + :param body: Mutable batch inference endpoint definition object. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -800,9 +803,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -867,9 +868,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) @@ -897,8 +896,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1033,8 +1033,8 @@ def begin_create_or_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Batch inference endpoint definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference endpoint definition object. Is either a BatchEndpoint type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1055,9 +1055,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1085,7 +1083,9 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -1134,9 +1134,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -1152,8 +1150,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py index 637d9072c910..2dddf77791a1 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -47,7 +42,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -60,7 +55,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -82,7 +79,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -95,7 +92,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -116,7 +115,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -129,7 +128,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -150,7 +151,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -164,7 +165,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -223,9 +226,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -280,8 +281,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -329,9 +331,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -347,8 +347,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -394,9 +395,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -412,8 +411,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -520,7 +520,7 @@ def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a CodeContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -542,9 +542,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) @@ -572,8 +570,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py index 561baa83676c..d74c6c721703 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -50,12 +45,14 @@ def build_list_request( order_by: Optional[str] = None, top: Optional[int] = None, skip: Optional[str] = None, + hash: Optional[str] = None, + hash_version: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -68,7 +65,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -82,6 +81,10 @@ def build_list_request( _params["$top"] = _SERIALIZER.query("top", top, "int") if skip is not None: _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if hash is not None: + _params["hash"] = _SERIALIZER.query("hash", hash, "str") + if hash_version is not None: + _params["hashVersion"] = _SERIALIZER.query("hash_version", hash_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") @@ -95,7 +98,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -108,7 +111,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -130,7 +135,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -143,7 +148,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -165,7 +172,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -179,7 +186,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), "version": _SERIALIZER.url("version", version, "str"), } @@ -197,6 +206,46 @@ def build_create_or_update_request( return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) +def build_create_or_get_start_pending_upload_request( # pylint: disable=name-too-long + resource_group_name: str, workspace_name: str, name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/startPendingUpload", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) + + class CodeVersionsOperations: """ .. warning:: @@ -225,6 +274,8 @@ def list( order_by: Optional[str] = None, top: Optional[int] = None, skip: Optional[str] = None, + hash: Optional[str] = None, + hash_version: Optional[str] = None, **kwargs: Any ) -> Iterable["_models.CodeVersion"]: """List versions. @@ -244,6 +295,11 @@ def list( :type top: int :param skip: Continuation token for pagination. Default value is None. :type skip: str + :param hash: If specified, return CodeVersion assets with specified content hash value, + regardless of name. Default value is None. + :type hash: str + :param hash_version: Hash algorithm version when listing by hash. Default value is None. + :type hash_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CodeVersion or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.CodeVersion] @@ -252,9 +308,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -276,6 +330,8 @@ def prepare_request(next_link=None): order_by=order_by, top=top, skip=skip, + hash=hash, + hash_version=hash_version, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, @@ -312,8 +368,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -363,9 +420,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -382,8 +437,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -433,9 +489,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -452,8 +506,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -569,7 +624,8 @@ def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a CodeVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -590,9 +646,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) @@ -621,8 +675,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -646,3 +701,172 @@ def create_or_update( create_or_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}" } + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + workspace_name: str, + name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param workspace_name: Name of Azure Machine Learning workspace. Required. + :type workspace_name: str + :param name: Container name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + workspace_name: str, + name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param workspace_name: Name of Azure Machine Learning workspace. Required. + :type workspace_name: str + :param name: Container name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + workspace_name: str, + name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param workspace_name: Name of Azure Machine Learning workspace. Required. + :type workspace_name: str + :param name: Container name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + workspace_name=workspace_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/codes/{name}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py index 4b9361f4a37c..3662c37781c8 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -53,7 +48,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -66,7 +61,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -90,7 +87,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -103,7 +100,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -124,7 +123,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -137,7 +136,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -158,7 +159,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -172,7 +173,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -240,9 +243,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -298,8 +299,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -347,9 +349,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -365,8 +365,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -414,9 +415,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -432,8 +431,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -540,8 +540,8 @@ def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ComponentContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -562,9 +562,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) @@ -592,8 +590,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py index 5e99740483db..8a7029a00f9b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -56,7 +51,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -69,7 +64,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -98,7 +95,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -111,7 +108,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -133,7 +132,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -146,7 +145,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -168,7 +169,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -182,7 +183,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), "version": _SERIALIZER.url("version", version, "str"), } @@ -260,9 +263,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -321,8 +322,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -372,9 +374,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -391,8 +391,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -442,9 +443,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -461,8 +460,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -578,7 +578,8 @@ def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ComponentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -599,9 +600,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) @@ -630,8 +629,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py index 51927e5687de..9c765109a500 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -49,7 +44,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -62,7 +57,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -84,7 +81,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -97,7 +94,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -118,7 +117,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -132,7 +131,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -155,7 +156,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -169,7 +170,9 @@ def build_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -198,7 +201,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -211,7 +214,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -235,7 +240,7 @@ def build_list_nodes_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -248,7 +253,9 @@ def build_list_nodes_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -269,7 +276,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -282,7 +289,9 @@ def build_list_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -303,7 +312,7 @@ def build_start_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -316,7 +325,9 @@ def build_start_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -337,7 +348,7 @@ def build_stop_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -350,7 +361,9 @@ def build_stop_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -371,7 +384,7 @@ def build_restart_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -384,7 +397,9 @@ def build_restart_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "computeName": _SERIALIZER.url("compute_name", compute_name, "str"), } @@ -440,9 +455,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PaginatedComputeResourcesList] = kwargs.pop("cls", None) error_map = { @@ -497,8 +510,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -545,9 +559,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) request = build_get_request( @@ -563,8 +575,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -604,9 +617,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) @@ -634,8 +645,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -769,8 +781,8 @@ def begin_create_or_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Payload with Machine Learning compute definition. Is either a model type or - a IO type. Required. + :param parameters: Payload with Machine Learning compute definition. Is either a + ComputeResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ComputeResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -792,9 +804,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -859,9 +869,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) @@ -889,8 +897,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1012,8 +1021,8 @@ def begin_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Additional parameters for cluster update. Is either a model type or a IO - type. Required. + :param parameters: Additional parameters for cluster update. Is either a + ClusterUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ClusterUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1035,9 +1044,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1102,9 +1109,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -1121,8 +1126,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1184,9 +1190,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1251,9 +1255,7 @@ def list_nodes( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.AmlComputeNodesInformation] = kwargs.pop("cls", None) error_map = { @@ -1308,8 +1310,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1355,9 +1358,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ComputeSecrets] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -1373,8 +1374,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1409,9 +1411,7 @@ def _start_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_start_request( @@ -1427,8 +1427,9 @@ def _start_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1473,9 +1474,7 @@ def begin_start( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1530,9 +1529,7 @@ def _stop_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_stop_request( @@ -1548,8 +1545,9 @@ def _stop_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1594,9 +1592,7 @@ def begin_stop( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1651,9 +1647,7 @@ def _restart_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_restart_request( @@ -1669,8 +1663,9 @@ def _restart_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1715,9 +1710,7 @@ def begin_restart( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py index 3b5d3acc38c6..63084343602f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -53,7 +48,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -66,7 +61,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -90,7 +87,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -103,7 +100,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -124,7 +123,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -137,7 +136,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -158,7 +159,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -172,7 +173,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -239,9 +242,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -297,8 +298,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -346,9 +348,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -364,8 +364,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -411,9 +412,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -429,8 +428,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -537,7 +537,7 @@ def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a DataContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DataContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -559,9 +559,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) @@ -589,8 +587,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py index 092363a5e2f3..0333ed5d9153 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -57,7 +52,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -70,7 +65,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -101,7 +98,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -114,7 +111,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -136,7 +135,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -149,7 +148,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -171,7 +172,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -185,7 +186,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), "version": _SERIALIZER.url("version", version, "str"), } @@ -271,9 +274,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataVersionBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -333,8 +334,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -384,9 +386,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -403,8 +403,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -454,9 +455,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) request = build_get_request( @@ -473,8 +472,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -590,7 +590,8 @@ def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a DataVersionBase type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -611,9 +612,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) @@ -642,8 +641,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py index bc01c32a0983..597558f22241 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, List, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -58,7 +53,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -71,7 +66,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -105,7 +102,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -118,7 +115,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -139,7 +138,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -152,7 +151,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -179,7 +180,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -193,7 +194,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -218,7 +221,7 @@ def build_list_secrets_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -231,7 +234,9 @@ def build_list_secrets_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -310,9 +315,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DatastoreResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -373,8 +376,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,9 +426,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -440,8 +442,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -487,9 +490,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.Datastore] = kwargs.pop("cls", None) request = build_get_request( @@ -505,8 +506,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -620,7 +622,7 @@ def create_or_update( :type workspace_name: str :param name: Datastore name. Required. :type name: str - :param body: Datastore entity to create or update. Is either a model type or a IO type. + :param body: Datastore entity to create or update. Is either a Datastore type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Datastore or IO :param skip_validation: Flag to skip validation. Default value is False. @@ -644,9 +646,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Datastore] = kwargs.pop("cls", None) @@ -675,8 +675,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -732,9 +733,7 @@ def list_secrets( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DatastoreSecrets] = kwargs.pop("cls", None) request = build_list_secrets_request( @@ -750,8 +749,9 @@ def list_secrets( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py index d80de1f2b3c7..dae5f6f1e232 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -53,7 +48,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -66,7 +61,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -90,7 +87,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -103,7 +100,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -124,7 +123,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -137,7 +136,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -158,7 +159,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -172,7 +173,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -241,9 +244,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -299,8 +300,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -348,9 +350,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -366,8 +366,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -415,9 +416,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -433,8 +432,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -541,8 +541,8 @@ def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a EnvironmentContainer type or a + IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -563,9 +563,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) @@ -593,8 +591,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py index d898cb3c67dd..0227cfd5d9f6 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -56,7 +51,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -69,7 +64,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -98,7 +95,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -111,7 +108,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -133,7 +132,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -146,7 +145,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -168,7 +169,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -182,7 +183,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), "version": _SERIALIZER.url("version", version, "str"), } @@ -260,9 +263,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -321,8 +322,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -372,9 +374,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -391,8 +391,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -442,9 +443,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -461,8 +460,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -578,7 +578,8 @@ def create_or_update( :type name: str :param version: Version of EnvironmentVersion. Required. :type version: str - :param body: Definition of EnvironmentVersion. Is either a model type or a IO type. Required. + :param body: Definition of EnvironmentVersion. Is either a EnvironmentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -599,9 +600,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) @@ -630,8 +629,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py index cd8bd0bd0c47..1de8a15576f8 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -57,7 +52,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -70,7 +65,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -98,7 +95,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -111,7 +108,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "id": _SERIALIZER.url("id", id, "str"), } @@ -132,7 +131,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -145,7 +144,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "id": _SERIALIZER.url("id", id, "str"), } @@ -166,7 +167,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -180,7 +181,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "id": _SERIALIZER.url("id", id, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -203,7 +206,7 @@ def build_cancel_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -216,7 +219,9 @@ def build_cancel_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "id": _SERIALIZER.url("id", id, "str"), } @@ -287,9 +292,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.JobBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -347,8 +350,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -379,9 +383,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -397,8 +399,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -451,9 +454,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, id: str, * _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -476,7 +477,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -523,9 +526,7 @@ def get(self, resource_group_name: str, workspace_name: str, id: str, **kwargs: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.JobBase] = kwargs.pop("cls", None) request = build_get_request( @@ -541,8 +542,9 @@ def get(self, resource_group_name: str, workspace_name: str, id: str, **kwargs: request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -644,7 +646,7 @@ def create_or_update( :type workspace_name: str :param id: The name and identifier for the Job. This is case-sensitive. Required. :type id: str - :param body: Job definition object. Is either a model type or a IO type. Required. + :param body: Job definition object. Is either a JobBase type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.JobBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -665,9 +667,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.JobBase] = kwargs.pop("cls", None) @@ -695,8 +695,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -735,9 +736,7 @@ def _cancel_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_cancel_request( @@ -753,8 +752,9 @@ def _cancel_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -804,9 +804,7 @@ def begin_cancel(self, resource_group_name: str, workspace_name: str, id: str, * _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py index 2c416fba2772..38fa44a89051 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -54,7 +49,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -67,7 +62,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -93,7 +90,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -106,7 +103,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -127,7 +126,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -140,7 +139,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -161,7 +162,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -175,7 +176,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -245,9 +248,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -304,8 +305,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -353,9 +355,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -371,8 +371,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -418,9 +419,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) request = build_get_request( @@ -436,8 +435,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -544,8 +544,8 @@ def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ModelContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -566,9 +566,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) @@ -596,8 +594,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py index 775841fe3ae4..da0bc05e9b3e 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -62,7 +57,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -75,7 +70,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -116,7 +113,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -129,7 +126,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -151,7 +150,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -164,7 +163,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), "version": _SERIALIZER.url("version", version, "str"), } @@ -186,7 +187,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -200,7 +201,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), "version": _SERIALIZER.url("version", version, "str"), } @@ -297,9 +300,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -364,8 +365,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -415,9 +417,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -434,8 +434,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -485,9 +486,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) request = build_get_request( @@ -504,8 +503,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -621,7 +621,8 @@ def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ModelVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -642,9 +643,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) @@ -673,8 +672,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py index cf048b3e2993..846fb23a1323 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -57,7 +52,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -70,7 +65,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -102,7 +99,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -115,7 +112,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), "deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"), } @@ -142,7 +141,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -155,7 +154,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), "deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"), } @@ -182,7 +183,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -196,7 +197,9 @@ def build_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -229,7 +232,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -243,7 +246,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -276,7 +281,7 @@ def build_get_logs_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -290,7 +295,9 @@ def build_get_logs_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), "deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"), } @@ -322,7 +329,7 @@ def build_list_skus_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -335,7 +342,9 @@ def build_list_skus_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), "deploymentName": _SERIALIZER.url("deployment_name", deployment_name, "str"), } @@ -411,9 +420,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -471,8 +478,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -503,9 +511,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -522,8 +528,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -580,9 +587,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -606,7 +611,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -657,9 +664,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) request = build_get_request( @@ -676,8 +681,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -718,9 +724,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.OnlineDeployment]] = kwargs.pop("cls", None) @@ -749,8 +753,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -894,8 +899,8 @@ def begin_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithSku type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithSku or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -918,9 +923,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -987,9 +990,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) @@ -1018,8 +1019,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1165,8 +1167,8 @@ def begin_create_or_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Inference Endpoint entity to apply during operation. Is either a model type or a - IO type. Required. + :param body: Inference Endpoint entity to apply during operation. Is either a OnlineDeployment + type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1188,9 +1190,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1219,7 +1219,9 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -1332,8 +1334,8 @@ def get_logs( :type endpoint_name: str :param deployment_name: The name and identifier for the endpoint. Required. :type deployment_name: str - :param body: The request containing parameters for retrieving logs. Is either a model type or a - IO type. Required. + :param body: The request containing parameters for retrieving logs. Is either a + DeploymentLogsRequest type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DeploymentLogsRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1354,9 +1356,7 @@ def get_logs( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DeploymentLogs] = kwargs.pop("cls", None) @@ -1385,8 +1385,9 @@ def get_logs( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1443,9 +1444,7 @@ def list_skus( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.SkuResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -1503,8 +1502,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py index 9d9051dce1f7..2b7b939af7cc 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -60,7 +55,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -73,7 +68,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -107,7 +104,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -120,7 +117,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -141,7 +140,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -154,7 +153,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -175,7 +176,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -189,7 +190,9 @@ def build_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -212,7 +215,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -226,7 +229,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url( "endpoint_name", endpoint_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" ), @@ -251,7 +256,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -264,7 +269,9 @@ def build_list_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -285,7 +292,7 @@ def build_regenerate_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -299,7 +306,9 @@ def build_regenerate_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -322,7 +331,7 @@ def build_get_token_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -335,7 +344,9 @@ def build_get_token_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "endpointName": _SERIALIZER.url("endpoint_name", endpoint_name, "str"), } @@ -420,9 +431,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -483,8 +492,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -515,9 +525,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -533,8 +541,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -589,9 +598,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -614,7 +621,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -663,9 +672,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) request = build_get_request( @@ -681,8 +688,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -722,9 +730,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.OnlineEndpoint]] = kwargs.pop("cls", None) @@ -752,8 +758,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -889,8 +896,8 @@ def begin_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -913,9 +920,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -980,9 +985,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) @@ -1010,8 +1013,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1148,8 +1152,8 @@ def begin_create_or_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a OnlineEndpoint type + or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1171,9 +1175,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1201,7 +1203,9 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -1250,9 +1254,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -1268,8 +1270,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1309,9 +1312,7 @@ def _regenerate_keys_initial( # pylint: disable=inconsistent-return-statements _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1339,8 +1340,9 @@ def _regenerate_keys_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1462,7 +1464,8 @@ def begin_regenerate_keys( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: RegenerateKeys request . Is either a model type or a IO type. Required. + :param body: RegenerateKeys request . Is either a RegenerateEndpointKeysRequest type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.RegenerateEndpointKeysRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1482,9 +1485,7 @@ def begin_regenerate_keys( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1534,9 +1535,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- def get_token( self, resource_group_name: str, workspace_name: str, endpoint_name: str, **kwargs: Any ) -> _models.EndpointAuthToken: - """Retrieve a valid AAD token for an Endpoint using AMLToken-based authentication. + """Retrieve a valid AML token for an Endpoint using AMLToken-based authentication. - Retrieve a valid AAD token for an Endpoint using AMLToken-based authentication. + Retrieve a valid AML token for an Endpoint using AMLToken-based authentication. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. @@ -1561,9 +1562,7 @@ def get_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.EndpointAuthToken] = kwargs.pop("cls", None) request = build_get_token_request( @@ -1579,8 +1578,9 @@ def get_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py index 369a4a8166c9..7dbac1fe15f1 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -45,7 +40,7 @@ def build_list_request(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -91,9 +86,7 @@ def list(self, **kwargs: Any) -> Iterable["_models.AmlOperation"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.AmlOperationListResult] = kwargs.pop("cls", None) error_map = { @@ -144,8 +137,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py index 6be9a15c5c60..1edbf2717ad3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -47,7 +42,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -59,7 +54,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), } @@ -84,7 +81,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -97,7 +94,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "privateEndpointConnectionName": _SERIALIZER.url( "private_endpoint_connection_name", private_endpoint_connection_name, "str" ), @@ -124,7 +123,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -138,7 +137,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "privateEndpointConnectionName": _SERIALIZER.url( "private_endpoint_connection_name", private_endpoint_connection_name, "str" ), @@ -167,7 +168,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -180,7 +181,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "privateEndpointConnectionName": _SERIALIZER.url( "private_endpoint_connection_name", private_endpoint_connection_name, "str" ), @@ -237,9 +240,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PrivateEndpointConnectionListResult] = kwargs.pop("cls", None) error_map = { @@ -293,8 +294,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -341,9 +343,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) request = build_get_request( @@ -359,8 +359,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -464,8 +465,8 @@ def create_or_update( :param private_endpoint_connection_name: The name of the private endpoint connection associated with the workspace. Required. :type private_endpoint_connection_name: str - :param properties: The private endpoint connection properties. Is either a model type or a IO - type. Required. + :param properties: The private endpoint connection properties. Is either a + PrivateEndpointConnection type or a IO type. Required. :type properties: ~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -486,9 +487,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) @@ -516,8 +515,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -568,9 +568,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -586,8 +584,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py index 330afa1b8940..a262b6f295cc 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Optional, TypeVar from azure.core.exceptions import ( @@ -28,10 +27,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -45,7 +40,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -58,7 +53,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -118,9 +115,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PrivateLinkResourceListResult] = kwargs.pop("cls", None) request = build_list_request( @@ -135,8 +130,9 @@ def list( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py index 926e7f8d9baa..96c18d13b1ab 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -45,7 +40,7 @@ def build_update_request(location: str, subscription_id: str, **kwargs: Any) -> _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -76,7 +71,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -170,7 +165,8 @@ def update( :param location: The location for update quota is queried. Required. :type location: str - :param parameters: Quota update parameters. Is either a model type or a IO type. Required. + :param parameters: Quota update parameters. Is either a QuotaUpdateParameters type or a IO + type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.QuotaUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -191,9 +187,7 @@ def update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.UpdateWorkspaceQuotasResult] = kwargs.pop("cls", None) @@ -219,8 +213,9 @@ def update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -255,9 +250,7 @@ def list(self, location: str, **kwargs: Any) -> Iterable["_models.ResourceQuota" _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListWorkspaceQuotas] = kwargs.pop("cls", None) error_map = { @@ -310,8 +303,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py new file mode 100644 index 000000000000..ed667ca65b08 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py @@ -0,0 +1,1272 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_by_subscription_request(subscription_id: str, **kwargs: Any) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearningServices/registries" + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_list_request(resource_group_name: str, subscription_id: str, **kwargs: Any) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request(resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_update_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PATCH", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_remove_regions_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/removeRegions", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistriesOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registries` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list_by_subscription(self, **kwargs: Any) -> Iterable["_models.Registry"]: + """List registries by subscription. + + List registries by subscription. + + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_by_subscription_request( + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.list_by_subscription.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list_by_subscription.metadata = { + "url": "/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearningServices/registries" + } + + @distributed_trace + def list(self, resource_group_name: str, **kwargs: Any) -> Iterable["_models.Registry"]: + """List registries. + + List registries. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace + def begin_delete(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> LROPoller[None]: + """Delete registry. + + Delete registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace + def get(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> _models.Registry: + """Get registry. + + Get registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + def update( + self, + resource_group_name: str, + registry_name: str, + body: _models.PartialRegistryPartialTrackedResource, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.Registry: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.Registry: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def update( + self, + resource_group_name: str, + registry_name: str, + body: Union[_models.PartialRegistryPartialTrackedResource, IO], + **kwargs: Any + ) -> _models.Registry: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a + PartialRegistryPartialTrackedResource type or a IO type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource or + IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PartialRegistryPartialTrackedResource") + + request = build_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.update.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + def _create_or_update_initial( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> _models.Registry: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "Registry") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 201: + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: _models.Registry, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a Registry type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "azure-async-operation"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + def _remove_regions_initial( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> Optional[_models.Registry]: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[Optional[_models.Registry]] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "Registry") + + request = build_remove_regions_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._remove_regions_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = None + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, deserialized, response_headers) + + return deserialized + + _remove_regions_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/removeRegions" + } + + @overload + def begin_remove_regions( + self, + resource_group_name: str, + registry_name: str, + body: _models.Registry, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Remove regions from registry. + + Remove regions from registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_remove_regions( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Remove regions from registry. + + Remove regions from registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_remove_regions( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Remove regions from registry. + + Remove regions from registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a Registry type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._remove_regions_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_remove_regions.