diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json b/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json index 216b79b26570..79f60642c4c5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/_meta.json @@ -1,11 +1,11 @@ { - "commit": "b32e1896f30e6ea155449cb49719a6286e32b961", + "commit": "599a0ee791f6aebbd27879f04a07011f02380c81", "repository_url": "https://github.com/Azure/azure-rest-api-specs", "autorest": "3.9.2", "use": [ - "@autorest/python@6.2.7", + "@autorest/python@6.4.3", "@autorest/modelerfour@4.24.3" ], - "autorest_command": "autorest specification/machinelearningservices/resource-manager/readme.md --generate-sample=True --include-x-ms-examples-original-file=True --python --python-sdks-folder=/home/vsts/work/1/azure-sdk-for-python/sdk --use=@autorest/python@6.2.7 --use=@autorest/modelerfour@4.24.3 --version=3.9.2 --version-tolerant=False", + "autorest_command": "autorest specification/machinelearningservices/resource-manager/readme.md --generate-sample=True --include-x-ms-examples-original-file=True --python --python-sdks-folder=/mnt/vss/_work/1/s/azure-sdk-for-python/sdk --use=@autorest/python@6.4.3 --use=@autorest/modelerfour@4.24.3 --version=3.9.2 --version-tolerant=False", "readme": "specification/machinelearningservices/resource-manager/readme.md" } \ No newline at end of file diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py index 12c43638a412..714bb8882944 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_configuration.py @@ -35,14 +35,14 @@ class MachineLearningServicesMgmtClientConfiguration(Configuration): # pylint: :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str """ def __init__(self, credential: "TokenCredential", subscription_id: str, **kwargs: Any) -> None: super(MachineLearningServicesMgmtClientConfiguration, self).__init__(**kwargs) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", "2022-10-01") + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", "2023-04-01") if credential is None: raise ValueError("Parameter 'credential' must not be None.") diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py index feffb8cfc3ed..89db7c4a90ff 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_machine_learning_services_mgmt_client.py @@ -37,6 +37,7 @@ PrivateEndpointConnectionsOperations, PrivateLinkResourcesOperations, QuotasOperations, + RegistriesOperations, SchedulesOperations, UsagesOperations, VirtualMachineSizesOperations, @@ -120,6 +121,8 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v azure.mgmt.machinelearningservices.operations.OnlineDeploymentsOperations :ivar schedules: SchedulesOperations operations :vartype schedules: azure.mgmt.machinelearningservices.operations.SchedulesOperations + :ivar registries: RegistriesOperations operations + :vartype registries: azure.mgmt.machinelearningservices.operations.RegistriesOperations :ivar workspace_features: WorkspaceFeaturesOperations operations :vartype workspace_features: azure.mgmt.machinelearningservices.operations.WorkspaceFeaturesOperations @@ -129,7 +132,7 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword int polling_interval: Default waiting time between two polls for LRO operations if no @@ -146,7 +149,7 @@ def __init__( self._config = MachineLearningServicesMgmtClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) - self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) + self._client: ARMPipelineClient = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) @@ -202,6 +205,7 @@ def __init__( self._client, self._config, self._serialize, self._deserialize ) self.schedules = SchedulesOperations(self._client, self._config, self._serialize, self._deserialize) + self.registries = RegistriesOperations(self._client, self._config, self._serialize, self._deserialize) self.workspace_features = WorkspaceFeaturesOperations( self._client, self._config, self._serialize, self._deserialize ) @@ -235,5 +239,5 @@ def __enter__(self) -> "MachineLearningServicesMgmtClient": self._client.__enter__() return self - def __exit__(self, *exc_details) -> None: + def __exit__(self, *exc_details: Any) -> None: self._client.__exit__(*exc_details) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py index 2c170e28dbca..f17c068e833e 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_serialization.py @@ -38,7 +38,22 @@ import re import sys import codecs -from typing import Optional, Union, AnyStr, IO, Mapping +from typing import ( + Dict, + Any, + cast, + Optional, + Union, + AnyStr, + IO, + Mapping, + Callable, + TypeVar, + MutableMapping, + Type, + List, + Mapping, +) try: from urllib import quote # type: ignore @@ -48,12 +63,14 @@ import isodate # type: ignore -from typing import Dict, Any, cast - from azure.core.exceptions import DeserializationError, SerializationError, raise_with_traceback +from azure.core.serialization import NULL as AzureCoreNull _BOM = codecs.BOM_UTF8.decode(encoding="utf-8") +ModelType = TypeVar("ModelType", bound="Model") +JSON = MutableMapping[str, Any] + class RawDeserializer: @@ -277,8 +294,8 @@ class Model(object): _attribute_map: Dict[str, Dict[str, Any]] = {} _validation: Dict[str, Dict[str, Any]] = {} - def __init__(self, **kwargs): - self.additional_properties = {} + def __init__(self, **kwargs: Any) -> None: + self.additional_properties: Dict[str, Any] = {} for k in kwargs: if k not in self._attribute_map: _LOGGER.warning("%s is not a known attribute of class %s and will be ignored", k, self.__class__) @@ -287,25 +304,25 @@ def __init__(self, **kwargs): else: setattr(self, k, kwargs[k]) - def __eq__(self, other): + def __eq__(self, other: Any) -> bool: """Compare objects by comparing all attributes.""" if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ return False - def __ne__(self, other): + def __ne__(self, other: Any) -> bool: """Compare objects by comparing all attributes.""" return not self.__eq__(other) - def __str__(self): + def __str__(self) -> str: return str(self.__dict__) @classmethod - def enable_additional_properties_sending(cls): + def enable_additional_properties_sending(cls) -> None: cls._attribute_map["additional_properties"] = {"key": "", "type": "{object}"} @classmethod - def is_xml_model(cls): + def is_xml_model(cls) -> bool: try: cls._xml_map # type: ignore except AttributeError: @@ -322,7 +339,7 @@ def _create_xml_node(cls): return _create_xml_node(xml_map.get("name", cls.__name__), xml_map.get("prefix", None), xml_map.get("ns", None)) - def serialize(self, keep_readonly=False, **kwargs): + def serialize(self, keep_readonly: bool = False, **kwargs: Any) -> JSON: """Return the JSON that would be sent to azure from this model. This is an alias to `as_dict(full_restapi_key_transformer, keep_readonly=False)`. @@ -336,8 +353,13 @@ def serialize(self, keep_readonly=False, **kwargs): serializer = Serializer(self._infer_class_models()) return serializer._serialize(self, keep_readonly=keep_readonly, **kwargs) - def as_dict(self, keep_readonly=True, key_transformer=attribute_transformer, **kwargs): - """Return a dict that can be JSONify using json.dump. + def as_dict( + self, + keep_readonly: bool = True, + key_transformer: Callable[[str, Dict[str, Any], Any], Any] = attribute_transformer, + **kwargs: Any + ) -> JSON: + """Return a dict that can be serialized using json.dump. Advanced usage might optionally use a callback as parameter: @@ -384,7 +406,7 @@ def _infer_class_models(cls): return client_models @classmethod - def deserialize(cls, data, content_type=None): + def deserialize(cls: Type[ModelType], data: Any, content_type: Optional[str] = None) -> ModelType: """Parse a str using the RestAPI syntax and return a model. :param str data: A str using RestAPI structure. JSON by default. @@ -396,7 +418,12 @@ def deserialize(cls, data, content_type=None): return deserializer(cls.__name__, data, content_type=content_type) @classmethod - def from_dict(cls, data, key_extractors=None, content_type=None): + def from_dict( + cls: Type[ModelType], + data: Any, + key_extractors: Optional[Callable[[str, Dict[str, Any], Any], Any]] = None, + content_type: Optional[str] = None, + ) -> ModelType: """Parse a dict using given key extractor return a model. By default consider key @@ -409,8 +436,8 @@ def from_dict(cls, data, key_extractors=None, content_type=None): :raises: DeserializationError if something went wrong """ deserializer = Deserializer(cls._infer_class_models()) - deserializer.key_extractors = ( - [ + deserializer.key_extractors = ( # type: ignore + [ # type: ignore attribute_key_case_insensitive_extractor, rest_key_case_insensitive_extractor, last_rest_key_case_insensitive_extractor, @@ -518,7 +545,7 @@ class Serializer(object): "multiple": lambda x, y: x % y != 0, } - def __init__(self, classes=None): + def __init__(self, classes: Optional[Mapping[str, Type[ModelType]]] = None): self.serialize_type = { "iso-8601": Serializer.serialize_iso, "rfc-1123": Serializer.serialize_rfc, @@ -534,7 +561,7 @@ def __init__(self, classes=None): "[]": self.serialize_iter, "{}": self.serialize_dict, } - self.dependencies = dict(classes) if classes else {} + self.dependencies: Dict[str, Type[ModelType]] = dict(classes) if classes else {} self.key_transformer = full_restapi_key_transformer self.client_side_validation = True @@ -626,8 +653,7 @@ def _serialize(self, target_obj, data_type=None, **kwargs): serialized.append(local_node) # type: ignore else: # JSON for k in reversed(keys): # type: ignore - unflattened = {k: new_attr} - new_attr = unflattened + new_attr = {k: new_attr} _new_attr = new_attr _serialized = serialized @@ -656,8 +682,8 @@ def body(self, data, data_type, **kwargs): """ # Just in case this is a dict - internal_data_type = data_type.strip("[]{}") - internal_data_type = self.dependencies.get(internal_data_type, None) + internal_data_type_str = data_type.strip("[]{}") + internal_data_type = self.dependencies.get(internal_data_type_str, None) try: is_xml_model_serialization = kwargs["is_xml"] except KeyError: @@ -777,6 +803,8 @@ def serialize_data(self, data, data_type, **kwargs): raise ValueError("No value for given attribute") try: + if data is AzureCoreNull: + return None if data_type in self.basic_types.values(): return self.serialize_basic(data, data_type, **kwargs) @@ -1161,7 +1189,8 @@ def rest_key_extractor(attr, attr_desc, data): working_data = data while "." in key: - dict_keys = _FLATTEN.split(key) + # Need the cast, as for some reasons "split" is typed as list[str | Any] + dict_keys = cast(List[str], _FLATTEN.split(key)) if len(dict_keys) == 1: key = _decode_attribute_map_key(dict_keys[0]) break @@ -1332,7 +1361,7 @@ class Deserializer(object): valid_date = re.compile(r"\d{4}[-]\d{2}[-]\d{2}T\d{2}:\d{2}:\d{2}" r"\.?\d*Z?[-+]?[\d{2}]?:?[\d{2}]?") - def __init__(self, classes=None): + def __init__(self, classes: Optional[Mapping[str, Type[ModelType]]] = None): self.deserialize_type = { "iso-8601": Deserializer.deserialize_iso, "rfc-1123": Deserializer.deserialize_rfc, @@ -1352,7 +1381,7 @@ def __init__(self, classes=None): "duration": (isodate.Duration, datetime.timedelta), "iso-8601": (datetime.datetime), } - self.dependencies = dict(classes) if classes else {} + self.dependencies: Dict[str, Type[ModelType]] = dict(classes) if classes else {} self.key_extractors = [rest_key_extractor, xml_key_extractor] # Additional properties only works if the "rest_key_extractor" is used to # extract the keys. Making it to work whatever the key extractor is too much @@ -1471,7 +1500,7 @@ def _classify_target(self, target, data): Once classification has been determined, initialize object. :param str target: The target object type to deserialize to. - :param str/dict data: The response data to deseralize. + :param str/dict data: The response data to deserialize. """ if target is None: return None, None @@ -1486,7 +1515,7 @@ def _classify_target(self, target, data): target = target._classify(data, self.dependencies) except AttributeError: pass # Target is not a Model, no classify - return target, target.__class__.__name__ + return target, target.__class__.__name__ # type: ignore def failsafe_deserialize(self, target_obj, data, content_type=None): """Ignores any errors encountered in deserialization, @@ -1496,7 +1525,7 @@ def failsafe_deserialize(self, target_obj, data, content_type=None): a deserialization error. :param str target_obj: The target object type to deserialize to. - :param str/dict data: The response data to deseralize. + :param str/dict data: The response data to deserialize. :param str content_type: Swagger "produces" if available. """ try: diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py index 9aad73fc743e..bd0df84f5319 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_vendor.py @@ -5,6 +5,8 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- +from typing import List, cast + from azure.core.pipeline.transport import HttpRequest @@ -22,6 +24,7 @@ def _format_url_section(template, **kwargs): try: return template.format(**kwargs) except KeyError as key: - formatted_components = template.split("/") + # Need the cast, as for some reasons "split" is typed as list[str | Any] + formatted_components = cast(List[str], template.split("/")) components = [c for c in formatted_components if "{}".format(key.args[0]) not in c] template = "/".join(components) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py index e32dc6ec4218..e5754a47ce68 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/_version.py @@ -6,4 +6,4 @@ # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- -VERSION = "2.0.0b1" +VERSION = "1.0.0b1" diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py index 88eada53ff68..51ad2016f27c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_configuration.py @@ -35,14 +35,14 @@ class MachineLearningServicesMgmtClientConfiguration(Configuration): # pylint: :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str """ def __init__(self, credential: "AsyncTokenCredential", subscription_id: str, **kwargs: Any) -> None: super(MachineLearningServicesMgmtClientConfiguration, self).__init__(**kwargs) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", "2022-10-01") + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", "2023-04-01") if credential is None: raise ValueError("Parameter 'credential' must not be None.") diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py index 4c1c840cfff5..75515d93edcd 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/_machine_learning_services_mgmt_client.py @@ -37,6 +37,7 @@ PrivateEndpointConnectionsOperations, PrivateLinkResourcesOperations, QuotasOperations, + RegistriesOperations, SchedulesOperations, UsagesOperations, VirtualMachineSizesOperations, @@ -123,6 +124,8 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v azure.mgmt.machinelearningservices.aio.operations.OnlineDeploymentsOperations :ivar schedules: SchedulesOperations operations :vartype schedules: azure.mgmt.machinelearningservices.aio.operations.SchedulesOperations + :ivar registries: RegistriesOperations operations + :vartype registries: azure.mgmt.machinelearningservices.aio.operations.RegistriesOperations :ivar workspace_features: WorkspaceFeaturesOperations operations :vartype workspace_features: azure.mgmt.machinelearningservices.aio.operations.WorkspaceFeaturesOperations @@ -132,7 +135,7 @@ class MachineLearningServicesMgmtClient: # pylint: disable=client-accepts-api-v :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str - :keyword api_version: Api Version. Default value is "2022-10-01". Note that overriding this + :keyword api_version: Api Version. Default value is "2023-04-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword int polling_interval: Default waiting time between two polls for LRO operations if no @@ -149,7 +152,7 @@ def __init__( self._config = MachineLearningServicesMgmtClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) - self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) + self._client: AsyncARMPipelineClient = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) @@ -205,6 +208,7 @@ def __init__( self._client, self._config, self._serialize, self._deserialize ) self.schedules = SchedulesOperations(self._client, self._config, self._serialize, self._deserialize) + self.registries = RegistriesOperations(self._client, self._config, self._serialize, self._deserialize) self.workspace_features = WorkspaceFeaturesOperations( self._client, self._config, self._serialize, self._deserialize ) @@ -238,5 +242,5 @@ async def __aenter__(self) -> "MachineLearningServicesMgmtClient": await self._client.__aenter__() return self - async def __aexit__(self, *exc_details) -> None: + async def __aexit__(self, *exc_details: Any) -> None: await self._client.__aexit__(*exc_details) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py index 0065485916d9..3a8e74c05cba 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/__init__.py @@ -32,6 +32,7 @@ from ._online_endpoints_operations import OnlineEndpointsOperations from ._online_deployments_operations import OnlineDeploymentsOperations from ._schedules_operations import SchedulesOperations +from ._registries_operations import RegistriesOperations from ._workspace_features_operations import WorkspaceFeaturesOperations from ._patch import __all__ as _patch_all @@ -65,6 +66,7 @@ "OnlineEndpointsOperations", "OnlineDeploymentsOperations", "SchedulesOperations", + "RegistriesOperations", "WorkspaceFeaturesOperations", ] __all__.extend([p for p in _patch_all if p not in __all__]) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py index 37950b084904..b2c5c6241114 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_deployments_operations.py @@ -103,7 +103,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -163,8 +163,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -195,7 +196,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -214,8 +215,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -272,7 +274,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -349,7 +351,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) @@ -368,8 +370,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -410,7 +413,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -441,8 +444,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -587,8 +591,8 @@ async def begin_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a + PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties or IO @@ -612,7 +616,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -681,7 +685,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -712,8 +716,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -859,8 +864,8 @@ async def begin_create_or_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a BatchDeployment type or + a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -882,7 +887,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py index 848fe6dc7e27..218202358cd5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_batch_endpoints_operations.py @@ -98,7 +98,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -156,8 +156,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -188,7 +189,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -206,8 +207,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -262,7 +264,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -336,7 +338,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) @@ -354,8 +356,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -395,7 +398,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -425,8 +428,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -562,8 +566,8 @@ async def begin_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Mutable batch inference endpoint definition object. Is either a model type or a IO - type. Required. + :param body: Mutable batch inference endpoint definition object. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -586,7 +590,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -653,7 +657,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -683,8 +687,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -821,8 +826,8 @@ async def begin_create_or_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Batch inference endpoint definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference endpoint definition object. Is either a BatchEndpoint type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -844,7 +849,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -923,7 +928,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) @@ -941,8 +946,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py index c69213fa842c..5bdc6d6ba49f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_containers_operations.py @@ -87,7 +87,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -144,8 +144,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -193,7 +194,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -211,8 +212,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -260,7 +262,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) @@ -278,8 +280,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -386,7 +389,7 @@ async def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a CodeContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -408,7 +411,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -438,8 +441,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py index 473dec5348b9..f11ffc01acf5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_code_versions_operations.py @@ -100,7 +100,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -160,8 +160,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -211,7 +212,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -230,8 +231,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -281,7 +283,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) @@ -300,8 +302,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -417,7 +420,8 @@ async def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a CodeVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -438,7 +442,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -469,8 +473,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py index 59f121afb4b1..ea694337a70e 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_containers_operations.py @@ -95,7 +95,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -153,8 +153,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -202,7 +203,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -220,8 +221,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -269,7 +271,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) @@ -287,8 +289,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -395,8 +398,8 @@ async def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ComponentContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -417,7 +420,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -447,8 +450,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py index f217f6650def..8c9c328af4d9 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_component_versions_operations.py @@ -104,7 +104,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -165,8 +165,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -216,7 +217,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -235,8 +236,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -286,7 +288,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) @@ -305,8 +307,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,7 +425,8 @@ async def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ComponentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -443,7 +447,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -474,8 +478,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py index 382828847481..54f37028d9e7 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_compute_operations.py @@ -93,7 +93,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PaginatedComputeResourcesList] = kwargs.pop("cls", None) @@ -150,8 +150,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -198,7 +199,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) @@ -216,8 +217,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -257,7 +259,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -287,8 +289,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,8 +425,8 @@ async def begin_create_or_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Payload with Machine Learning compute definition. Is either a model type or - a IO type. Required. + :param parameters: Payload with Machine Learning compute definition. Is either a + ComputeResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ComputeResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -445,7 +448,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -512,7 +515,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -542,8 +545,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -665,8 +669,8 @@ async def begin_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Additional parameters for cluster update. Is either a model type or a IO - type. Required. + :param parameters: Additional parameters for cluster update. Is either a + ClusterUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ClusterUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -688,7 +692,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -755,7 +759,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -774,8 +778,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -837,7 +842,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -904,7 +909,7 @@ def list_nodes( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.AmlComputeNodesInformation] = kwargs.pop("cls", None) @@ -961,8 +966,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1008,7 +1014,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComputeSecrets] = kwargs.pop("cls", None) @@ -1026,8 +1032,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1062,7 +1069,7 @@ async def _start_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1080,8 +1087,9 @@ async def _start_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1126,7 +1134,7 @@ async def begin_start( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1183,7 +1191,7 @@ async def _stop_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1201,8 +1209,9 @@ async def _stop_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1247,7 +1256,7 @@ async def begin_stop( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1304,7 +1313,7 @@ async def _restart_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1322,8 +1331,9 @@ async def _restart_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1368,7 +1378,7 @@ async def begin_restart( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py index 4c5aca387b8f..4d34c50f4a16 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_containers_operations.py @@ -95,7 +95,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -153,8 +153,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -202,7 +203,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -220,8 +221,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -269,7 +271,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) @@ -287,8 +289,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -395,7 +398,7 @@ async def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a DataContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DataContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -417,7 +420,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -447,8 +450,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py index a9f90dd943ed..7c7b2da5aa56 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_data_versions_operations.py @@ -112,7 +112,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataVersionBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -174,8 +174,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -225,7 +226,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -244,8 +245,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -295,7 +297,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) @@ -314,8 +316,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -431,7 +434,8 @@ async def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a DataVersionBase type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -452,7 +456,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -483,8 +487,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py index 293c073184e6..4d430b8f1a25 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_datastores_operations.py @@ -110,7 +110,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DatastoreResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -173,8 +173,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -222,7 +223,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -240,8 +241,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -287,7 +289,7 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.Datastore] = kwargs.pop("cls", None) @@ -305,8 +307,9 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -420,7 +423,7 @@ async def create_or_update( :type workspace_name: str :param name: Datastore name. Required. :type name: str - :param body: Datastore entity to create or update. Is either a model type or a IO type. + :param body: Datastore entity to create or update. Is either a Datastore type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Datastore or IO :param skip_validation: Flag to skip validation. Default value is False. @@ -444,7 +447,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -475,8 +478,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -532,7 +536,7 @@ async def list_secrets( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DatastoreSecrets] = kwargs.pop("cls", None) @@ -550,8 +554,9 @@ async def list_secrets( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py index 0115c7250a43..6da1c392aaa3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_containers_operations.py @@ -96,7 +96,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -154,8 +154,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -203,7 +204,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -221,8 +222,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -270,7 +272,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) @@ -288,8 +290,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -396,8 +399,8 @@ async def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a EnvironmentContainer type or a + IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -418,7 +421,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -448,8 +451,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py index 8b4432552f55..4968c67b1ff5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_environment_versions_operations.py @@ -104,7 +104,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -165,8 +165,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -216,7 +217,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -235,8 +236,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -286,7 +288,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) @@ -305,8 +307,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,7 +425,8 @@ async def create_or_update( :type name: str :param version: Version of EnvironmentVersion. Required. :type version: str - :param body: Definition of EnvironmentVersion. Is either a model type or a IO type. Required. + :param body: Definition of EnvironmentVersion. Is either a EnvironmentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -443,7 +447,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -474,8 +478,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py index e8e3110d7004..a37ed1f4c444 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_jobs_operations.py @@ -104,7 +104,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.JobBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -164,8 +164,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -196,7 +197,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -214,8 +215,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -270,7 +272,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -342,7 +344,7 @@ async def get(self, resource_group_name: str, workspace_name: str, id: str, **kw _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.JobBase] = kwargs.pop("cls", None) @@ -360,8 +362,9 @@ async def get(self, resource_group_name: str, workspace_name: str, id: str, **kw request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -463,7 +466,7 @@ async def create_or_update( :type workspace_name: str :param id: The name and identifier for the Job. This is case-sensitive. Required. :type id: str - :param body: Job definition object. Is either a model type or a IO type. Required. + :param body: Job definition object. Is either a JobBase type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.JobBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -484,7 +487,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -514,8 +517,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -554,7 +558,7 @@ async def _cancel_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -572,8 +576,9 @@ async def _cancel_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -625,7 +630,7 @@ async def begin_cancel( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py index 0f18875a197a..2f685504f69c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_containers_operations.py @@ -98,7 +98,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -157,8 +157,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -206,7 +207,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -224,8 +225,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -273,7 +275,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) @@ -291,8 +293,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -399,8 +402,8 @@ async def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ModelContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -421,7 +424,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -451,8 +454,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py index 68a4fd3be570..2d8a8d63088b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_model_versions_operations.py @@ -124,7 +124,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -191,8 +191,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -242,7 +243,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -261,8 +262,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -312,7 +314,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) @@ -331,8 +333,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -448,7 +451,8 @@ async def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ModelVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -469,7 +473,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -500,8 +504,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py index f78323104bda..2e94e4b5f1e3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_deployments_operations.py @@ -105,7 +105,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -165,8 +165,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -197,7 +198,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -216,8 +217,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -274,7 +276,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -351,7 +353,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) @@ -370,8 +372,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -412,7 +415,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -443,8 +446,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -588,8 +592,8 @@ async def begin_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithSku type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithSku or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -612,7 +616,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -681,7 +685,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -712,8 +716,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -859,8 +864,8 @@ async def begin_create_or_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Inference Endpoint entity to apply during operation. Is either a model type or a - IO type. Required. + :param body: Inference Endpoint entity to apply during operation. Is either a OnlineDeployment + type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -882,7 +887,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1026,8 +1031,8 @@ async def get_logs( :type endpoint_name: str :param deployment_name: The name and identifier for the endpoint. Required. :type deployment_name: str - :param body: The request containing parameters for retrieving logs. Is either a model type or a - IO type. Required. + :param body: The request containing parameters for retrieving logs. Is either a + DeploymentLogsRequest type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DeploymentLogsRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1048,7 +1053,7 @@ async def get_logs( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1079,8 +1084,9 @@ async def get_logs( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1138,7 +1144,7 @@ def list_skus( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.SkuResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -1198,8 +1204,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py index bb9f50e9e7b8..d54f7bf96e02 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_online_endpoints_operations.py @@ -121,7 +121,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -184,8 +184,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -216,7 +217,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -234,8 +235,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -290,7 +292,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -364,7 +366,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) @@ -382,8 +384,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -423,7 +426,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -453,8 +456,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -590,8 +594,8 @@ async def begin_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -614,7 +618,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -681,7 +685,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -711,8 +715,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -849,8 +854,8 @@ async def begin_create_or_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a OnlineEndpoint type + or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -872,7 +877,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -951,7 +956,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) @@ -969,8 +974,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1010,7 +1016,7 @@ async def _regenerate_keys_initial( # pylint: disable=inconsistent-return-state _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1040,8 +1046,9 @@ async def _regenerate_keys_initial( # pylint: disable=inconsistent-return-state request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1163,7 +1170,8 @@ async def begin_regenerate_keys( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: RegenerateKeys request . Is either a model type or a IO type. Required. + :param body: RegenerateKeys request . Is either a RegenerateEndpointKeysRequest type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.RegenerateEndpointKeysRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1183,7 +1191,7 @@ async def begin_regenerate_keys( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1262,7 +1270,7 @@ async def get_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EndpointAuthToken] = kwargs.pop("cls", None) @@ -1280,8 +1288,9 @@ async def get_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py index ab8aec812cd0..7ca4d00fc24b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_operations.py @@ -70,7 +70,7 @@ def list(self, **kwargs: Any) -> AsyncIterable["_models.AmlOperation"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.AmlOperationListResult] = kwargs.pop("cls", None) @@ -123,8 +123,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py index ca1d84b13c3e..f2f00cfe5117 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_endpoint_connections_operations.py @@ -84,7 +84,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PrivateEndpointConnectionListResult] = kwargs.pop("cls", None) @@ -140,8 +140,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -188,7 +189,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) @@ -206,8 +207,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -311,8 +313,8 @@ async def create_or_update( :param private_endpoint_connection_name: The name of the private endpoint connection associated with the workspace. Required. :type private_endpoint_connection_name: str - :param properties: The private endpoint connection properties. Is either a model type or a IO - type. Required. + :param properties: The private endpoint connection properties. Is either a + PrivateEndpointConnection type or a IO type. Required. :type properties: ~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -333,7 +335,7 @@ async def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -363,8 +365,9 @@ async def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -415,7 +418,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -433,8 +436,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py index 8c30d300602a..fcdf8eeb0683 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_private_link_resources_operations.py @@ -82,7 +82,7 @@ async def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PrivateLinkResourceListResult] = kwargs.pop("cls", None) @@ -99,8 +99,9 @@ async def list( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py index b101e920473f..5a9bea85b26b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_quotas_operations.py @@ -109,7 +109,8 @@ async def update( :param location: The location for update quota is queried. Required. :type location: str - :param parameters: Quota update parameters. Is either a model type or a IO type. Required. + :param parameters: Quota update parameters. Is either a QuotaUpdateParameters type or a IO + type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.QuotaUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -130,7 +131,7 @@ async def update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -158,8 +159,9 @@ async def update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -195,7 +197,7 @@ def list(self, location: str, **kwargs: Any) -> AsyncIterable["_models.ResourceQ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListWorkspaceQuotas] = kwargs.pop("cls", None) @@ -250,8 +252,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registries_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registries_operations.py new file mode 100644 index 000000000000..0a27aa7176ad --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_registries_operations.py @@ -0,0 +1,926 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import sys +from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.async_paging import AsyncItemPaged, AsyncList +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import AsyncHttpResponse +from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.tracing.decorator_async import distributed_trace_async +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling + +from ... import models as _models +from ..._vendor import _convert_request +from ...operations._registries_operations import ( + build_create_or_update_request, + build_delete_request, + build_get_request, + build_list_by_subscription_request, + build_list_request, + build_update_request, +) + +if sys.version_info >= (3, 8): + from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports +else: + from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] + + +class RegistriesOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.aio.MachineLearningServicesMgmtClient`'s + :attr:`registries` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs) -> None: + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list_by_subscription(self, skip: Optional[str] = None, **kwargs: Any) -> AsyncIterable["_models.Registry"]: + """List registries by subscription. + + List registries by subscription. + + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_by_subscription_request( + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list_by_subscription.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list_by_subscription.metadata = { + "url": "/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearningServices/registries" + } + + @distributed_trace + def list( + self, resource_group_name: str, skip: Optional[str] = None, **kwargs: Any + ) -> AsyncIterable["_models.Registry"]: + """List registries. + + List registries. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: + ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + async def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, AsyncList(list_of_elem) + + async def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return AsyncItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries" + } + + async def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace_async + async def begin_delete(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> AsyncLROPoller[None]: + """Delete registry. + + Delete registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace_async + async def get(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> _models.Registry: + """Get registry. + + Get registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + async def _update_initial( + self, + resource_group_name: str, + registry_name: str, + body: Union[_models.PartialRegistryPartialTrackedResource, IO], + **kwargs: Any + ) -> _models.Registry: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PartialRegistryPartialTrackedResource") + + request = build_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 202: + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + async def begin_update( + self, + resource_group_name: str, + registry_name: str, + body: _models.PartialRegistryPartialTrackedResource, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_update( + self, + resource_group_name: str, + registry_name: str, + body: Union[_models.PartialRegistryPartialTrackedResource, IO], + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a + PartialRegistryPartialTrackedResource type or a IO type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource or + IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, AsyncARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + async def _create_or_update_initial( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> Optional[_models.Registry]: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[Optional[_models.Registry]] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "Registry") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201, 202]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = None + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 201: + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: _models.Registry, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + async def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace_async + async def begin_create_or_update( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> AsyncLROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a Registry type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for + this operation to not poll, or pass in your own initialized polling object for a personal + polling strategy. + :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of AsyncLROPoller that returns either Registry or the result of + cls(response) + :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = await self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: AsyncPollingMethod = cast( + AsyncPollingMethod, + AsyncARMPolling(lro_delay, lro_options={"final-state-via": "azure-async-operation"}, **kwargs), + ) + elif polling is False: + polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) + else: + polling_method = polling + if cont_token: + return AsyncLROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py index 7e2d8fa6ae15..c4cb4777159c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_schedules_operations.py @@ -97,7 +97,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ScheduleResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -155,8 +155,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -187,7 +188,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -205,8 +206,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -261,7 +263,7 @@ async def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -333,7 +335,7 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) @@ -351,8 +353,9 @@ async def get(self, resource_group_name: str, workspace_name: str, name: str, ** request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -387,7 +390,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -417,8 +420,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -548,7 +552,7 @@ async def begin_create_or_update( :type workspace_name: str :param name: Schedule name. Required. :type name: str - :param body: Schedule definition. Is either a model type or a IO type. Required. + :param body: Schedule definition. Is either a Schedule type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Schedule or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -569,7 +573,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py index f7db5ff755cf..04528ced57a8 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_usages_operations.py @@ -73,7 +73,7 @@ def list(self, location: str, **kwargs: Any) -> AsyncIterable["_models.Usage"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListUsagesResult] = kwargs.pop("cls", None) @@ -128,8 +128,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py index e11949599426..2eb8d1ed3744 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_virtual_machine_sizes_operations.py @@ -77,7 +77,7 @@ async def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSize _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.VirtualMachineSizeListResult] = kwargs.pop("cls", None) @@ -93,8 +93,9 @@ async def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSize request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py index d849184954e4..d153e4a9399a 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_connections_operations.py @@ -145,7 +145,7 @@ async def create( :param connection_name: Friendly name of the workspace connection. Required. :type connection_name: str :param parameters: The object for creating or updating a new workspace connection. Is either a - model type or a IO type. Required. + WorkspaceConnectionPropertiesV2BasicResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2BasicResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -167,7 +167,7 @@ async def create( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -197,8 +197,9 @@ async def create( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -248,7 +249,7 @@ async def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResource] = kwargs.pop("cls", None) @@ -266,8 +267,9 @@ async def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -317,7 +319,7 @@ async def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -335,8 +337,9 @@ async def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -383,7 +386,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -443,8 +446,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py index a968302c5446..e7f1c51a1545 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspace_features_operations.py @@ -77,7 +77,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListAmlUserFeatureResult] = kwargs.pop("cls", None) @@ -133,8 +133,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py index 5c6cf54fea4d..23b45b601607 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/aio/operations/_workspaces_operations.py @@ -100,7 +100,7 @@ async def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) @@ -117,8 +117,9 @@ async def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -153,7 +154,7 @@ async def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -182,8 +183,9 @@ async def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -294,7 +296,7 @@ async def begin_create_or_update( :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str :param parameters: The parameters for creating or updating a machine learning workspace. Is - either a model type or a IO type. Required. + either a Workspace type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.Workspace or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -316,7 +318,7 @@ async def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -377,7 +379,7 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -394,8 +396,9 @@ async def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -436,7 +439,7 @@ async def begin_delete(self, resource_group_name: str, workspace_name: str, **kw _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -496,7 +499,7 @@ async def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -525,8 +528,9 @@ async def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -638,8 +642,8 @@ async def begin_update( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameters for updating a machine learning workspace. Is either a model - type or a IO type. Required. + :param parameters: The parameters for updating a machine learning workspace. Is either a + WorkspaceUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -661,7 +665,7 @@ async def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -728,7 +732,7 @@ def list_by_resource_group( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) @@ -784,8 +788,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -820,7 +825,7 @@ async def _diagnose_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -852,8 +857,9 @@ async def _diagnose_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -976,8 +982,8 @@ async def begin_diagnose( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameter of diagnosing workspace health. Is either a model type or a IO - type. Default value is None. + :param parameters: The parameter of diagnosing workspace health. Is either a + DiagnoseWorkspaceParameters type or a IO type. Default value is None. :type parameters: ~azure.mgmt.machinelearningservices.models.DiagnoseWorkspaceParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -999,7 +1005,7 @@ async def begin_diagnose( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1076,7 +1082,7 @@ async def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListWorkspaceKeysResult] = kwargs.pop("cls", None) @@ -1093,8 +1099,9 @@ async def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1129,7 +1136,7 @@ async def _resync_keys_initial( # pylint: disable=inconsistent-return-statement _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1146,8 +1153,9 @@ async def _resync_keys_initial( # pylint: disable=inconsistent-return-statement request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1191,7 +1199,7 @@ async def begin_resync_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1248,7 +1256,7 @@ def list_by_subscription(self, skip: Optional[str] = None, **kwargs: Any) -> Asy _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) @@ -1303,8 +1311,9 @@ async def extract_data(pipeline_response): async def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1348,7 +1357,7 @@ async def list_notebook_access_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.NotebookAccessTokenResult] = kwargs.pop("cls", None) @@ -1365,8 +1374,9 @@ async def list_notebook_access_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1401,7 +1411,7 @@ async def _prepare_notebook_initial( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[Optional[_models.NotebookResourceInfo]] = kwargs.pop("cls", None) @@ -1418,8 +1428,9 @@ async def _prepare_notebook_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1470,7 +1481,7 @@ async def begin_prepare_notebook( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.NotebookResourceInfo] = kwargs.pop("cls", None) @@ -1543,7 +1554,7 @@ async def list_storage_account_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListStorageAccountKeysResult] = kwargs.pop("cls", None) @@ -1560,8 +1571,9 @@ async def list_storage_account_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1609,7 +1621,7 @@ async def list_notebook_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListNotebookKeysResult] = kwargs.pop("cls", None) @@ -1626,8 +1638,9 @@ async def list_notebook_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1679,7 +1692,7 @@ async def list_outbound_network_dependencies_endpoints( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ExternalFQDNResponse] = kwargs.pop("cls", None) @@ -1696,8 +1709,9 @@ async def list_outbound_network_dependencies_endpoints( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py index 72bfcc9bc3c2..db2b564ff1f6 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/__init__.py @@ -11,6 +11,7 @@ from ._models_py3 import AKSSchemaProperties from ._models_py3 import AccountKeyDatastoreCredentials from ._models_py3 import AccountKeyDatastoreSecrets +from ._models_py3 import AcrDetails from ._models_py3 import AksComputeSecrets from ._models_py3 import AksComputeSecretsProperties from ._models_py3 import AksNetworkingConfiguration @@ -24,6 +25,7 @@ from ._models_py3 import AmlOperationListResult from ._models_py3 import AmlToken from ._models_py3 import AmlUserFeature +from ._models_py3 import ArmResourceId from ._models_py3 import AssetBase from ._models_py3 import AssetContainer from ._models_py3 import AssetJobInput @@ -97,6 +99,7 @@ from ._models_py3 import ContainerResourceRequirements from ._models_py3 import ContainerResourceSettings from ._models_py3 import CosmosDbSettings +from ._models_py3 import Cron from ._models_py3 import CronTrigger from ._models_py3 import CustomForecastHorizon from ._models_py3 import CustomModelJobInput @@ -256,6 +259,7 @@ from ._models_py3 import PartialMinimalTrackedResource from ._models_py3 import PartialMinimalTrackedResourceWithIdentity from ._models_py3 import PartialMinimalTrackedResourceWithSku +from ._models_py3 import PartialRegistryPartialTrackedResource from ._models_py3 import PartialSku from ._models_py3 import Password from ._models_py3 import PersonalComputeInstanceSettings @@ -271,10 +275,15 @@ from ._models_py3 import QuotaBaseProperties from ._models_py3 import QuotaUpdateParameters from ._models_py3 import RandomSamplingAlgorithm +from ._models_py3 import Recurrence from ._models_py3 import RecurrenceSchedule from ._models_py3 import RecurrenceTrigger