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/removeRegions" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py new file mode 100644 index 000000000000..5aa24deb5353 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_containers_operations.py @@ -0,0 +1,761 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, registry_name: str, subscription_id: str, *, skip: Optional[str] = None, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, code_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, code_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, code_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryCodeContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_code_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, resource_group_name: str, registry_name: str, skip: Optional[str] = None, **kwargs: Any + ) -> Iterable["_models.CodeContainer"]: + """List containers. + + List containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either CodeContainer or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("CodeContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, code_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, code_name: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete Code container. + + Delete Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + @distributed_trace + def get(self, resource_group_name: str, registry_name: str, code_name: str, **kwargs: Any) -> _models.CodeContainer: + """Get Code container. + + Get Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: CodeContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.CodeContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("CodeContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: Union[_models.CodeContainer, IO], + **kwargs: Any + ) -> _models.CodeContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "CodeContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("CodeContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("CodeContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: _models.CodeContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.CodeContainer]: + """Create or update Code container. + + Create or update Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either CodeContainer or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.CodeContainer]: + """Create or update Code container. + + Create or update Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either CodeContainer or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + body: Union[_models.CodeContainer, IO], + **kwargs: Any + ) -> LROPoller[_models.CodeContainer]: + """Create or update Code container. + + Create or update Code container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param body: Container entity to create or update. Is either a CodeContainer type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either CodeContainer or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.CodeContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("CodeContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py new file mode 100644 index 000000000000..715f14bdb5bc --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_code_versions_operations.py @@ -0,0 +1,1026 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + code_name: str, + subscription_id: str, + *, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if order_by is not None: + _params["$orderBy"] = _SERIALIZER.query("order_by", order_by, "str") + if top is not None: + _params["$top"] = _SERIALIZER.query("top", top, "int") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, code_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, code_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, code_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_get_start_pending_upload_request( # pylint: disable=name-too-long + resource_group_name: str, registry_name: str, code_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}/startPendingUpload", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "codeName": _SERIALIZER.url("code_name", code_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryCodeVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_code_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + **kwargs: Any + ) -> Iterable["_models.CodeVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either CodeVersion or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("CodeVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, code_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, code_name: str, version: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, code_name: str, version: str, **kwargs: Any + ) -> _models.CodeVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: CodeVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.CodeVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("CodeVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: Union[_models.CodeVersion, IO], + **kwargs: Any + ) -> _models.CodeVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "CodeVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("CodeVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("CodeVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: _models.CodeVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.CodeVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either CodeVersion or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.CodeVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either CodeVersion or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: Union[_models.CodeVersion, IO], + **kwargs: Any + ) -> LROPoller[_models.CodeVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Container name. Required. + :type code_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a CodeVersion type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either CodeVersion or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.CodeVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("CodeVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}" + } + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Pending upload name. This is case-sensitive. Required. + :type code_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Pending upload name. This is case-sensitive. Required. + :type code_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + code_name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a code asset to. + + Generate a storage location and credential for the client to upload a code asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param code_name: Pending upload name. This is case-sensitive. Required. + :type code_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + code_name=code_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/codes/{codeName}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py new file mode 100644 index 000000000000..ad5c7506387c --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_containers_operations.py @@ -0,0 +1,773 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, registry_name: str, subscription_id: str, *, skip: Optional[str] = None, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, component_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, component_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, component_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryComponentContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_component_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, resource_group_name: str, registry_name: str, skip: Optional[str] = None, **kwargs: Any + ) -> Iterable["_models.ComponentContainer"]: + """List containers. + + List containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ComponentContainer or the result of cls(response) + :rtype: + ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("ComponentContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, component_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, component_name: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, component_name: str, **kwargs: Any + ) -> _models.ComponentContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ComponentContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ComponentContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ComponentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: Union[_models.ComponentContainer, IO], + **kwargs: Any + ) -> _models.ComponentContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ComponentContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ComponentContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ComponentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: _models.ComponentContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ComponentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ComponentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ComponentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ComponentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + body: Union[_models.ComponentContainer, IO], + **kwargs: Any + ) -> LROPoller[_models.ComponentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param body: Container entity to create or update. Is either a ComponentContainer type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ComponentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ComponentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ComponentContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py new file mode 100644 index 000000000000..fcdba5c9f2d6 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_component_versions_operations.py @@ -0,0 +1,826 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + component_name: str, + subscription_id: str, + *, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if order_by is not None: + _params["$orderBy"] = _SERIALIZER.query("order_by", order_by, "str") + if top is not None: + _params["$top"] = _SERIALIZER.query("top", top, "int") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, component_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, component_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, component_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "componentName": _SERIALIZER.url( + "component_name", component_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryComponentVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_component_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + **kwargs: Any + ) -> Iterable["_models.ComponentVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ComponentVersion or the result of cls(response) + :rtype: + ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("ComponentVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, component_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, component_name: str, version: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, component_name: str, version: str, **kwargs: Any + ) -> _models.ComponentVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ComponentVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ComponentVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ComponentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: Union[_models.ComponentVersion, IO], + **kwargs: Any + ) -> _models.ComponentVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ComponentVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ComponentVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ComponentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: _models.ComponentVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ComponentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ComponentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ComponentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ComponentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + component_name: str, + version: str, + body: Union[_models.ComponentVersion, IO], + **kwargs: Any + ) -> LROPoller[_models.ComponentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param component_name: Container name. Required. + :type component_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a ComponentVersion type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ComponentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ComponentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + component_name=component_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ComponentVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/components/{componentName}/versions/{version}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py new file mode 100644 index 000000000000..fd5226d5d10f --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_containers_operations.py @@ -0,0 +1,776 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + subscription_id: str, + *, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if list_view_type is not None: + _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryDataContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_data_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> Iterable["_models.DataContainer"]: + """List Data containers. + + List Data containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either DataContainer or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("DataContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + @distributed_trace + def begin_delete(self, resource_group_name: str, registry_name: str, name: str, **kwargs: Any) -> LROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + @distributed_trace + def