from ._models_py3 import RegenerateEndpointKeysRequest +from ._models_py3 import Registry from ._models_py3 import RegistryListCredentialsResult +from ._models_py3 import RegistryProperties +from ._models_py3 import RegistryRegionArmDetails +from ._models_py3 import RegistryTrackedResourceArmPaginatedResult from ._models_py3 import Regression from ._models_py3 import RegressionTrainingSettings from ._models_py3 import Resource @@ -310,10 +319,13 @@ from ._models_py3 import SkuSetting from ._models_py3 import SslConfiguration from ._models_py3 import StackEnsembleSettings +from ._models_py3 import StorageAccountDetails from ._models_py3 import SweepJob from ._models_py3 import SweepJobLimits from ._models_py3 import SynapseSpark from ._models_py3 import SynapseSparkProperties +from ._models_py3 import SystemCreatedAcrAccount +from ._models_py3 import SystemCreatedStorageAccount from ._models_py3 import SystemData from ._models_py3 import SystemService from ._models_py3 import TableVertical @@ -345,6 +357,8 @@ from ._models_py3 import UsageName from ._models_py3 import UserAccountCredentials from ._models_py3 import UserAssignedIdentity +from ._models_py3 import UserCreatedAcrAccount +from ._models_py3 import UserCreatedStorageAccount from ._models_py3 import UserIdentity from ._models_py3 import UsernamePasswordAuthTypeWorkspaceConnectionProperties from ._models_py3 import VirtualMachine @@ -493,6 +507,7 @@ "AKSSchemaProperties", "AccountKeyDatastoreCredentials", "AccountKeyDatastoreSecrets", + "AcrDetails", "AksComputeSecrets", "AksComputeSecretsProperties", "AksNetworkingConfiguration", @@ -506,6 +521,7 @@ "AmlOperationListResult", "AmlToken", "AmlUserFeature", + "ArmResourceId", "AssetBase", "AssetContainer", "AssetJobInput", @@ -579,6 +595,7 @@ "ContainerResourceRequirements", "ContainerResourceSettings", "CosmosDbSettings", + "Cron", "CronTrigger", "CustomForecastHorizon", "CustomModelJobInput", @@ -738,6 +755,7 @@ "PartialMinimalTrackedResource", "PartialMinimalTrackedResourceWithIdentity", "PartialMinimalTrackedResourceWithSku", + "PartialRegistryPartialTrackedResource", "PartialSku", "Password", "PersonalComputeInstanceSettings", @@ -753,10 +771,15 @@ "QuotaBaseProperties", "QuotaUpdateParameters", "RandomSamplingAlgorithm", + "Recurrence", "RecurrenceSchedule", "RecurrenceTrigger", "RegenerateEndpointKeysRequest", + "Registry", "RegistryListCredentialsResult", + "RegistryProperties", + "RegistryRegionArmDetails", + "RegistryTrackedResourceArmPaginatedResult", "Regression", "RegressionTrainingSettings", "Resource", @@ -792,10 +815,13 @@ "SkuSetting", "SslConfiguration", "StackEnsembleSettings", + "StorageAccountDetails", "SweepJob", "SweepJobLimits", "SynapseSpark", "SynapseSparkProperties", + "SystemCreatedAcrAccount", + "SystemCreatedStorageAccount", "SystemData", "SystemService", "TableVertical", @@ -827,6 +853,8 @@ "UsageName", "UserAccountCredentials", "UserAssignedIdentity", + "UserCreatedAcrAccount", + "UserCreatedStorageAccount", "UserIdentity", "UsernamePasswordAuthTypeWorkspaceConnectionProperties", "VirtualMachine", diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py index 640b9b12a650..fc5401504593 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_machine_learning_services_mgmt_client_enums.py @@ -74,30 +74,30 @@ class BillingCurrency(str, Enum, metaclass=CaseInsensitiveEnumMeta): class BlockedTransformers(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all classification models supported by AutoML.""" - #: Target encoding for text data. TEXT_TARGET_ENCODER = "TextTargetEncoder" - #: Ohe hot encoding creates a binary feature transformation. + """Target encoding for text data.""" ONE_HOT_ENCODER = "OneHotEncoder" - #: Target encoding for categorical data. + """Ohe hot encoding creates a binary feature transformation.""" CAT_TARGET_ENCODER = "CatTargetEncoder" - #: Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term - #: weighting scheme for identifying information from documents. + """Target encoding for categorical data.""" TF_IDF = "TfIdf" - #: Weight of Evidence encoding is a technique used to encode categorical variables. It uses the - #: natural log of the P(1)/P(0) to create weights. + """Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term + #: weighting scheme for identifying information from documents.""" WO_E_TARGET_ENCODER = "WoETargetEncoder" - #: Label encoder converts labels/categorical variables in a numerical form. + """Weight of Evidence encoding is a technique used to encode categorical variables. It uses the + #: natural log of the P(1)/P(0) to create weights.""" LABEL_ENCODER = "LabelEncoder" - #: Word embedding helps represents words or phrases as a vector, or a series of numbers. + """Label encoder converts labels/categorical variables in a numerical form.""" WORD_EMBEDDING = "WordEmbedding" - #: Naive Bayes is a classified that is used for classification of discrete features that are - #: categorically distributed. + """Word embedding helps represents words or phrases as a vector, or a series of numbers.""" NAIVE_BAYES = "NaiveBayes" - #: Count Vectorizer converts a collection of text documents to a matrix of token counts. + """Naive Bayes is a classified that is used for classification of discrete features that are + #: categorically distributed.""" COUNT_VECTORIZER = "CountVectorizer" - #: Hashing One Hot Encoder can turn categorical variables into a limited number of new features. - #: This is often used for high-cardinality categorical features. + """Count Vectorizer converts a collection of text documents to a matrix of token counts.""" HASH_ONE_HOT_ENCODER = "HashOneHotEncoder" + """Hashing One Hot Encoder can turn categorical variables into a limited number of new features. + #: This is often used for high-cardinality categorical features.""" class Caching(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -111,107 +111,107 @@ class Caching(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ClassificationModels(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all classification models supported by AutoML.""" - #: Logistic regression is a fundamental classification technique. + LOGISTIC_REGRESSION = "LogisticRegression" + """Logistic regression is a fundamental classification technique. #: It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear #: regression. #: Logistic regression is fast and relatively uncomplicated, and it's convenient for you to #: interpret the results. #: Although it's essentially a method for binary classification, it can also be applied to - #: multiclass problems. - LOGISTIC_REGRESSION = "LogisticRegression" - #: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning + #: multiclass problems.""" + SGD = "SGD" + """SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning #: applications #: to find the model parameters that correspond to the best fit between predicted and actual - #: outputs. - SGD = "SGD" - #: The multinomial Naive Bayes classifier is suitable for classification with discrete features + #: outputs.""" + MULTINOMIAL_NAIVE_BAYES = "MultinomialNaiveBayes" + """The multinomial Naive Bayes classifier is suitable for classification with discrete features #: (e.g., word counts for text classification). #: The multinomial distribution normally requires integer feature counts. However, in practice, - #: fractional counts such as tf-idf may also work. - MULTINOMIAL_NAIVE_BAYES = "MultinomialNaiveBayes" - #: Naive Bayes classifier for multivariate Bernoulli models. + #: fractional counts such as tf-idf may also work.""" BERNOULLI_NAIVE_BAYES = "BernoulliNaiveBayes" - #: A support vector machine (SVM) is a supervised machine learning model that uses classification + """Naive Bayes classifier for multivariate Bernoulli models.""" + SVM = "SVM" + """A support vector machine (SVM) is a supervised machine learning model that uses classification #: algorithms for two-group classification problems. #: After giving an SVM model sets of labeled training data for each category, they're able to - #: categorize new text. - SVM = "SVM" - #: A support vector machine (SVM) is a supervised machine learning model that uses classification + #: categorize new text.""" + LINEAR_SVM = "LinearSVM" + """A support vector machine (SVM) is a supervised machine learning model that uses classification #: algorithms for two-group classification problems. #: After giving an SVM model sets of labeled training data for each category, they're able to #: categorize new text. #: Linear SVM performs best when input data is linear, i.e., data can be easily classified by - #: drawing the straight line between classified values on a plotted graph. - LINEAR_SVM = "LinearSVM" - #: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new + #: drawing the straight line between classified values on a plotted graph.""" + KNN = "KNN" + """K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new #: datapoints #: which further means that the new data point will be assigned a value based on how closely it - #: matches the points in the training set. - KNN = "KNN" - #: Decision Trees are a non-parametric supervised learning method used for both classification and + #: matches the points in the training set.""" + DECISION_TREE = "DecisionTree" + """Decision Trees are a non-parametric supervised learning method used for both classification and #: regression tasks. #: The goal is to create a model that predicts the value of a target variable by learning simple - #: decision rules inferred from the data features. - DECISION_TREE = "DecisionTree" - #: Random forest is a supervised learning algorithm. - #: The "forest"\ it builds, is an ensemble of decision trees, usually trained with the “bagging”\ + #: decision rules inferred from the data features.""" + RANDOM_FOREST = "RandomForest" + """Random forest is a supervised learning algorithm. + #: The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” #: method. #: The general idea of the bagging method is that a combination of learning models increases the - #: overall result. - RANDOM_FOREST = "RandomForest" - #: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many - #: decision trees. It is related to the widely used random forest algorithm. + #: overall result.""" EXTREME_RANDOM_TREES = "ExtremeRandomTrees" - #: LightGBM is a gradient boosting framework that uses tree based learning algorithms. + """Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many + #: decision trees. It is related to the widely used random forest algorithm.""" LIGHT_GBM = "LightGBM" - #: The technique of transiting week learners into a strong learner is called Boosting. The - #: gradient boosting algorithm process works on this theory of execution. + """LightGBM is a gradient boosting framework that uses tree based learning algorithms.""" GRADIENT_BOOSTING = "GradientBoosting" - #: XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where - #: target column values can be divided into distinct class values. + """The technique of transiting week learners into a strong learner is called Boosting. The + #: gradient boosting algorithm process works on this theory of execution.""" XG_BOOST_CLASSIFIER = "XGBoostClassifier" + """XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where + #: target column values can be divided into distinct class values.""" class ClassificationMultilabelPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for classification multilabel tasks.""" - #: AUC is the Area under the curve. - #: This metric represents arithmetic mean of the score for each class, - #: weighted by the number of true instances in each class. AUC_WEIGHTED = "AUCWeighted" - #: Accuracy is the ratio of predictions that exactly match the true class labels. + """AUC is the Area under the curve. + #: This metric represents arithmetic mean of the score for each class, + #: weighted by the number of true instances in each class.""" ACCURACY = "Accuracy" - #: Normalized macro recall is recall macro-averaged and normalized, so that random - #: performance has a score of 0, and perfect performance has a score of 1. + """Accuracy is the ratio of predictions that exactly match the true class labels.""" NORM_MACRO_RECALL = "NormMacroRecall" - #: The arithmetic mean of the average precision score for each class, weighted by - #: the number of true instances in each class. + """Normalized macro recall is recall macro-averaged and normalized, so that random + #: performance has a score of 0, and perfect performance has a score of 1.""" AVERAGE_PRECISION_SCORE_WEIGHTED = "AveragePrecisionScoreWeighted" - #: The arithmetic mean of precision for each class, weighted by number of true instances in each - #: class. + """The arithmetic mean of the average precision score for each class, weighted by + #: the number of true instances in each class.""" PRECISION_SCORE_WEIGHTED = "PrecisionScoreWeighted" - #: Intersection Over Union. Intersection of predictions divided by union of predictions. + """The arithmetic mean of precision for each class, weighted by number of true instances in each + #: class.""" IOU = "IOU" + """Intersection Over Union. Intersection of predictions divided by union of predictions.""" class ClassificationPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for classification tasks.""" - #: AUC is the Area under the curve. - #: This metric represents arithmetic mean of the score for each class, - #: weighted by the number of true instances in each class. AUC_WEIGHTED = "AUCWeighted" - #: Accuracy is the ratio of predictions that exactly match the true class labels. + """AUC is the Area under the curve. + #: This metric represents arithmetic mean of the score for each class, + #: weighted by the number of true instances in each class.""" ACCURACY = "Accuracy" - #: Normalized macro recall is recall macro-averaged and normalized, so that random - #: performance has a score of 0, and perfect performance has a score of 1. + """Accuracy is the ratio of predictions that exactly match the true class labels.""" NORM_MACRO_RECALL = "NormMacroRecall" - #: The arithmetic mean of the average precision score for each class, weighted by - #: the number of true instances in each class. + """Normalized macro recall is recall macro-averaged and normalized, so that random + #: performance has a score of 0, and perfect performance has a score of 1.""" AVERAGE_PRECISION_SCORE_WEIGHTED = "AveragePrecisionScoreWeighted" - #: The arithmetic mean of precision for each class, weighted by number of true instances in each - #: class. + """The arithmetic mean of the average precision score for each class, weighted by + #: the number of true instances in each class.""" PRECISION_SCORE_WEIGHTED = "PrecisionScoreWeighted" + """The arithmetic mean of precision for each class, weighted by number of true instances in each + #: class.""" class ClusterPurpose(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -420,125 +420,125 @@ class EnvironmentType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class FeatureLags(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Flag for generating lags for the numeric features.""" - #: No feature lags generated. NONE = "None" - #: System auto-generates feature lags. + """No feature lags generated.""" AUTO = "Auto" + """System auto-generates feature lags.""" class FeaturizationMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Featurization mode - determines data featurization mode.""" - #: Auto mode, system performs featurization without any custom featurization inputs. AUTO = "Auto" - #: Custom featurization. + """Auto mode, system performs featurization without any custom featurization inputs.""" CUSTOM = "Custom" - #: Featurization off. 'Forecasting' task cannot use this value. + """Custom featurization.""" OFF = "Off" + """Featurization off. 'Forecasting' task cannot use this value.""" class ForecastHorizonMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum to determine forecast horizon selection mode.""" - #: Forecast horizon to be determined automatically. AUTO = "Auto" - #: Use the custom forecast horizon. + """Forecast horizon to be determined automatically.""" CUSTOM = "Custom" + """Use the custom forecast horizon.""" class ForecastingModels(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all forecasting models supported by AutoML.""" - #: Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and + AUTO_ARIMA = "AutoArima" + """Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and #: statistical analysis to interpret the data and make future predictions. #: This model aims to explain data by using time series data on its past values and uses linear - #: regression to make predictions. - AUTO_ARIMA = "AutoArima" - #: Prophet is a procedure for forecasting time series data based on an additive model where + #: regression to make predictions.""" + PROPHET = "Prophet" + """Prophet is a procedure for forecasting time series data based on an additive model where #: non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. #: It works best with time series that have strong seasonal effects and several seasons of #: historical data. Prophet is robust to missing data and shifts in the trend, and typically - #: handles outliers well. - PROPHET = "Prophet" - #: The Naive forecasting model makes predictions by carrying forward the latest target value for - #: each time-series in the training data. + #: handles outliers well.""" NAIVE = "Naive" - #: The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of - #: target values for each time-series in the training data. + """The Naive forecasting model makes predictions by carrying forward the latest target value for + #: each time-series in the training data.""" SEASONAL_NAIVE = "SeasonalNaive" - #: The Average forecasting model makes predictions by carrying forward the average of the target - #: values for each time-series in the training data. + """The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of + #: target values for each time-series in the training data.""" AVERAGE = "Average" - #: The Seasonal Average forecasting model makes predictions by carrying forward the average value - #: of the latest season of data for each time-series in the training data. + """The Average forecasting model makes predictions by carrying forward the average of the target + #: values for each time-series in the training data.""" SEASONAL_AVERAGE = "SeasonalAverage" - #: Exponential smoothing is a time series forecasting method for univariate data that can be - #: extended to support data with a systematic trend or seasonal component. + """The Seasonal Average forecasting model makes predictions by carrying forward the average value + #: of the latest season of data for each time-series in the training data.""" EXPONENTIAL_SMOOTHING = "ExponentialSmoothing" - #: An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be + """Exponential smoothing is a time series forecasting method for univariate data that can be + #: extended to support data with a systematic trend or seasonal component.""" + ARIMAX = "Arimax" + """An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be #: viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or #: more moving average (MA) terms. #: This method is suitable for forecasting when data is stationary/non stationary, and - #: multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity. - ARIMAX = "Arimax" - #: TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for - #: brief intro. + #: multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.""" TCN_FORECASTER = "TCNForecaster" - #: Elastic net is a popular type of regularized linear regression that combines two popular - #: penalties, specifically the L1 and L2 penalty functions. + """TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for + #: brief intro.""" ELASTIC_NET = "ElasticNet" - #: The technique of transiting week learners into a strong learner is called Boosting. The - #: gradient boosting algorithm process works on this theory of execution. + """Elastic net is a popular type of regularized linear regression that combines two popular + #: penalties, specifically the L1 and L2 penalty functions.""" GRADIENT_BOOSTING = "GradientBoosting" - #: Decision Trees are a non-parametric supervised learning method used for both classification and + """The technique of transiting week learners into a strong learner is called Boosting. The + #: gradient boosting algorithm process works on this theory of execution.""" + DECISION_TREE = "DecisionTree" + """Decision Trees are a non-parametric supervised learning method used for both classification and #: regression tasks. #: The goal is to create a model that predicts the value of a target variable by learning simple - #: decision rules inferred from the data features. - DECISION_TREE = "DecisionTree" - #: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new + #: decision rules inferred from the data features.""" + KNN = "KNN" + """K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new #: datapoints #: which further means that the new data point will be assigned a value based on how closely it - #: matches the points in the training set. - KNN = "KNN" - #: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an - #: L1 prior as regularizer. + #: matches the points in the training set.""" LASSO_LARS = "LassoLars" - #: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning + """Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an + #: L1 prior as regularizer.""" + SGD = "SGD" + """SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning #: applications #: to find the model parameters that correspond to the best fit between predicted and actual #: outputs. - #: It's an inexact but powerful technique. - SGD = "SGD" - #: Random forest is a supervised learning algorithm. + #: It's an inexact but powerful technique.""" + RANDOM_FOREST = "RandomForest" + """Random forest is a supervised learning algorithm. #: The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” #: method. #: The general idea of the bagging method is that a combination of learning models increases the - #: overall result. - RANDOM_FOREST = "RandomForest" - #: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many - #: decision trees. It is related to the widely used random forest algorithm. + #: overall result.""" EXTREME_RANDOM_TREES = "ExtremeRandomTrees" - #: LightGBM is a gradient boosting framework that uses tree based learning algorithms. + """Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many + #: decision trees. It is related to the widely used random forest algorithm.""" LIGHT_GBM = "LightGBM" - #: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model - #: using ensemble of base learners. + """LightGBM is a gradient boosting framework that uses tree based learning algorithms.""" XG_BOOST_REGRESSOR = "XGBoostRegressor" + """XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model + #: using ensemble of base learners.""" class ForecastingPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for Forecasting task.""" - #: The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. SPEARMAN_CORRELATION = "SpearmanCorrelation" - #: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between - #: models with different scales. + """The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation.""" NORMALIZED_ROOT_MEAN_SQUARED_ERROR = "NormalizedRootMeanSquaredError" - #: The R2 score is one of the performance evaluation measures for forecasting-based machine - #: learning models. + """The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between + #: models with different scales.""" R2_SCORE = "R2Score" - #: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute - #: Error (MAE) of (time) series with different scales. + """The R2 score is one of the performance evaluation measures for forecasting-based machine + #: learning models.""" NORMALIZED_MEAN_ABSOLUTE_ERROR = "NormalizedMeanAbsoluteError" + """The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute + #: Error (MAE) of (time) series with different scales.""" class Goal(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -570,9 +570,9 @@ class InputDeliveryMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): class InstanceSegmentationPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for InstanceSegmentation tasks.""" - #: Mean Average Precision (MAP) is the average of AP (Average Precision). - #: AP is calculated for each class and averaged to get the MAP. MEAN_AVERAGE_PRECISION = "MeanAveragePrecision" + """Mean Average Precision (MAP) is the average of AP (Average Precision). + #: AP is calculated for each class and averaged to get the MAP.""" class JobInputType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -608,39 +608,39 @@ class JobOutputType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class JobStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The status of a job.""" - #: Run hasn't started yet. NOT_STARTED = "NotStarted" - #: Run has started. The user has a run ID. + """Run hasn't started yet.""" STARTING = "Starting" - #: (Not used currently) It will be used if ES is creating the compute target. + """Run has started. The user has a run ID.""" PROVISIONING = "Provisioning" - #: The run environment is being prepared. + """(Not used currently) It will be used if ES is creating the compute target.""" PREPARING = "Preparing" - #: The job is queued in the compute target. For example, in BatchAI the job is in queued state, - #: while waiting for all required nodes to be ready. + """The run environment is being prepared.""" QUEUED = "Queued" - #: The job started to run in the compute target. + """The job is queued in the compute target. For example, in BatchAI the job is in queued state, + #: while waiting for all required nodes to be ready.""" RUNNING = "Running" - #: Job is completed in the target. It is in output collection state now. + """The job started to run in the compute target.""" FINALIZING = "Finalizing" - #: Cancellation has been requested for the job. + """Job is completed in the target. It is in output collection state now.""" CANCEL_REQUESTED = "CancelRequested" - #: Job completed successfully. This reflects that both the job itself and output collection states - #: completed successfully + """Cancellation has been requested for the job.""" COMPLETED = "Completed" - #: Job failed. + """Job completed successfully. This reflects that both the job itself and output collection states + #: completed successfully""" FAILED = "Failed" - #: Following cancellation request, the job is now successfully canceled. + """Job failed.""" CANCELED = "Canceled" - #: When heartbeat is enabled, if the run isn't updating any information to RunHistory then the run + """Following cancellation request, the job is now successfully canceled.""" + NOT_RESPONDING = "NotResponding" + """When heartbeat is enabled, if the run isn't updating any information to RunHistory then the run #: goes to NotResponding state. #: NotResponding is the only state that is exempt from strict transition orders. A run can go from - #: NotResponding to any of the previous states. - NOT_RESPONDING = "NotResponding" - #: The job is paused by users. Some adjustment to labeling jobs can be made only in paused state. + #: NotResponding to any of the previous states.""" PAUSED = "Paused" - #: Default job status if not mapped to all other statuses + """The job is paused by users. Some adjustment to labeling jobs can be made only in paused state.""" UNKNOWN = "Unknown" + """Default job status if not mapped to all other statuses""" class JobType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -662,12 +662,12 @@ class KeyType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class LearningRateScheduler(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Learning rate scheduler enum.""" - #: No learning rate scheduler selected. NONE = "None" - #: Cosine Annealing With Warmup. + """No learning rate scheduler selected.""" WARMUP_COSINE = "WarmupCosine" - #: Step learning rate scheduler. + """Cosine Annealing With Warmup.""" STEP = "Step" + """Step learning rate scheduler.""" class ListViewType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -688,18 +688,18 @@ class LoadBalancerType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class LogVerbosity(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for setting log verbosity.""" - #: No logs emitted. NOT_SET = "NotSet" - #: Debug and above log statements logged. + """No logs emitted.""" DEBUG = "Debug" - #: Info and above log statements logged. + """Debug and above log statements logged.""" INFO = "Info" - #: Warning and above log statements logged. + """Info and above log statements logged.""" WARNING = "Warning" - #: Error and above log statements logged. + """Warning and above log statements logged.""" ERROR = "Error" - #: Only critical statements logged. + """Error and above log statements logged.""" CRITICAL = "Critical" + """Only critical statements logged.""" class ManagedServiceIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -716,16 +716,16 @@ class ManagedServiceIdentityType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ModelSize(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Image model size.""" - #: No value selected. NONE = "None" - #: Small size. + """No value selected.""" SMALL = "Small" - #: Medium size. + """Small size.""" MEDIUM = "Medium" - #: Large size. + """Medium size.""" LARGE = "Large" - #: Extra large size. + """Large size.""" EXTRA_LARGE = "ExtraLarge" + """Extra large size.""" class MountAction(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -749,11 +749,11 @@ class MountState(str, Enum, metaclass=CaseInsensitiveEnumMeta): class NCrossValidationsMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Determines how N-Cross validations value is determined.""" - #: Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML - #: task. AUTO = "Auto" - #: Use custom N-Cross validations value. + """Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML + #: task.""" CUSTOM = "Custom" + """Use custom N-Cross validations value.""" class Network(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -779,9 +779,9 @@ class NodeState(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ObjectDetectionPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for Image ObjectDetection task.""" - #: Mean Average Precision (MAP) is the average of AP (Average Precision). - #: AP is calculated for each class and averaged to get the MAP. MEAN_AVERAGE_PRECISION = "MeanAveragePrecision" + """Mean Average Precision (MAP) is the average of AP (Average Precision). + #: AP is calculated for each class and averaged to get the MAP.""" class OperatingSystemType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -917,16 +917,16 @@ class RandomSamplingAlgorithmRule(str, Enum, metaclass=CaseInsensitiveEnumMeta): class RecurrenceFrequency(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum to describe the frequency of a recurrence schedule.""" - #: Minute frequency MINUTE = "Minute" - #: Hour frequency + """Minute frequency""" HOUR = "Hour" - #: Day frequency + """Hour frequency""" DAY = "Day" - #: Week frequency + """Day frequency""" WEEK = "Week" - #: Month frequency + """Week frequency""" MONTH = "Month" + """Month frequency""" class ReferenceType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -940,61 +940,61 @@ class ReferenceType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class RegressionModels(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum for all Regression models supported by AutoML.""" - #: Elastic net is a popular type of regularized linear regression that combines two popular - #: penalties, specifically the L1 and L2 penalty functions. ELASTIC_NET = "ElasticNet" - #: The technique of transiting week learners into a strong learner is called Boosting. The - #: gradient boosting algorithm process works on this theory of execution. + """Elastic net is a popular type of regularized linear regression that combines two popular + #: penalties, specifically the L1 and L2 penalty functions.""" GRADIENT_BOOSTING = "GradientBoosting" - #: Decision Trees are a non-parametric supervised learning method used for both classification and + """The technique of transiting week learners into a strong learner is called Boosting. The + #: gradient boosting algorithm process works on this theory of execution.""" + DECISION_TREE = "DecisionTree" + """Decision Trees are a non-parametric supervised learning method used for both classification and #: regression tasks. #: The goal is to create a model that predicts the value of a target variable by learning simple - #: decision rules inferred from the data features. - DECISION_TREE = "DecisionTree" - #: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new + #: decision rules inferred from the data features.""" + KNN = "KNN" + """K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new #: datapoints #: which further means that the new data point will be assigned a value based on how closely it - #: matches the points in the training set. - KNN = "KNN" - #: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an - #: L1 prior as regularizer. + #: matches the points in the training set.""" LASSO_LARS = "LassoLars" - #: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning + """Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an + #: L1 prior as regularizer.""" + SGD = "SGD" + """SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning #: applications #: to find the model parameters that correspond to the best fit between predicted and actual #: outputs. - #: It's an inexact but powerful technique. - SGD = "SGD" - #: Random forest is a supervised learning algorithm. - #: The "forest"\ it builds, is an ensemble of decision trees, usually trained with the “bagging”\ + #: It's an inexact but powerful technique.""" + RANDOM_FOREST = "RandomForest" + """Random forest is a supervised learning algorithm. + #: The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” #: method. #: The general idea of the bagging method is that a combination of learning models increases the - #: overall result. - RANDOM_FOREST = "RandomForest" - #: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many - #: decision trees. It is related to the widely used random forest algorithm. + #: overall result.""" EXTREME_RANDOM_TREES = "ExtremeRandomTrees" - #: LightGBM is a gradient boosting framework that uses tree based learning algorithms. + """Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many + #: decision trees. It is related to the widely used random forest algorithm.""" LIGHT_GBM = "LightGBM" - #: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model - #: using ensemble of base learners. + """LightGBM is a gradient boosting framework that uses tree based learning algorithms.""" XG_BOOST_REGRESSOR = "XGBoostRegressor" + """XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model + #: using ensemble of base learners.""" class RegressionPrimaryMetrics(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Primary metrics for Regression task.""" - #: The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. SPEARMAN_CORRELATION = "SpearmanCorrelation" - #: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between - #: models with different scales. + """The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation.""" NORMALIZED_ROOT_MEAN_SQUARED_ERROR = "NormalizedRootMeanSquaredError" - #: The R2 score is one of the performance evaluation measures for forecasting-based machine - #: learning models. + """The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between + #: models with different scales.""" R2_SCORE = "R2Score" - #: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute - #: Error (MAE) of (time) series with different scales. + """The R2 score is one of the performance evaluation measures for forecasting-based machine + #: learning models.""" NORMALIZED_MEAN_ABSOLUTE_ERROR = "NormalizedMeanAbsoluteError" + """The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute + #: Error (MAE) of (time) series with different scales.""" class RemoteLoginPortPublicAccess(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1070,10 +1070,10 @@ class ScheduleStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta): class SeasonalityMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Forecasting seasonality mode.""" - #: Seasonality to be determined automatically. AUTO = "Auto" - #: Use the custom seasonality value. + """Seasonality to be determined automatically.""" CUSTOM = "Custom" + """Use the custom seasonality value.""" class SecretsType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1088,37 +1088,37 @@ class SecretsType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ServiceDataAccessAuthIdentity(str, Enum, metaclass=CaseInsensitiveEnumMeta): """ServiceDataAccessAuthIdentity.""" - #: Do not use any identity for service data access. NONE = "None" - #: Use the system assigned managed identity of the Workspace to authenticate service data access. + """Do not use any identity for service data access.""" WORKSPACE_SYSTEM_ASSIGNED_IDENTITY = "WorkspaceSystemAssignedIdentity" - #: Use the user assigned managed identity of the Workspace to authenticate service data access. + """Use the system assigned managed identity of the Workspace to authenticate service data access.""" WORKSPACE_USER_ASSIGNED_IDENTITY = "WorkspaceUserAssignedIdentity" + """Use the user assigned managed identity of the Workspace to authenticate service data access.""" class ShortSeriesHandlingConfiguration(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The parameter defining how if AutoML should handle short time series.""" - #: Represents no/null value. NONE = "None" - #: Short series will be padded if there are no long series, otherwise short series will be - #: dropped. + """Represents no/null value.""" AUTO = "Auto" - #: All the short series will be padded. + """Short series will be padded if there are no long series, otherwise short series will be + #: dropped.""" PAD = "Pad" - #: All the short series will be dropped. + """All the short series will be padded.""" DROP = "Drop" + """All the short series will be dropped.""" class SkuScaleType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Node scaling setting for the compute sku.""" - #: Automatically scales node count. AUTOMATIC = "Automatic" - #: Node count scaled upon user request. + """Automatically scales node count.""" MANUAL = "Manual" - #: Fixed set of nodes. + """Node count scaled upon user request.""" NONE = "None" + """Fixed set of nodes.""" class SkuTier(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1168,15 +1168,15 @@ class StackMetaLearnerType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """ NONE = "None" - #: Default meta-learners are LogisticRegression for classification tasks. LOGISTIC_REGRESSION = "LogisticRegression" - #: Default meta-learners are LogisticRegression for classification task when CV is