get(self, resource_group_name: str, registry_name: str, name: str, **kwargs: Any) -> _models.DataContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: DataContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.DataContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("DataContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: Union[_models.DataContainer, IO], + **kwargs: Any + ) -> _models.DataContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "DataContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("DataContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("DataContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: _models.DataContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.DataContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either DataContainer or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.DataContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either DataContainer or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + body: Union[_models.DataContainer, IO], + **kwargs: Any + ) -> LROPoller[_models.DataContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param body: Container entity to create or update. Is either a DataContainer type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either DataContainer or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.DataContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("DataContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py new file mode 100644 index 000000000000..26519d8c88a9 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_data_versions_operations.py @@ -0,0 +1,1050 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + name: str, + subscription_id: str, + *, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + tags: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if order_by is not None: + _params["$orderBy"] = _SERIALIZER.query("order_by", order_by, "str") + if top is not None: + _params["$top"] = _SERIALIZER.query("top", top, "int") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if tags is not None: + _params["$tags"] = _SERIALIZER.query("tags", tags, "str") + if list_view_type is not None: + _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_get_start_pending_upload_request( # pylint: disable=name-too-long + resource_group_name: str, registry_name: str, name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}/startPendingUpload", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "name": _SERIALIZER.url("name", name, "str"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryDataVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_data_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + tags: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> Iterable["_models.DataVersionBase"]: + """List data versions in the data container. + + List data versions in the data container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data container's name. Required. + :type name: str + :param order_by: Please choose OrderBy value from ['createdtime', 'modifiedtime']. Default + value is None. + :type order_by: str + :param top: Top count of results, top count cannot be greater than the page size. + If topCount > page size, results with be default page size count + will be returned. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param tags: Comma-separated list of tag names (and optionally values). Example: + tag1,tag2=value2. Default value is None. + :type tags: str + :param list_view_type: [ListViewType.ActiveOnly, ListViewType.ArchivedOnly, + ListViewType.All]View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either DataVersionBase or the result of cls(response) + :rtype: + ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataVersionBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + tags=tags, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("DataVersionBaseResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, name: str, version: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, name: str, version: str, **kwargs: Any + ) -> _models.DataVersionBase: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: DataVersionBase or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionBase + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("DataVersionBase", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: Union[_models.DataVersionBase, IO], + **kwargs: Any + ) -> _models.DataVersionBase: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "DataVersionBase") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("DataVersionBase", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("DataVersionBase", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: _models.DataVersionBase, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.DataVersionBase]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either DataVersionBase or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.DataVersionBase]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either DataVersionBase or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: Union[_models.DataVersionBase, IO], + **kwargs: Any + ) -> LROPoller[_models.DataVersionBase]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Container name. Required. + :type name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a DataVersionBase type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either DataVersionBase or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.DataVersionBase] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("DataVersionBase", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}" + } + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a data asset to. + + Generate a storage location and credential for the client to upload a data asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data asset name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a data asset to. + + Generate a storage location and credential for the client to upload a data asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data asset name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a data asset to. + + Generate a storage location and credential for the client to upload a data asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param name: Data asset name. This is case-sensitive. Required. + :type name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + name=name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/data/{name}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py new file mode 100644 index 000000000000..2a06796b076d --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_containers_operations.py @@ -0,0 +1,791 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + subscription_id: str, + *, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if list_view_type is not None: + _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, environment_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, environment_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, environment_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryEnvironmentContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_environment_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> Iterable["_models.EnvironmentContainer"]: + """List environment containers. + + List environment containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either EnvironmentContainer or the result of + cls(response) + :rtype: + ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("EnvironmentContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, environment_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, environment_name: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, environment_name: str, **kwargs: Any + ) -> _models.EnvironmentContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. This is case-sensitive. Required. + :type environment_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: EnvironmentContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: Union[_models.EnvironmentContainer, IO], + **kwargs: Any + ) -> _models.EnvironmentContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "EnvironmentContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: _models.EnvironmentContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.EnvironmentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either EnvironmentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.EnvironmentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either EnvironmentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + body: Union[_models.EnvironmentContainer, IO], + **kwargs: Any + ) -> LROPoller[_models.EnvironmentContainer]: + """Create or update container. + + Create or update container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param body: Container entity to create or update. Is either a EnvironmentContainer type or a + IO type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either EnvironmentContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("EnvironmentContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py new file mode 100644 index 000000000000..b8b75e0ca8b2 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_environment_versions_operations.py @@ -0,0 +1,849 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + environment_name: str, + subscription_id: str, + *, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if order_by is not None: + _params["$orderBy"] = _SERIALIZER.query("order_by", order_by, "str") + if top is not None: + _params["$top"] = _SERIALIZER.query("top", top, "int") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if list_view_type is not None: + _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + subscription_id: str, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + subscription_id: str, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + subscription_id: str, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "environmentName": _SERIALIZER.url( + "environment_name", environment_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryEnvironmentVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_environment_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + order_by: Optional[str] = None, + top: Optional[int] = None, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> Iterable["_models.EnvironmentVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. This is case-sensitive. Required. + :type environment_name: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either EnvironmentVersion or the result of cls(response) + :rtype: + ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + subscription_id=self._config.subscription_id, + order_by=order_by, + top=top, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("EnvironmentVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, environment_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, environment_name: str, version: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, environment_name: str, version: str, **kwargs: Any + ) -> _models.EnvironmentVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. This is case-sensitive. Required. + :type environment_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: EnvironmentVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: Union[_models.EnvironmentVersion, IO], + **kwargs: Any + ) -> _models.EnvironmentVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "EnvironmentVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: _models.EnvironmentVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.EnvironmentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either EnvironmentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.EnvironmentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either EnvironmentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + environment_name: str, + version: str, + body: Union[_models.EnvironmentVersion, IO], + **kwargs: Any + ) -> LROPoller[_models.EnvironmentVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param environment_name: Container name. Required. + :type environment_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a EnvironmentVersion type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either EnvironmentVersion or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.EnvironmentVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + environment_name=environment_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("EnvironmentVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/environments/{environmentName}/versions/{version}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py new file mode 100644 index 000000000000..2b08ce523a08 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_containers_operations.py @@ -0,0 +1,783 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + subscription_id: str, + *, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if list_view_type is not None: + _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, model_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, model_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, model_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryModelContainersOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_model_containers` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + skip: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> Iterable["_models.ModelContainer"]: + """List model containers. + + List model containers. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ModelContainer or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + skip=skip, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("ModelContainerResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, model_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, model_name: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete container. + + Delete container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, model_name: str, **kwargs: Any + ) -> _models.ModelContainer: + """Get container. + + Get container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. This is case-sensitive. Required. + :type model_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ModelContainer or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ModelContainer + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ModelContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: Union[_models.ModelContainer, IO], + **kwargs: Any + ) -> _models.ModelContainer: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ModelContainer") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ModelContainer", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ModelContainer", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: _models.ModelContainer, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ModelContainer]: + """Create or update model container. + + Create or update model container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param body: Container entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ModelContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ModelContainer]: + """Create or update model container. + + Create or update model container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param body: Container entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ModelContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + body: Union[_models.ModelContainer, IO], + **kwargs: Any + ) -> LROPoller[_models.ModelContainer]: + """Create or update model container. + + Create or update model container. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param body: Container entity to create or update. Is either a ModelContainer type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ModelContainer or the result of + cls(response) + :rtype: + ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ModelContainer] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ModelContainer", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py new file mode 100644 index 000000000000..2c3e9922f220 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registry_model_versions_operations.py @@ -0,0 +1,1064 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_request( + resource_group_name: str, + registry_name: str, + model_name: str, + subscription_id: str, + *, + skip: Optional[str] = None, + order_by: Optional[str] = None, + top: Optional[int] = None, + version: Optional[str] = None, + description: Optional[str] = None, + tags: Optional[str] = None, + properties: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + if order_by is not None: + _params["$orderBy"] = _SERIALIZER.query("order_by", order_by, "str") + if top is not None: + _params["$top"] = _SERIALIZER.query("top", top, "int") + if version is not None: + _params["version"] = _SERIALIZER.query("version", version, "str") + if description is not None: + _params["description"] = _SERIALIZER.query("description", description, "str") + if tags is not None: + _params["tags"] = _SERIALIZER.query("tags", tags, "str") + if properties is not None: + _params["properties"] = _SERIALIZER.query("properties", properties, "str") + if list_view_type is not None: + _params["listViewType"] = _SERIALIZER.query("list_view_type", list_view_type, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, model_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request( + resource_group_name: str, registry_name: str, model_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, model_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_get_start_pending_upload_request( # pylint: disable=name-too-long + resource_group_name: str, registry_name: str, model_name: str, version: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}/startPendingUpload", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{2,32}$" + ), + "modelName": _SERIALIZER.url("model_name", model_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), + "version": _SERIALIZER.url("version", version, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistryModelVersionsOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registry_model_versions` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + skip: Optional[str] = None, + order_by: Optional[str] = None, + top: Optional[int] = None, + version: Optional[str] = None, + description: Optional[str] = None, + tags: Optional[str] = None, + properties: Optional[str] = None, + list_view_type: Optional[Union[str, _models.ListViewType]] = None, + **kwargs: Any + ) -> Iterable["_models.ModelVersion"]: + """List versions. + + List versions. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. This is case-sensitive. Required. + :type model_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :param order_by: Ordering of list. Default value is None. + :type order_by: str + :param top: Maximum number of records to return. Default value is None. + :type top: int + :param version: Version identifier. Default value is None. + :type version: str + :param description: Model description. Default value is None. + :type description: str + :param tags: Comma-separated list of tag names (and optionally values). Example: + tag1,tag2=value2. Default value is None. + :type tags: str + :param properties: Comma-separated list of property names (and optionally values). Example: + prop1,prop2=value2. Default value is None. + :type properties: str + :param list_view_type: View type for including/excluding (for example) archived entities. Known + values are: "ActiveOnly", "ArchivedOnly", and "All". Default value is None. + :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either ModelVersion or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + subscription_id=self._config.subscription_id, + skip=skip, + order_by=order_by, + top=top, + version=version, + description=description, + tags=tags, + properties=properties, + list_view_type=list_view_type, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("ModelVersionResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, model_name: str, version: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @distributed_trace + def begin_delete( + self, resource_group_name: str, registry_name: str, model_name: str, version: str, **kwargs: Any + ) -> LROPoller[None]: + """Delete version. + + Delete version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @distributed_trace + def get( + self, resource_group_name: str, registry_name: str, model_name: str, version: str, **kwargs: Any + ) -> _models.ModelVersion: + """Get version. + + Get version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: ModelVersion or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.ModelVersion + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("ModelVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + def _create_or_update_initial( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: Union[_models.ModelVersion, IO], + **kwargs: Any + ) -> _models.ModelVersion: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "ModelVersion") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("ModelVersion", pipeline_response) + + if response.status_code == 201: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Azure-AsyncOperation"] = self._deserialize( + "str", response.headers.get("Azure-AsyncOperation") + ) + + deserialized = self._deserialize("ModelVersion", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: _models.ModelVersion, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ModelVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ModelVersion or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.ModelVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ModelVersion or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: Union[_models.ModelVersion, IO], + **kwargs: Any + ) -> LROPoller[_models.ModelVersion]: + """Create or update version. + + Create or update version. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Container name. Required. + :type model_name: str + :param version: Version identifier. Required. + :type version: str + :param body: Version entity to create or update. Is either a ModelVersion type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either ModelVersion or the result of + cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.ModelVersion] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("ModelVersion", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}" + } + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: _models.PendingUploadRequestDto, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a model asset to. + + Generate a storage location and credential for the client to upload a model asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Model name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a model asset to. + + Generate a storage location and credential for the client to upload a model asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Model name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def create_or_get_start_pending_upload( + self, + resource_group_name: str, + registry_name: str, + model_name: str, + version: str, + body: Union[_models.PendingUploadRequestDto, IO], + **kwargs: Any + ) -> _models.PendingUploadResponseDto: + """Generate a storage location and credential for the client to upload a model asset to. + + Generate a storage location and credential for the client to upload a model asset to. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of Azure Machine Learning registry. This is case-insensitive. + Required. + :type registry_name: str + :param model_name: Model name. This is case-sensitive. Required. + :type model_name: str + :param version: Version identifier. This is case-sensitive. Required. + :type version: str + :param body: Pending upload request object. Is either a PendingUploadRequestDto type or a IO + type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PendingUploadRequestDto or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: PendingUploadResponseDto or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.PendingUploadResponseDto + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.PendingUploadResponseDto] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PendingUploadRequestDto") + + request = build_create_or_get_start_pending_upload_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + model_name=model_name, + version=version, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self.create_or_get_start_pending_upload.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("PendingUploadResponseDto", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + create_or_get_start_pending_upload.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}/models/{modelName}/versions/{version}/startPendingUpload" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py index ccf22fb3aed1..42f8f32d4fc7 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -55,7 +50,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -68,7 +63,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -92,7 +89,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -105,7 +102,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -126,7 +125,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -139,7 +138,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str"), } @@ -160,7 +161,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -174,7 +175,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "name": _SERIALIZER.url("name", name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$"), } @@ -241,9 +244,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ScheduleResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -299,8 +300,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -331,9 +333,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -349,8 +349,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -403,9 +404,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, name: str, _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -428,7 +427,9 @@ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent- return cls(pipeline_response, None, {}) if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: @@ -475,9 +476,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) request = build_get_request( @@ -493,8 +492,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -529,9 +529,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) @@ -559,8 +557,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -688,7 +687,7 @@ def begin_create_or_update( :type workspace_name: str :param name: Schedule name. Required. :type name: str - :param body: Schedule definition. Is either a model type or a IO type. Required. + :param body: Schedule definition. Is either a Schedule type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Schedule or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -708,9 +707,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -738,7 +735,9 @@ def get_long_running_output(pipeline_response): return deserialized if polling is True: - polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "original-uri"}, **kwargs) + ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py index 87b60742ab08..3dc29c049f1d 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -45,7 +40,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -103,9 +98,7 @@ def list(self, location: str, **kwargs: Any) -> Iterable["_models.Usage"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListUsagesResult] = kwargs.pop("cls", None) error_map = { @@ -158,8 +151,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py index 4928f81dcedf..27bb7d3b448a 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Optional, TypeVar from azure.core.exceptions import ( @@ -28,10 +27,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -43,7 +38,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -108,9 +103,7 @@ def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSizeListRe _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.VirtualMachineSizeListResult] = kwargs.pop("cls", None) request = build_list_request( @@ -124,8 +117,9 @@ def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSizeListRe request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py index c85caf24b6e8..393540fb8e49 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, overload import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -47,7 +42,7 @@ def build_create_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -61,7 +56,9 @@ def build_create_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "connectionName": _SERIALIZER.url("connection_name", connection_name, "str"), } @@ -84,7 +81,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -97,7 +94,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "connectionName": _SERIALIZER.url("connection_name", connection_name, "str"), } @@ -118,7 +117,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -131,7 +130,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), "connectionName": _SERIALIZER.url("connection_name", connection_name, "str"), } @@ -158,7 +159,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -171,7 +172,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -290,7 +293,7 @@ def create( :param connection_name: Friendly name of the workspace connection. Required. :type connection_name: str :param parameters: The object for creating or updating a new workspace connection. Is either a - model type or a IO type. Required. + WorkspaceConnectionPropertiesV2BasicResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2BasicResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -312,9 +315,7 @@ def create( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResource] = kwargs.pop("cls", None) @@ -342,8 +343,9 @@ def create( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -393,9 +395,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResource] = kwargs.pop("cls", None) request = build_get_request( @@ -411,8 +411,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -462,9 +463,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -480,8 +479,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -528,9 +528,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult] = kwargs.pop("cls", None) error_map = { @@ -588,8 +586,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py index 00c72c0a8b82..a8b05127e633 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar import urllib.parse @@ -30,10 +29,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -47,7 +42,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -60,7 +55,9 @@ def build_list_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -110,9 +107,7 @@ def list(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListAmlUserFeatureResult] = kwargs.pop("cls", None) error_map = { @@ -166,8 +161,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py index 3d8220b5fefa..d85546a56fa8 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py @@ -6,7 +6,6 @@ # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -import sys from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse @@ -32,10 +31,6 @@ from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section -if sys.version_info >= (3, 8): - from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports -else: - from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] @@ -49,7 +44,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -62,7 +57,9 @@ def build_get_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -82,7 +79,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -96,7 +93,9 @@ def build_create_or_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -118,7 +117,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -131,7 +130,9 @@ def build_delete_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -151,7 +152,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -165,7 +166,9 @@ def build_update_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -187,7 +190,7 @@ def build_list_by_resource_group_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -221,7 +224,7 @@ def build_diagnose_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -235,7 +238,9 @@ def build_diagnose_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -257,7 +262,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -270,7 +275,9 @@ def build_list_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -290,7 +297,7 @@ def build_resync_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -303,7 +310,9 @@ def build_resync_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -323,7 +332,7 @@ def build_list_by_subscription_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -353,7 +362,7 @@ def build_list_notebook_access_token_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -366,7 +375,9 @@ def build_list_notebook_access_token_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -386,7 +397,7 @@ def build_prepare_notebook_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -399,7 +410,9 @@ def build_prepare_notebook_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -419,7 +432,7 @@ def build_list_storage_account_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -432,7 +445,9 @@ def build_list_storage_account_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -452,7 +467,7 @@ def build_list_notebook_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -465,7 +480,9 @@ def build_list_notebook_keys_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -479,13 +496,13 @@ def build_list_notebook_keys_request( return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) -def build_list_outbound_network_dependencies_endpoints_request( +def build_list_outbound_network_dependencies_endpoints_request( # pylint: disable=name-too-long resource_group_name: str, workspace_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -498,7 +515,9 @@ def build_list_outbound_network_dependencies_endpoints_request( "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), - "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, "str"), + "workspaceName": _SERIALIZER.url( + "workspace_name", workspace_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9_-]{2,32}$" + ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore @@ -556,9 +575,7 @@ def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> _ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) request = build_get_request( @@ -573,8 +590,9 @@ def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> _ request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -609,9 +627,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.Workspace]] = kwargs.pop("cls", None) @@ -638,8 +654,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -746,7 +763,7 @@ def begin_create_or_update( :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str :param parameters: The parameters for creating or updating a machine learning workspace. Is - either a model type or a IO type. Required. + either a Workspace type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.Workspace or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -766,9 +783,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -827,9 +842,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( @@ -844,8 +857,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -886,9 +900,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, **kwargs: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -946,9 +958,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.Workspace]] = kwargs.pop("cls", None) @@ -975,8 +985,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1084,8 +1095,8 @@ def begin_update( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameters for updating a machine learning workspace. Is either a model - type or a IO type. Required. + :param parameters: The parameters for updating a machine learning workspace. Is either a + WorkspaceUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1105,9 +1116,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1171,9 +1180,7 @@ def list_by_resource_group( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) error_map = { @@ -1227,8 +1234,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1263,9 +1271,7 @@ def _diagnose_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.DiagnoseResponseResult]] = kwargs.pop("cls", None) @@ -1295,8 +1301,9 @@ def _diagnose_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1419,8 +1426,8 @@ def begin_diagnose( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameter of diagnosing workspace health. Is either a model type or a IO - type. Default value is None. + :param parameters: The parameter of diagnosing workspace health. Is either a + DiagnoseWorkspaceParameters type or a IO type. Default value is None. :type parameters: ~azure.mgmt.machinelearningservices.models.DiagnoseWorkspaceParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1442,9 +1449,7 @@ def begin_diagnose( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DiagnoseResponseResult] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) @@ -1519,9 +1524,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListWorkspaceKeysResult] = kwargs.pop("cls", None) request = build_list_keys_request( @@ -1536,8 +1539,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1572,9 +1576,7 @@ def _resync_keys_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_resync_keys_request( @@ -1589,8 +1591,9 @@ def _resync_keys_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1632,9 +1635,7 @@ def begin_resync_keys(self, resource_group_name: str, workspace_name: str, **kwa _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1688,9 +1689,7 @@ def list_by_subscription(self, skip: Optional[str] = None, **kwargs: Any) -> Ite _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) error_map = { @@ -1743,8 +1742,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1788,9 +1788,7 @@ def list_notebook_access_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.NotebookAccessTokenResult] = kwargs.pop("cls", None) request = build_list_notebook_access_token_request( @@ -1805,8 +1803,9 @@ def list_notebook_access_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1841,9 +1840,7 @@ def _prepare_notebook_initial( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[Optional[_models.NotebookResourceInfo]] = kwargs.pop("cls", None) request = build_prepare_notebook_request( @@ -1858,8 +1855,9 @@ def _prepare_notebook_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1910,9 +1908,7 @@ def begin_prepare_notebook( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.NotebookResourceInfo] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) @@ -1983,9 +1979,7 @@ def list_storage_account_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListStorageAccountKeysResult] = kwargs.pop("cls", None) request = build_list_storage_account_keys_request( @@ -2000,8 +1994,9 @@ def list_storage_account_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -2049,9 +2044,7 @@ def list_notebook_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListNotebookKeysResult] = kwargs.pop("cls", None) request = build_list_notebook_keys_request( @@ -2066,8 +2059,9 @@ def list_notebook_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -2089,7 +2083,7 @@ def list_notebook_keys( } @distributed_trace - def list_outbound_network_dependencies_endpoints( + def list_outbound_network_dependencies_endpoints( # pylint: disable=name-too-long self, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> _models.ExternalFQDNResponse: """Called by Client (Portal, CLI, etc) to get a list of all external outbound dependencies (FQDNs) @@ -2119,9 +2113,7 @@ def list_outbound_network_dependencies_endpoints( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( - "api_version", _params.pop("api-version", self._config.api_version) - ) + api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ExternalFQDNResponse] = kwargs.pop("cls", None) request = build_list_outbound_network_dependencies_endpoints_request( @@ -2136,8 +2128,9 @@ def list_outbound_network_dependencies_endpoints( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py index 4154ad04114e..4692f63ff9d7 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/AKSCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/AKSCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py index 9b60010544b5..59ea7d05e296 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/AmlCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/AmlCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py index 7bf0144d06dc..c4f5100e5166 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py @@ -38,6 +38,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/BasicAKSCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicAKSCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py index d6cfcd909034..4e8789e3ef24 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py @@ -55,6 +55,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/BasicAmlCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicAmlCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py index c7256aaa7266..322dec99f0ea 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py @@ -38,6 +38,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/BasicDataFactoryCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicDataFactoryCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py index 14832bc92a6c..be40485be034 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Job/cancel.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/cancel.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py index 8be35ceb91e4..fe66677f7193 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/ComputeInstance.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/ComputeInstance.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py index f67029c8ca3c..575439d32563 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py @@ -41,6 +41,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/ComputeInstanceMinimal.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstanceMinimal.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py index c5ef7c03d6b9..4134df53117f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py @@ -69,6 +69,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/ComputeInstanceWithSchedules.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstanceWithSchedules.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py index 0d7e657dba30..cd04a676e0e1 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py @@ -76,6 +76,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/create.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/create.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_get_start_pending_upload.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_get_start_pending_upload.py new file mode 100644 index 000000000000..e3e974c61eb9 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_get_start_pending_upload.py @@ -0,0 +1,44 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python create_or_get_start_pending_upload.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registry_code_versions.create_or_get_start_pending_upload( + resource_group_name="test-rg", + registry_name="registryName", + code_name="string", + version="string", + body={"pendingUploadId": "string", "pendingUploadType": "TemporaryBlobReference"}, + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/CodeVersion/createOrGetStartPendingUpload.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py index d69a53bd684c..4f95d6a5bdef 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py @@ -40,6 +40,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/PrivateEndpointConnection/createOrUpdate.