on. + """Default meta-learners are LogisticRegression for classification tasks.""" LOGISTIC_REGRESSION_CV = "LogisticRegressionCV" + """Default meta-learners are LogisticRegression for classification task when CV is on.""" LIGHT_GBM_CLASSIFIER = "LightGBMClassifier" - #: Default meta-learners are LogisticRegression for regression task. ELASTIC_NET = "ElasticNet" - #: Default meta-learners are LogisticRegression for regression task when CV is on. + """Default meta-learners are LogisticRegression for regression task.""" ELASTIC_NET_CV = "ElasticNetCV" + """Default meta-learners are LogisticRegression for regression task when CV is on.""" LIGHT_GBM_REGRESSOR = "LightGBMRegressor" LINEAR_REGRESSION = "LinearRegression" @@ -1197,15 +1197,15 @@ class Status(str, Enum, metaclass=CaseInsensitiveEnumMeta): class StochasticOptimizer(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Stochastic optimizer for image models.""" - #: No optimizer selected. NONE = "None" - #: Stochastic Gradient Descent optimizer. + """No optimizer selected.""" SGD = "Sgd" - #: Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of - #: moments + """Stochastic Gradient Descent optimizer.""" ADAM = "Adam" - #: AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. + """Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of + #: moments""" ADAMW = "Adamw" + """AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay.""" class StorageAccountType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1218,8 +1218,8 @@ class StorageAccountType(str, Enum, metaclass=CaseInsensitiveEnumMeta): class TargetAggregationFunction(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Target aggregate function.""" - #: Represent no value set. NONE = "None" + """Represent no value set.""" SUM = "Sum" MAX = "Max" MIN = "Min" @@ -1229,62 +1229,62 @@ class TargetAggregationFunction(str, Enum, metaclass=CaseInsensitiveEnumMeta): class TargetLagsMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Target lags selection modes.""" - #: Target lags to be determined automatically. AUTO = "Auto" - #: Use the custom target lags. + """Target lags to be determined automatically.""" CUSTOM = "Custom" + """Use the custom target lags.""" class TargetRollingWindowSizeMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Target rolling windows size mode.""" - #: Determine rolling windows size automatically. AUTO = "Auto" - #: Use the specified rolling window size. + """Determine rolling windows size automatically.""" CUSTOM = "Custom" + """Use the specified rolling window size.""" class TaskType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """AutoMLJob Task type.""" - #: Classification in machine learning and statistics is a supervised learning approach in which - #: the computer program learns from the data given to it and make new observations or - #: classifications. CLASSIFICATION = "Classification" - #: Regression means to predict the value using the input data. Regression models are used to - #: predict a continuous value. + """Classification in machine learning and statistics is a supervised learning approach in which + #: the computer program learns from the data given to it and make new observations or + #: classifications.""" REGRESSION = "Regression" - #: Forecasting is a special kind of regression task that deals with time-series data and creates - #: forecasting model - #: that can be used to predict the near future values based on the inputs. + """Regression means to predict the value using the input data. Regression models are used to + #: predict a continuous value.""" FORECASTING = "Forecasting" - #: Image Classification. Multi-class image classification is used when an image is classified with + """Forecasting is a special kind of regression task that deals with time-series data and creates + #: forecasting model + #: that can be used to predict the near future values based on the inputs.""" + IMAGE_CLASSIFICATION = "ImageClassification" + """Image Classification. Multi-class image classification is used when an image is classified with #: only a single label #: from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' - #: or a 'duck'. - IMAGE_CLASSIFICATION = "ImageClassification" - #: Image Classification Multilabel. Multi-label image classification is used when an image could - #: have one or more labels - #: from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. + #: or a 'duck'.""" IMAGE_CLASSIFICATION_MULTILABEL = "ImageClassificationMultilabel" - #: Image Object Detection. Object detection is used to identify objects in an image and locate - #: each object with a - #: bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. + """Image Classification Multilabel. Multi-label image classification is used when an image could + #: have one or more labels + #: from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.""" IMAGE_OBJECT_DETECTION = "ImageObjectDetection" - #: Image Instance Segmentation. Instance segmentation is used to identify objects in an image at - #: the pixel level, - #: drawing a polygon around each object in the image. + """Image Object Detection. Object detection is used to identify objects in an image and locate + #: each object with a + #: bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.""" IMAGE_INSTANCE_SEGMENTATION = "ImageInstanceSegmentation" - #: Text classification (also known as text tagging or text categorization) is the process of - #: sorting texts into categories. - #: Categories are mutually exclusive. + """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at + #: the pixel level, + #: drawing a polygon around each object in the image.""" TEXT_CLASSIFICATION = "TextClassification" - #: Multilabel classification task assigns each sample to a group (zero or more) of target labels. + """Text classification (also known as text tagging or text categorization) is the process of + #: sorting texts into categories. + #: Categories are mutually exclusive.""" TEXT_CLASSIFICATION_MULTILABEL = "TextClassificationMultilabel" - #: Text Named Entity Recognition a.k.a. TextNER. - #: Named Entity Recognition (NER) is the ability to take free-form text and identify the - #: occurrences of entities such as people, locations, organizations, and more. + """Multilabel classification task assigns each sample to a group (zero or more) of target labels.""" TEXT_NER = "TextNER" + """Text Named Entity Recognition a.k.a. TextNER. + #: Named Entity Recognition (NER) is the ability to take free-form text and identify the + #: occurrences of entities such as people, locations, organizations, and more.""" class TriggerType(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1316,8 +1316,8 @@ class UsageUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta): class UseStl(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Configure STL Decomposition of the time-series target column.""" - #: No stl decomposition. NONE = "None" + """No stl decomposition.""" SEASON = "Season" SEASON_TREND = "SeasonTrend" @@ -1325,14 +1325,14 @@ class UseStl(str, Enum, metaclass=CaseInsensitiveEnumMeta): class ValidationMetricType(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Metric computation method to use for validation metrics in image tasks.""" - #: No metric. NONE = "None" - #: Coco metric. + """No metric.""" COCO = "Coco" - #: Voc metric. + """Coco metric.""" VOC = "Voc" - #: CocoVoc metric. + """Voc metric.""" COCO_VOC = "CocoVoc" + """CocoVoc metric.""" class ValueFormat(str, Enum, metaclass=CaseInsensitiveEnumMeta): @@ -1366,17 +1366,17 @@ class VMTier(str, Enum, metaclass=CaseInsensitiveEnumMeta): class WeekDay(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Enum of weekday.""" - #: Monday weekday MONDAY = "Monday" - #: Tuesday weekday + """Monday weekday""" TUESDAY = "Tuesday" - #: Wednesday weekday + """Tuesday weekday""" WEDNESDAY = "Wednesday" - #: Thursday weekday + """Wednesday weekday""" THURSDAY = "Thursday" - #: Friday weekday + """Thursday weekday""" FRIDAY = "Friday" - #: Saturday weekday + """Friday weekday""" SATURDAY = "Saturday" - #: Sunday weekday + """Saturday weekday""" SUNDAY = "Sunday" + """Sunday weekday""" diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py index a0c8196e7297..f4a8e4d87a6f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/models/_models_py3.py @@ -56,7 +56,7 @@ class DatastoreCredentials(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.credentials_type: Optional[str] = None @@ -84,7 +84,7 @@ class AccountKeyDatastoreCredentials(DatastoreCredentials): "secrets": {"key": "secrets", "type": "AccountKeyDatastoreSecrets"}, } - def __init__(self, *, secrets: "_models.AccountKeyDatastoreSecrets", **kwargs): + def __init__(self, *, secrets: "_models.AccountKeyDatastoreSecrets", **kwargs: Any) -> None: """ :keyword secrets: [Required] Storage account secrets. Required. :paramtype secrets: ~azure.mgmt.machinelearningservices.models.AccountKeyDatastoreSecrets @@ -125,7 +125,7 @@ class DatastoreSecrets(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.secrets_type: Optional[str] = None @@ -152,7 +152,7 @@ class AccountKeyDatastoreSecrets(DatastoreSecrets): "key": {"key": "key", "type": "str"}, } - def __init__(self, *, key: Optional[str] = None, **kwargs): + def __init__(self, *, key: Optional[str] = None, **kwargs: Any) -> None: """ :keyword key: Storage account key. :paramtype key: str @@ -162,6 +162,42 @@ def __init__(self, *, key: Optional[str] = None, **kwargs): self.key = key +class AcrDetails(_serialization.Model): + """Details of ACR account to be used for the Registry. + + :ivar system_created_acr_account: + :vartype system_created_acr_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedAcrAccount + :ivar user_created_acr_account: + :vartype user_created_acr_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedAcrAccount + """ + + _attribute_map = { + "system_created_acr_account": {"key": "systemCreatedAcrAccount", "type": "SystemCreatedAcrAccount"}, + "user_created_acr_account": {"key": "userCreatedAcrAccount", "type": "UserCreatedAcrAccount"}, + } + + def __init__( + self, + *, + system_created_acr_account: Optional["_models.SystemCreatedAcrAccount"] = None, + user_created_acr_account: Optional["_models.UserCreatedAcrAccount"] = None, + **kwargs: Any + ) -> None: + """ + :keyword system_created_acr_account: + :paramtype system_created_acr_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedAcrAccount + :keyword user_created_acr_account: + :paramtype user_created_acr_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedAcrAccount + """ + super().__init__(**kwargs) + self.system_created_acr_account = system_created_acr_account + self.user_created_acr_account = user_created_acr_account + + class AKSSchema(_serialization.Model): """AKSSchema. @@ -173,7 +209,7 @@ class AKSSchema(_serialization.Model): "properties": {"key": "properties", "type": "AKSSchemaProperties"}, } - def __init__(self, *, properties: Optional["_models.AKSSchemaProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.AKSSchemaProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: AKS properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties @@ -266,8 +302,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword compute_location: Location for the underlying compute. :paramtype compute_location: str @@ -361,8 +397,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: AKS properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AKSSchemaProperties @@ -422,8 +458,8 @@ def __init__( user_kube_config: Optional[str] = None, admin_kube_config: Optional[str] = None, image_pull_secret_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword user_kube_config: Content of kubeconfig file that can be used to connect to the Kubernetes cluster. @@ -470,7 +506,7 @@ class ComputeSecrets(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.compute_type: Optional[str] = None @@ -512,8 +548,8 @@ def __init__( user_kube_config: Optional[str] = None, admin_kube_config: Optional[str] = None, image_pull_secret_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword user_kube_config: Content of kubeconfig file that can be used to connect to the Kubernetes cluster. @@ -574,8 +610,8 @@ def __init__( service_cidr: Optional[str] = None, dns_service_ip: Optional[str] = None, docker_bridge_cidr: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword subnet_id: Virtual network subnet resource ID the compute nodes belong to. :paramtype subnet_id: str @@ -652,8 +688,8 @@ def __init__( aks_networking_configuration: Optional["_models.AksNetworkingConfiguration"] = None, load_balancer_type: Union[str, "_models.LoadBalancerType"] = "PublicIp", load_balancer_subnet: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword cluster_fqdn: Cluster full qualified domain name. :paramtype cluster_fqdn: str @@ -699,7 +735,7 @@ class AmlComputeSchema(_serialization.Model): "properties": {"key": "properties", "type": "AmlComputeProperties"}, } - def __init__(self, *, properties: Optional["_models.AmlComputeProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.AmlComputeProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of AmlCompute. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties @@ -777,8 +813,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of AmlCompute. :paramtype properties: ~azure.mgmt.machinelearningservices.models.AmlComputeProperties @@ -852,7 +888,7 @@ class AmlComputeNodeInformation(_serialization.Model): "run_id": {"key": "runId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.node_id = None @@ -884,7 +920,7 @@ class AmlComputeNodesInformation(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.nodes = None @@ -996,8 +1032,8 @@ def __init__( remote_login_port_public_access: Union[str, "_models.RemoteLoginPortPublicAccess"] = "NotSpecified", enable_node_public_ip: bool = True, property_bag: Optional[JSON] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword os_type: Compute OS Type. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.machinelearningservices.models.OsType @@ -1079,8 +1115,8 @@ def __init__( name: Optional[str] = None, display: Optional["_models.AmlOperationDisplay"] = None, is_data_action: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: Operation name: {provider}/{resource}/{operation}. :paramtype name: str @@ -1122,8 +1158,8 @@ def __init__( resource: Optional[str] = None, operation: Optional[str] = None, description: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword provider: The resource provider name: Microsoft.MachineLearningExperimentation. :paramtype provider: str @@ -1152,7 +1188,7 @@ class AmlOperationListResult(_serialization.Model): "value": {"key": "value", "type": "[AmlOperation]"}, } - def __init__(self, *, value: Optional[List["_models.AmlOperation"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.AmlOperation"]] = None, **kwargs: Any) -> None: """ :keyword value: List of AML workspace operations supported by the AML workspace resource provider. @@ -1188,7 +1224,7 @@ class IdentityConfiguration(_serialization.Model): "identity_type": {"AMLToken": "AmlToken", "Managed": "ManagedIdentity", "UserIdentity": "UserIdentity"} } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.identity_type: Optional[str] = None @@ -1213,7 +1249,7 @@ class AmlToken(IdentityConfiguration): "identity_type": {"key": "identityType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.identity_type: str = "AMLToken" @@ -1242,8 +1278,8 @@ def __init__( id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, description: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword id: Specifies the feature ID. :paramtype id: str @@ -1258,6 +1294,32 @@ def __init__( self.description = description +class ArmResourceId(_serialization.Model): + """ARM ResourceId of a resource. + + :ivar resource_id: Arm ResourceId is in the format + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.Storage/storageAccounts/{StorageAccountName}" + or + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{AcrName}". + :vartype resource_id: str + """ + + _attribute_map = { + "resource_id": {"key": "resourceId", "type": "str"}, + } + + def __init__(self, *, resource_id: Optional[str] = None, **kwargs: Any) -> None: + """ + :keyword resource_id: Arm ResourceId is in the format + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.Storage/storageAccounts/{StorageAccountName}" + or + "/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{AcrName}". + :paramtype resource_id: str + """ + super().__init__(**kwargs) + self.resource_id = resource_id + + class ResourceBase(_serialization.Model): """ResourceBase. @@ -1281,8 +1343,8 @@ def __init__( description: Optional[str] = None, properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1328,8 +1390,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1387,8 +1449,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1426,7 +1488,9 @@ class AssetJobInput(_serialization.Model): "uri": {"key": "uri", "type": "str"}, } - def __init__(self, *, uri: str, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, **kwargs): + def __init__( + self, *, uri: str, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, **kwargs: Any + ) -> None: """ :keyword mode: Input Asset Delivery Mode. Known values are: "ReadOnlyMount", "ReadWriteMount", "Download", "Direct", "EvalMount", and "EvalDownload". @@ -1454,8 +1518,12 @@ class AssetJobOutput(_serialization.Model): } def __init__( - self, *, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, **kwargs - ): + self, + *, + mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, + uri: Optional[str] = None, + **kwargs: Any + ) -> None: """ :keyword mode: Output Asset Delivery Mode. Known values are: "ReadWriteMount" and "Upload". :paramtype mode: str or ~azure.mgmt.machinelearningservices.models.OutputDeliveryMode @@ -1496,7 +1564,7 @@ class AssetReferenceBase(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.reference_type: Optional[str] = None @@ -1523,7 +1591,7 @@ class AssignedUser(_serialization.Model): "tenant_id": {"key": "tenantId", "type": "str"}, } - def __init__(self, *, object_id: str, tenant_id: str, **kwargs): + def __init__(self, *, object_id: str, tenant_id: str, **kwargs: Any) -> None: """ :keyword object_id: User’s AAD Object Id. Required. :paramtype object_id: str @@ -1558,7 +1626,7 @@ class ForecastHorizon(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoForecastHorizon", "Custom": "CustomForecastHorizon"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -1582,7 +1650,7 @@ class AutoForecastHorizon(ForecastHorizon): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -1668,8 +1736,8 @@ def __init__( identity: Optional["_models.IdentityConfiguration"] = None, is_archived: bool = False, services: Optional[Dict[str, "_models.JobService"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1713,54 +1781,54 @@ class AutoMLJob(JobBaseProperties): # pylint: disable=too-many-instance-attribu Use this class for executing AutoML tasks like Classification/Regression etc. See TaskType enum for all the tasks supported. - Variables are only populated by the server, and will be ignored when sending a request. - - All required parameters must be populated in order to send to Azure. - - :ivar description: The asset description text. - :vartype description: str - :ivar properties: The asset property dictionary. - :vartype properties: dict[str, str] - :ivar tags: Tag dictionary. Tags can be added, removed, and updated. - :vartype tags: dict[str, str] - :ivar component_id: ARM resource ID of the component resource. - :vartype