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateEndpointConnection/createOrUpdate.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_system_created.py new file mode 100644 index 000000000000..577787fee2b8 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_system_created.py @@ -0,0 +1,96 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python create_or_update_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_create_or_update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "None", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "location": "string", + "properties": { + "discoveryUrl": "string", + "intellectualPropertyPublisher": "string", + "managedResourceGroup": {"resourceId": "string"}, + "mlFlowRegistryUri": "string", + "publicNetworkAccess": "string", + "regionDetails": [ + { + "acrDetails": [ + { + "systemCreatedAcrAccount": { + "acrAccountName": "string", + "acrAccountSku": "string", + "armResourceId": {"resourceId": "string"}, + } + } + ], + "location": "string", + "storageAccountDetails": [ + { + "systemCreatedStorageAccount": { + "allowBlobPublicAccess": False, + "armResourceId": {"resourceId": "string"}, + "storageAccountHnsEnabled": False, + "storageAccountName": "string", + "storageAccountType": "string", + } + } + ], + } + ], + "registryPrivateEndpointConnections": [ + { + "id": "string", + "location": "string", + "properties": { + "groupIds": ["string"], + "privateEndpoint": {"subnetArmId": "string"}, + "provisioningState": "string", + "registryPrivateLinkServiceConnectionState": { + "actionsRequired": "string", + "description": "string", + "status": "Approved", + }, + }, + } + ], + }, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Free"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/createOrUpdate-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_user_created.py new file mode 100644 index 000000000000..4fb0f626522f --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_user_created.py @@ -0,0 +1,80 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python create_or_update_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_create_or_update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "None", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "location": "string", + "properties": { + "discoveryUrl": "string", + "intellectualPropertyPublisher": "string", + "managedResourceGroup": {"resourceId": "string"}, + "mlFlowRegistryUri": "string", + "publicNetworkAccess": "string", + "regionDetails": [ + { + "acrDetails": [{"userCreatedAcrAccount": {"armResourceId": {"resourceId": "string"}}}], + "location": "string", + "storageAccountDetails": [ + {"userCreatedStorageAccount": {"armResourceId": {"resourceId": "string"}}} + ], + } + ], + "registryPrivateEndpointConnections": [ + { + "id": "string", + "location": "string", + "properties": { + "groupIds": ["string"], + "privateEndpoint": {"subnetArmId": "string"}, + "provisioningState": "string", + "registryPrivateLinkServiceConnectionState": { + "actionsRequired": "string", + "description": "string", + "status": "Approved", + }, + }, + } + ], + }, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Free"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/createOrUpdate-UserCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py index 1ab7cceee3e0..6332bd1c2462 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/delete.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/delete.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py index e7d53be6b011..3077375cd454 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/diagnose.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/diagnose.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py index ae2325915702..4c2f399080e3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/get.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/get.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py index 08ca1c985e42..2bae655720a4 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py @@ -39,6 +39,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineDeployment/getLogs.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/getLogs.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_system_created.py new file mode 100644 index 000000000000..fd5b114248b7 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_system_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python get_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.get( + resource_group_name="test-rg", + registry_name="string", + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/get-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py index ce3165223bbc..f721177eb41c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineEndpoint/getToken.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/getToken.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_user_created.py new file mode 100644 index 000000000000..bd86983df7e3 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_user_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python get_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.get( + resource_group_name="test-rg", + registry_name="string", + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/get-UserCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py index 1c4abcb9c998..b09cac4f3f62 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/KubernetesCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/KubernetesCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py index 803939df104d..ccff07e2fa36 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py @@ -36,6 +36,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Usage/list.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Usage/list.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py index ab77ccf41bcb..48ad1779487f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py @@ -36,6 +36,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listByResourceGroup.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listByResourceGroup.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py index 021a94dc65b3..921bfb2b59f6 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py @@ -34,6 +34,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listBySubscription.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listBySubscription.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py index 4329788bf08c..9e0e183e60ef 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py index 08a92686eed7..66ee6a0f4bee 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py @@ -38,6 +38,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/listNodes.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/listNodes.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py index 2231f08361b1..d180f3ee30c2 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listNotebookAccessToken.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listNotebookAccessToken.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py index 6c9f9145642c..74fe51d50b35 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Datastore/listSecrets.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/listSecrets.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py index a1cd89f08c22..532af7db70b6 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py @@ -39,6 +39,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineDeployment/KubernetesOnlineDeployment/listSkus.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/KubernetesOnlineDeployment/listSkus.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py index 84b7f19567c0..dbc963513d84 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listStorageAccountKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listStorageAccountKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_system_created.py new file mode 100644 index 000000000000..d9ef5482f599 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_system_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python list_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.list( + resource_group_name="test-rg", + ) + for item in response: + print(item) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/list-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_user_created.py new file mode 100644 index 000000000000..193089df5170 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_user_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python list_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.list( + resource_group_name="test-rg", + ) + for item in response: + print(item) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/list-UserCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py index 1ed3dd9d1da4..91510c53d5b5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py @@ -34,6 +34,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/operationsList.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/operationsList.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py index 88d3d61b0099..344934f7929b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py @@ -44,6 +44,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/patch.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/patch.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py index c6038615acb6..009f750c227c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Notebook/prepare.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Notebook/prepare.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py index 7e4eb60a2634..d7898c413ab2 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py @@ -38,6 +38,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineEndpoint/regenerateKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/OnlineEndpoint/regenerateKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry_list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry_list.py new file mode 100644 index 000000000000..1b5917eb34e7 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/registry_list.py @@ -0,0 +1,42 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python registry_list.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registry_data_containers.list( + resource_group_name="test-rg", + registry_name="registryName", + ) + for item in response: + print(item) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registry/DataContainer/registryList.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/remove_regions.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/remove_regions.py new file mode 100644 index 000000000000..75dd8c55aac0 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/remove_regions.py @@ -0,0 +1,98 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python remove_regions.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_remove_regions( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "None", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "location": "string", + "properties": { + "discoveryUrl": "string", + "intellectualPropertyPublisher": "string", + "managedResourceGroup": {"resourceId": "string"}, + "mlFlowRegistryUri": "string", + "publicNetworkAccess": "string", + "regionDetails": [ + { + "acrDetails": [ + { + "systemCreatedAcrAccount": { + "acrAccountName": "string", + "acrAccountSku": "string", + "armResourceId": {"resourceId": "string"}, + }, + "userCreatedAcrAccount": {"armResourceId": {"resourceId": "string"}}, + } + ], + "location": "string", + "storageAccountDetails": [ + { + "systemCreatedStorageAccount": { + "allowBlobPublicAccess": False, + "armResourceId": {"resourceId": "string"}, + "storageAccountHnsEnabled": False, + "storageAccountName": "string", + "storageAccountType": "string", + }, + "userCreatedStorageAccount": {"armResourceId": {"resourceId": "string"}}, + } + ], + } + ], + "registryPrivateEndpointConnections": [ + { + "id": "string", + "location": "string", + "properties": { + "groupIds": ["string"], + "privateEndpoint": {"subnetArmId": "string"}, + "provisioningState": "string", + "registryPrivateLinkServiceConnectionState": { + "actionsRequired": "string", + "description": "string", + "status": "Approved", + }, + }, + } + ], + }, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Free"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/removeRegions.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py index df42109f655d..3a911b9a6697 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/restart.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/restart.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py index 02b711c19636..2e671e8eab13 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/resyncKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/resyncKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py index b2754e281b74..ba8fe5e94d0c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/start.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/start.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py index 4337f64aa158..0015e7d4156d 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/stop.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/stop.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py index 482c71b07c8c..f8b3fae5c4cc 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py @@ -43,6 +43,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/update.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/update.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_system_created.py new file mode 100644 index 000000000000..bda97b4ad6d5 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_system_created.py @@ -0,0 +1,46 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python update_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "SystemAssigned", "userAssignedIdentities": {"string": {}}}, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Basic"}, + "tags": {}, + }, + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/update-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_user_created.py new file mode 100644 index 000000000000..d8ecdb855c20 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_user_created.py @@ -0,0 +1,46 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python update_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "UserAssigned", "userAssignedIdentities": {"string": {}}}, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Basic"}, + "tags": {}, + }, + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/update-UserCreated.json +if __name__ == "__main__": + main()