component_id: str - :ivar compute_id: ARM resource ID of the compute resource. - :vartype compute_id: str - :ivar display_name: Display name of job. - :vartype display_name: str - :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is - placed in the "Default" experiment. - :vartype experiment_name: str - :ivar identity: Identity configuration. If set, this should be one of AmlToken, - ManagedIdentity, UserIdentity or null. - Defaults to AmlToken if null. - :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration - :ivar is_archived: Is the asset archived?. - :vartype is_archived: bool - :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML", - "Command", "Sweep", and "Pipeline". - :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType - :ivar services: List of JobEndpoints. - For local jobs, a job endpoint will have an endpoint value of FileStreamObject. - :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService] - :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning", - "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed", - "Canceled", "NotResponding", "Paused", and "Unknown". - :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus - :ivar environment_id: The ARM resource ID of the Environment specification for the job. - This is optional value to provide, if not provided, AutoML will default this to Production - AutoML curated environment version when running the job. - :vartype environment_id: str - :ivar environment_variables: Environment variables included in the job. - :vartype environment_variables: dict[str, str] - :ivar outputs: Mapping of output data bindings used in the job. - :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput] - :ivar resources: Compute Resource configuration for the job. - :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration - :ivar task_details: [Required] This represents scenario which can be one of Tables/NLP/Image. - Required. - :vartype task_details: ~azure.mgmt.machinelearningservices.models.AutoMLVertical + Variables are only populated by the server, and will be ignored when sending a request. + + All required parameters must be populated in order to send to Azure. + + :ivar description: The asset description text. + :vartype description: str + :ivar properties: The asset property dictionary. + :vartype properties: dict[str, str] + :ivar tags: Tag dictionary. Tags can be added, removed, and updated. + :vartype tags: dict[str, str] + :ivar component_id: ARM resource ID of the component resource. + :vartype component_id: str + :ivar compute_id: ARM resource ID of the compute resource. + :vartype compute_id: str + :ivar display_name: Display name of job. + :vartype display_name: str + :ivar experiment_name: The name of the experiment the job belongs to. If not set, the job is + placed in the "Default" experiment. + :vartype experiment_name: str + :ivar identity: Identity configuration. If set, this should be one of AmlToken, + ManagedIdentity, UserIdentity or null. + Defaults to AmlToken if null. + :vartype identity: ~azure.mgmt.machinelearningservices.models.IdentityConfiguration + :ivar is_archived: Is the asset archived?. + :vartype is_archived: bool + :ivar job_type: [Required] Specifies the type of job. Required. Known values are: "AutoML", + "Command", "Sweep", and "Pipeline". + :vartype job_type: str or ~azure.mgmt.machinelearningservices.models.JobType + :ivar services: List of JobEndpoints. + For local jobs, a job endpoint will have an endpoint value of FileStreamObject. + :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.JobService] + :ivar status: Status of the job. Known values are: "NotStarted", "Starting", "Provisioning", + "Preparing", "Queued", "Running", "Finalizing", "CancelRequested", "Completed", "Failed", + "Canceled", "NotResponding", "Paused", and "Unknown". + :vartype status: str or ~azure.mgmt.machinelearningservices.models.JobStatus + :ivar environment_id: The ARM resource ID of the Environment specification for the job. + This is optional value to provide, if not provided, AutoML will default this to Production + AutoML curated environment version when running the job. + :vartype environment_id: str + :ivar environment_variables: Environment variables included in the job. + :vartype environment_variables: dict[str, str] + :ivar outputs: Mapping of output data bindings used in the job. + :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.JobOutput] + :ivar resources: Compute Resource configuration for the job. + :vartype resources: ~azure.mgmt.machinelearningservices.models.JobResourceConfiguration + :ivar task_details: [Required] This represents scenario which can be one of Tables/NLP/Image. + Required. + :vartype task_details: ~azure.mgmt.machinelearningservices.models.AutoMLVertical """ _validation = { @@ -1807,8 +1875,8 @@ def __init__( environment_variables: Optional[Dict[str, str]] = None, outputs: Optional[Dict[str, "_models.JobOutput"]] = None, resources: Optional["_models.JobResourceConfiguration"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -1873,26 +1941,26 @@ class AutoMLVertical(_serialization.Model): """AutoML vertical class. Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical. - You probably want to use the sub-classes and not this class directly. Known sub-classes are: - Classification, Forecasting, ImageClassification, ImageClassificationMultilabel, - ImageInstanceSegmentation, ImageObjectDetection, Regression, TextClassification, - TextClassificationMultilabel, TextNer + You probably want to use the sub-classes and not this class directly. Known sub-classes are: + Classification, Forecasting, ImageClassification, ImageClassificationMultilabel, + ImageInstanceSegmentation, ImageObjectDetection, Regression, TextClassification, + TextClassificationMultilabel, TextNer - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput """ _validation = { @@ -1928,8 +1996,8 @@ def __init__( training_data: "_models.MLTableJobInput", log_verbosity: Optional[Union[str, "_models.LogVerbosity"]] = None, target_column_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -1970,7 +2038,7 @@ class NCrossValidations(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoNCrossValidations", "Custom": "CustomNCrossValidations"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -1994,7 +2062,7 @@ class AutoNCrossValidations(NCrossValidations): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2014,7 +2082,9 @@ class AutoPauseProperties(_serialization.Model): "enabled": {"key": "enabled", "type": "bool"}, } - def __init__(self, *, delay_in_minutes: Optional[int] = None, enabled: Optional[bool] = None, **kwargs): + def __init__( + self, *, delay_in_minutes: Optional[int] = None, enabled: Optional[bool] = None, **kwargs: Any + ) -> None: """ :keyword delay_in_minutes: :paramtype delay_in_minutes: int @@ -2049,8 +2119,8 @@ def __init__( min_node_count: Optional[int] = None, enabled: Optional[bool] = None, max_node_count: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword min_node_count: :paramtype min_node_count: int @@ -2087,7 +2157,7 @@ class Seasonality(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoSeasonality", "Custom": "CustomSeasonality"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -2110,7 +2180,7 @@ class AutoSeasonality(Seasonality): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2139,7 +2209,7 @@ class TargetLags(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoTargetLags", "Custom": "CustomTargetLags"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -2163,7 +2233,7 @@ class AutoTargetLags(TargetLags): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2192,7 +2262,7 @@ class TargetRollingWindowSize(_serialization.Model): _subtype_map = {"mode": {"Auto": "AutoTargetRollingWindowSize", "Custom": "CustomTargetRollingWindowSize"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: Optional[str] = None @@ -2216,7 +2286,7 @@ class AutoTargetRollingWindowSize(TargetRollingWindowSize): "mode": {"key": "mode", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.mode: str = "Auto" @@ -2279,8 +2349,8 @@ def __init__( description: Optional[str] = None, properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2365,8 +2435,8 @@ def __init__( endpoint: Optional[str] = None, protocol: Optional[str] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2456,8 +2526,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2551,8 +2621,8 @@ def __init__( endpoint: Optional[str] = None, protocol: Optional[str] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2656,8 +2726,8 @@ def __init__( endpoint: Optional[str] = None, protocol: Optional[str] = None, service_data_access_auth_identity: Optional[Union[str, "_models.ServiceDataAccessAuthIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -2727,7 +2797,7 @@ class EarlyTerminationPolicy(_serialization.Model): } } - def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs): + def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs: Any) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -2741,7 +2811,8 @@ def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, * class BanditPolicy(EarlyTerminationPolicy): - """Defines an early termination policy based on slack criteria, and a frequency and delay interval for evaluation. + """Defines an early termination policy based on slack criteria, and a frequency and delay interval + for evaluation. All required parameters must be populated in order to send to Azure. @@ -2778,8 +2849,8 @@ def __init__( evaluation_interval: int = 0, slack_amount: float = 0, slack_factor: float = 0, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -2828,7 +2899,7 @@ class Resource(_serialization.Model): "system_data": {"key": "systemData", "type": "SystemData"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -2838,7 +2909,8 @@ def __init__(self, **kwargs): class TrackedResource(Resource): - """The resource model definition for an Azure Resource Manager tracked top level resource which has 'tags' and a 'location'. + """The resource model definition for an Azure Resource Manager tracked top level resource which + has 'tags' and a 'location'. Variables are only populated by the server, and will be ignored when sending a request. @@ -2878,7 +2950,7 @@ class TrackedResource(Resource): "location": {"key": "location", "type": "str"}, } - def __init__(self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs): + def __init__(self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -2954,8 +3026,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -3010,8 +3082,8 @@ def __init__( environment_id: Optional[str] = None, environment_variables: Optional[Dict[str, str]] = None, properties: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -3127,8 +3199,8 @@ def __init__( output_file_name: str = "predictions.csv", resources: Optional["_models.DeploymentResourceConfiguration"] = None, retry_settings: Optional["_models.BatchRetrySettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -3211,8 +3283,8 @@ class BatchDeploymentTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchDeployment"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchDeployment"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of BatchDeployment objects. If null, there are no additional pages. @@ -3289,8 +3361,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -3325,7 +3397,7 @@ class BatchEndpointDefaults(_serialization.Model): "deployment_name": {"key": "deploymentName", "type": "str"}, } - def __init__(self, *, deployment_name: Optional[str] = None, **kwargs): + def __init__(self, *, deployment_name: Optional[str] = None, **kwargs: Any) -> None: """ :keyword deployment_name: Name of the deployment that will be default for the endpoint. This deployment will end up getting 100% traffic when the endpoint scoring URL is invoked. @@ -3382,8 +3454,8 @@ def __init__( description: Optional[str] = None, keys: Optional["_models.EndpointAuthKeys"] = None, properties: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does. @@ -3464,8 +3536,8 @@ def __init__( keys: Optional["_models.EndpointAuthKeys"] = None, properties: Optional[Dict[str, str]] = None, defaults: Optional["_models.BatchEndpointDefaults"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does. @@ -3503,8 +3575,8 @@ class BatchEndpointTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchEndpoint"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.BatchEndpoint"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of BatchEndpoint objects. If null, there are no additional pages. @@ -3531,7 +3603,7 @@ class BatchRetrySettings(_serialization.Model): "timeout": {"key": "timeout", "type": "duration"}, } - def __init__(self, *, max_retries: int = 3, timeout: datetime.timedelta = "PT30S", **kwargs): + def __init__(self, *, max_retries: int = 3, timeout: datetime.timedelta = "PT30S", **kwargs: Any) -> None: """ :keyword max_retries: Maximum retry count for a mini-batch. :paramtype max_retries: int @@ -3547,16 +3619,16 @@ class SamplingAlgorithm(_serialization.Model): """The Sampling Algorithm used to generate hyperparameter values, along with properties to configure the algorithm. - You probably want to use the sub-classes and not this class directly. Known sub-classes are: - BayesianSamplingAlgorithm, GridSamplingAlgorithm, RandomSamplingAlgorithm + You probably want to use the sub-classes and not this class directly. Known sub-classes are: + BayesianSamplingAlgorithm, GridSamplingAlgorithm, RandomSamplingAlgorithm - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter - values, along with configuration properties. Required. Known values are: "Grid", "Random", and - "Bayesian". - :vartype sampling_algorithm_type: str or - ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType + :ivar sampling_algorithm_type: [Required] The algorithm used for generating hyperparameter + values, along with configuration properties. Required. Known values are: "Grid", "Random", and + "Bayesian". + :vartype sampling_algorithm_type: str or + ~azure.mgmt.machinelearningservices.models.SamplingAlgorithmType """ _validation = { @@ -3575,7 +3647,7 @@ class SamplingAlgorithm(_serialization.Model): } } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.sampling_algorithm_type: Optional[str] = None @@ -3601,7 +3673,7 @@ class BayesianSamplingAlgorithm(SamplingAlgorithm): "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.sampling_algorithm_type: str = "Bayesian" @@ -3640,7 +3712,7 @@ class BuildContext(_serialization.Model): "dockerfile_path": {"key": "dockerfilePath", "type": "str"}, } - def __init__(self, *, context_uri: str, dockerfile_path: str = "Dockerfile", **kwargs): + def __init__(self, *, context_uri: str, dockerfile_path: str = "Dockerfile", **kwargs: Any) -> None: """ :keyword context_uri: [Required] URI of the Docker build context used to build the image. Supports blob URIs on environment creation and may return blob or Git URIs. @@ -3714,8 +3786,8 @@ def __init__( thumbprint: str, authority_url: Optional[str] = None, resource_url: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword authority_url: Authority URL used for authentication. :paramtype authority_url: str @@ -3763,7 +3835,7 @@ class CertificateDatastoreSecrets(DatastoreSecrets): "certificate": {"key": "certificate", "type": "str"}, } - def __init__(self, *, certificate: Optional[str] = None, **kwargs): + def __init__(self, *, certificate: Optional[str] = None, **kwargs: Any) -> None: """ :keyword certificate: Service principal certificate. :paramtype certificate: str @@ -3774,7 +3846,8 @@ def __init__(self, *, certificate: Optional[str] = None, **kwargs): class TableVertical(_serialization.Model): - """Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting. + """Abstract class for AutoML tasks that use table dataset as input - such as + Classification/Regression/Forecasting. :ivar cv_split_column_names: Columns to use for CVSplit data. :vartype cv_split_column_names: list[str] @@ -3829,8 +3902,8 @@ def __init__( validation_data: Optional["_models.MLTableJobInput"] = None, validation_data_size: Optional[float] = None, weight_column_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword cv_split_column_names: Columns to use for CVSplit data. :paramtype cv_split_column_names: list[str] @@ -3972,8 +4045,8 @@ def __init__( positive_label: Optional[str] = None, primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None, training_settings: Optional["_models.ClassificationTrainingSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -4097,8 +4170,8 @@ def __init__( enable_vote_ensemble: bool = True, ensemble_model_download_timeout: datetime.timedelta = "PT5M", stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -4180,8 +4253,8 @@ def __init__( stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, allowed_training_algorithms: Optional[List[Union[str, "_models.ClassificationModels"]]] = None, blocked_training_algorithms: Optional[List[Union[str, "_models.ClassificationModels"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -4232,7 +4305,7 @@ class ClusterUpdateParameters(_serialization.Model): "properties": {"key": "properties.properties", "type": "ScaleSettingsInformation"}, } - def __init__(self, *, properties: Optional["_models.ScaleSettingsInformation"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.ScaleSettingsInformation"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of ClusterUpdate. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ScaleSettingsInformation @@ -4261,7 +4334,7 @@ class CodeConfiguration(_serialization.Model): "scoring_script": {"key": "scoringScript", "type": "str"}, } - def __init__(self, *, scoring_script: str, code_id: Optional[str] = None, **kwargs): + def __init__(self, *, scoring_script: str, code_id: Optional[str] = None, **kwargs: Any) -> None: """ :keyword code_id: ARM resource ID of the code asset. :paramtype code_id: str @@ -4311,7 +4384,7 @@ class CodeContainer(Resource): "properties": {"key": "properties", "type": "CodeContainerProperties"}, } - def __init__(self, *, properties: "_models.CodeContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.CodeContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.CodeContainerProperties @@ -4360,8 +4433,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4391,8 +4464,8 @@ class CodeContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeContainer"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeContainer"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of CodeContainer objects. If null, there are no additional pages. @@ -4443,7 +4516,7 @@ class CodeVersion(Resource): "properties": {"key": "properties", "type": "CodeVersionProperties"}, } - def __init__(self, *, properties: "_models.CodeVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.CodeVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.CodeVersionProperties @@ -4487,8 +4560,8 @@ def __init__( is_anonymous: bool = False, is_archived: bool = False, code_uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4530,8 +4603,8 @@ class CodeVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeVersion"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.CodeVersion"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of CodeVersion objects. If null, there are no additional pages. @@ -4559,7 +4632,7 @@ class ColumnTransformer(_serialization.Model): "parameters": {"key": "parameters", "type": "object"}, } - def __init__(self, *, fields: Optional[List[str]] = None, parameters: Optional[JSON] = None, **kwargs): + def __init__(self, *, fields: Optional[List[str]] = None, parameters: Optional[JSON] = None, **kwargs: Any) -> None: """ :keyword fields: Fields to apply transformer logic on. :paramtype fields: list[str] @@ -4690,8 +4763,8 @@ def __init__( limits: Optional["_models.CommandJobLimits"] = None, outputs: Optional[Dict[str, "_models.JobOutput"]] = None, resources: Optional["_models.JobResourceConfiguration"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4792,7 +4865,7 @@ class JobLimits(_serialization.Model): _subtype_map = {"job_limits_type": {"Command": "CommandJobLimits", "Sweep": "SweepJobLimits"}} - def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs): + def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: Any) -> None: """ :keyword timeout: The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. @@ -4825,7 +4898,7 @@ class CommandJobLimits(JobLimits): "timeout": {"key": "timeout", "type": "duration"}, } - def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs): + def __init__(self, *, timeout: Optional[datetime.timedelta] = None, **kwargs: Any) -> None: """ :keyword timeout: The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. @@ -4873,7 +4946,7 @@ class ComponentContainer(Resource): "properties": {"key": "properties", "type": "ComponentContainerProperties"}, } - def __init__(self, *, properties: "_models.ComponentContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.ComponentContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComponentContainerProperties @@ -4888,22 +4961,24 @@ class ComponentContainerProperties(AssetContainer): .. raw:: html - . + . - Variables are only populated by the server, and will be ignored when sending a request. + Variables are only populated by the server, and will be ignored when sending a request. - :ivar description: The asset description text. - :vartype description: str - :ivar properties: The asset property dictionary. - :vartype properties: dict[str, str] - :ivar tags: Tag dictionary. Tags can be added, removed, and updated. - :vartype tags: dict[str, str] - :ivar is_archived: Is the asset archived?. - :vartype is_archived: bool - :ivar latest_version: The latest version inside this container. - :vartype latest_version: str - :ivar next_version: The next auto incremental version. - :vartype next_version: str + :ivar description: The asset description text. + :vartype description: str + :ivar properties: The asset property dictionary. + :vartype properties: dict[str, str] + :ivar tags: Tag dictionary. Tags can be added, removed, and updated. + :vartype tags: dict[str, str] + :ivar is_archived: Is the asset archived?. + :vartype is_archived: bool + :ivar latest_version: The latest version inside this container. + :vartype latest_version: str + :ivar next_version: The next auto incremental version. + :vartype next_version: str """ _validation = { @@ -4927,8 +5002,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -4958,8 +5033,12 @@ class ComponentContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ComponentContainer"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.ComponentContainer"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ComponentContainer objects. If null, there are no additional pages. @@ -5010,7 +5089,7 @@ class ComponentVersion(Resource): "properties": {"key": "properties", "type": "ComponentVersionProperties"}, } - def __init__(self, *, properties: "_models.ComponentVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.ComponentVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComponentVersionProperties @@ -5061,8 +5140,8 @@ def __init__( is_anonymous: bool = False, is_archived: bool = False, component_spec: Optional[JSON] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -5111,8 +5190,12 @@ class ComponentVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ComponentVersion"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.ComponentVersion"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ComponentVersion objects. If null, there are no additional pages. @@ -5136,7 +5219,7 @@ class ComputeInstanceSchema(_serialization.Model): "properties": {"key": "properties", "type": "ComputeInstanceProperties"}, } - def __init__(self, *, properties: Optional["_models.ComputeInstanceProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.ComputeInstanceProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of ComputeInstance. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties @@ -5214,8 +5297,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of ComputeInstance. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ComputeInstanceProperties @@ -5264,7 +5347,9 @@ class ComputeInstanceApplication(_serialization.Model): "endpoint_uri": {"key": "endpointUri", "type": "str"}, } - def __init__(self, *, display_name: Optional[str] = None, endpoint_uri: Optional[str] = None, **kwargs): + def __init__( + self, *, display_name: Optional[str] = None, endpoint_uri: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword display_name: Name of the ComputeInstance application. :paramtype display_name: str @@ -5298,7 +5383,7 @@ class ComputeInstanceConnectivityEndpoints(_serialization.Model): "private_ip_address": {"key": "privateIpAddress", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.public_ip_address = None @@ -5345,8 +5430,8 @@ def __init__( gpu: Optional[str] = None, network: Optional[Union[str, "_models.Network"]] = None, environment: Optional["_models.ComputeInstanceEnvironmentInfo"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: Name of the ComputeInstance container. :paramtype name: str @@ -5394,7 +5479,7 @@ class ComputeInstanceCreatedBy(_serialization.Model): "user_id": {"key": "userId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.user_name = None @@ -5433,8 +5518,8 @@ def __init__( disk_size_gb: Optional[int] = None, lun: Optional[int] = None, storage_account_type: Union[str, "_models.StorageAccountType"] = "Standard_LRS", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword caching: Caching type of Data Disk. Known values are: "None", "ReadOnly", and "ReadWrite". @@ -5504,8 +5589,8 @@ def __init__( mount_state: Optional[Union[str, "_models.MountState"]] = None, mounted_on: Optional[datetime.datetime] = None, error: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword source: Source of the ComputeInstance data mount. :paramtype source: str @@ -5553,7 +5638,7 @@ class ComputeInstanceEnvironmentInfo(_serialization.Model): "version": {"key": "version", "type": "str"}, } - def __init__(self, *, name: Optional[str] = None, version: Optional[str] = None, **kwargs): + def __init__(self, *, name: Optional[str] = None, version: Optional[str] = None, **kwargs: Any) -> None: """ :keyword name: name of environment. :paramtype name: str @@ -5596,8 +5681,8 @@ def __init__( operation_time: Optional[datetime.datetime] = None, operation_status: Optional[Union[str, "_models.OperationStatus"]] = None, operation_trigger: Optional[Union[str, "_models.OperationTrigger"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword operation_name: Name of the last operation. Known values are: "Create", "Start", "Stop", "Restart", "Reimage", and "Delete". @@ -5690,7 +5775,6 @@ class ComputeInstanceProperties(_serialization.Model): # pylint: disable=too-ma "errors": {"readonly": True}, "state": {"readonly": True}, "last_operation": {"readonly": True}, - "schedules": {"readonly": True}, "containers": {"readonly": True}, "data_disks": {"readonly": True}, "data_mounts": {"readonly": True}, @@ -5732,9 +5816,10 @@ def __init__( compute_instance_authorization_type: Union[str, "_models.ComputeInstanceAuthorizationType"] = "personal", personal_compute_instance_settings: Optional["_models.PersonalComputeInstanceSettings"] = None, setup_scripts: Optional["_models.SetupScripts"] = None, + schedules: Optional["_models.ComputeSchedules"] = None, enable_node_public_ip: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword vm_size: Virtual Machine Size. :paramtype vm_size: str @@ -5757,6 +5842,8 @@ def __init__( ~azure.mgmt.machinelearningservices.models.PersonalComputeInstanceSettings :keyword setup_scripts: Details of customized scripts to execute for setting up the cluster. :paramtype setup_scripts: ~azure.mgmt.machinelearningservices.models.SetupScripts + :keyword schedules: The list of schedules to be applied on the computes. + :paramtype schedules: ~azure.mgmt.machinelearningservices.models.ComputeSchedules :keyword enable_node_public_ip: Enable or disable node public IP address provisioning. Possible values are: Possible values are: true - Indicates that the compute nodes will have public IPs provisioned. false - Indicates that the compute nodes will have a private endpoint and no @@ -5777,7 +5864,7 @@ def __init__( self.personal_compute_instance_settings = personal_compute_instance_settings self.setup_scripts = setup_scripts self.last_operation = None - self.schedules = None + self.schedules = schedules self.enable_node_public_ip = enable_node_public_ip self.containers = None self.data_disks = None @@ -5821,8 +5908,8 @@ def __init__( *, ssh_public_access: Union[str, "_models.SshPublicAccess"] = "Disabled", admin_public_key: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ssh_public_access: State of the public SSH port. Possible values are: Disabled - Indicates that the public ssh port is closed on this instance. Enabled - Indicates that the @@ -5851,7 +5938,7 @@ class ComputeInstanceVersion(_serialization.Model): "runtime": {"key": "runtime", "type": "str"}, } - def __init__(self, *, runtime: Optional[str] = None, **kwargs): + def __init__(self, *, runtime: Optional[str] = None, **kwargs: Any) -> None: """ :keyword runtime: Runtime of compute instance. :paramtype runtime: str @@ -5871,7 +5958,7 @@ class ComputeResourceSchema(_serialization.Model): "properties": {"key": "properties", "type": "Compute"}, } - def __init__(self, *, properties: Optional["_models.Compute"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.Compute"] = None, **kwargs: Any) -> None: """ :keyword properties: Compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.Compute @@ -5935,8 +6022,8 @@ def __init__( location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.Compute @@ -5973,7 +6060,9 @@ class ComputeSchedules(_serialization.Model): "compute_start_stop": {"key": "computeStartStop", "type": "[ComputeStartStopSchedule]"}, } - def __init__(self, *, compute_start_stop: Optional[List["_models.ComputeStartStopSchedule"]] = None, **kwargs): + def __init__( + self, *, compute_start_stop: Optional[List["_models.ComputeStartStopSchedule"]] = None, **kwargs: Any + ) -> None: """ :keyword compute_start_stop: The list of compute start stop schedules to be applied. :paramtype compute_start_stop: @@ -6002,9 +6091,9 @@ class ComputeStartStopSchedule(_serialization.Model): "Cron". :vartype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType :ivar recurrence: Required if triggerType is Recurrence. - :vartype recurrence: ~azure.mgmt.machinelearningservices.models.RecurrenceTrigger + :vartype recurrence: ~azure.mgmt.machinelearningservices.models.Recurrence :ivar cron: Required if triggerType is Cron. - :vartype cron: ~azure.mgmt.machinelearningservices.models.CronTrigger + :vartype cron: ~azure.mgmt.machinelearningservices.models.Cron :ivar schedule: [Deprecated] Not used any more. :vartype schedule: ~azure.mgmt.machinelearningservices.models.ScheduleBase """ @@ -6020,8 +6109,8 @@ class ComputeStartStopSchedule(_serialization.Model): "status": {"key": "status", "type": "str"}, "action": {"key": "action", "type": "str"}, "trigger_type": {"key": "triggerType", "type": "str"}, - "recurrence": {"key": "recurrence", "type": "RecurrenceTrigger"}, - "cron": {"key": "cron", "type": "CronTrigger"}, + "recurrence": {"key": "recurrence", "type": "Recurrence"}, + "cron": {"key": "cron", "type": "Cron"}, "schedule": {"key": "schedule", "type": "ScheduleBase"}, } @@ -6031,11 +6120,11 @@ def __init__( status: Optional[Union[str, "_models.ScheduleStatus"]] = None, action: Optional[Union[str, "_models.ComputePowerAction"]] = None, trigger_type: Optional[Union[str, "_models.TriggerType"]] = None, - recurrence: Optional["_models.RecurrenceTrigger"] = None, - cron: Optional["_models.CronTrigger"] = None, + recurrence: Optional["_models.Recurrence"] = None, + cron: Optional["_models.Cron"] = None, schedule: Optional["_models.ScheduleBase"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Is the schedule enabled or disabled?. Known values are: "Enabled" and "Disabled". @@ -6046,9 +6135,9 @@ def __init__( "Cron". :paramtype trigger_type: str or ~azure.mgmt.machinelearningservices.models.TriggerType :keyword recurrence: Required if triggerType is Recurrence. - :paramtype recurrence: ~azure.mgmt.machinelearningservices.models.RecurrenceTrigger + :paramtype recurrence: ~azure.mgmt.machinelearningservices.models.Recurrence :keyword cron: Required if triggerType is Cron. - :paramtype cron: ~azure.mgmt.machinelearningservices.models.CronTrigger + :paramtype cron: ~azure.mgmt.machinelearningservices.models.Cron :keyword schedule: [Deprecated] Not used any more. :paramtype schedule: ~azure.mgmt.machinelearningservices.models.ScheduleBase """ @@ -6084,8 +6173,8 @@ def __init__( *, container_resource_limits: Optional["_models.ContainerResourceSettings"] = None, container_resource_requests: Optional["_models.ContainerResourceSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword container_resource_limits: Container resource limit info:. :paramtype container_resource_limits: @@ -6119,7 +6208,9 @@ class ContainerResourceSettings(_serialization.Model): "memory": {"key": "memory", "type": "str"}, } - def __init__(self, *, cpu: Optional[str] = None, gpu: Optional[str] = None, memory: Optional[str] = None, **kwargs): + def __init__( + self, *, cpu: Optional[str] = None, gpu: Optional[str] = None, memory: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword cpu: Number of vCPUs request/limit for container. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/. @@ -6148,7 +6239,7 @@ class CosmosDbSettings(_serialization.Model): "collections_throughput": {"key": "collectionsThroughput", "type": "int"}, } - def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs): + def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs: Any) -> None: """ :keyword collections_throughput: The throughput of the collections in cosmosdb database. :paramtype collections_throughput: int @@ -6157,6 +6248,51 @@ def __init__(self, *, collections_throughput: Optional[int] = None, **kwargs): self.collections_throughput = collections_throughput +class Cron(_serialization.Model): + """The workflow trigger cron for ComputeStartStop schedule type. + + :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :vartype start_time: str + :ivar time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :vartype time_zone: str + :ivar expression: [Required] Specifies cron expression of schedule. + The expression should follow NCronTab format. + :vartype expression: str + """ + + _attribute_map = { + "start_time": {"key": "startTime", "type": "str"}, + "time_zone": {"key": "timeZone", "type": "str"}, + "expression": {"key": "expression", "type": "str"}, + } + + def __init__( + self, + *, + start_time: Optional[str] = None, + time_zone: str = "UTC", + expression: Optional[str] = None, + **kwargs: Any + ) -> None: + """ + :keyword start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :paramtype start_time: str + :keyword time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :paramtype time_zone: str + :keyword expression: [Required] Specifies cron expression of schedule. + The expression should follow NCronTab format. + :paramtype expression: str + """ + super().__init__(**kwargs) + self.start_time = start_time + self.time_zone = time_zone + self.expression = expression + + class TriggerBase(_serialization.Model): """TriggerBase. @@ -6195,8 +6331,8 @@ class TriggerBase(_serialization.Model): _subtype_map = {"trigger_type": {"Cron": "CronTrigger", "Recurrence": "RecurrenceTrigger"}} def __init__( - self, *, end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", **kwargs - ): + self, *, end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", **kwargs: Any + ) -> None: """ :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601. @@ -6262,8 +6398,8 @@ def __init__( end_time: Optional[str] = None, start_time: Optional[str] = None, time_zone: str = "UTC", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601. @@ -6308,7 +6444,7 @@ class CustomForecastHorizon(ForecastHorizon): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] Forecast horizon value. Required. :paramtype value: int @@ -6356,7 +6492,7 @@ class JobInput(_serialization.Model): } } - def __init__(self, *, description: Optional[str] = None, **kwargs): + def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -6402,8 +6538,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -6456,7 +6592,7 @@ class JobOutput(_serialization.Model): } } - def __init__(self, *, description: Optional[str] = None, **kwargs): + def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -6499,8 +6635,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -6538,7 +6674,7 @@ class CustomNCrossValidations(NCrossValidations): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] N-Cross validations value. Required. :paramtype value: int @@ -6569,7 +6705,7 @@ class CustomSeasonality(Seasonality): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] Seasonality value. Required. :paramtype value: int @@ -6601,7 +6737,7 @@ class CustomTargetLags(TargetLags): "values": {"key": "values", "type": "[int]"}, } - def __init__(self, *, values: List[int], **kwargs): + def __init__(self, *, values: List[int], **kwargs: Any) -> None: """ :keyword values: [Required] Set target lags values. Required. :paramtype values: list[int] @@ -6633,7 +6769,7 @@ class CustomTargetRollingWindowSize(TargetRollingWindowSize): "value": {"key": "value", "type": "int"}, } - def __init__(self, *, value: int, **kwargs): + def __init__(self, *, value: int, **kwargs: Any) -> None: """ :keyword value: [Required] TargetRollingWindowSize value. Required. :paramtype value: int @@ -6654,7 +6790,7 @@ class DatabricksSchema(_serialization.Model): "properties": {"key": "properties", "type": "DatabricksProperties"}, } - def __init__(self, *, properties: Optional["_models.DatabricksProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.DatabricksProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of Databricks. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties @@ -6732,8 +6868,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of Databricks. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatabricksProperties @@ -6779,7 +6915,7 @@ class DatabricksComputeSecretsProperties(_serialization.Model): "databricks_access_token": {"key": "databricksAccessToken", "type": "str"}, } - def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs): + def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs: Any) -> None: """ :keyword databricks_access_token: access token for databricks account. :paramtype databricks_access_token: str @@ -6810,7 +6946,7 @@ class DatabricksComputeSecrets(ComputeSecrets, DatabricksComputeSecretsPropertie "compute_type": {"key": "computeType", "type": "str"}, } - def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs): + def __init__(self, *, databricks_access_token: Optional[str] = None, **kwargs: Any) -> None: """ :keyword databricks_access_token: access token for databricks account. :paramtype databricks_access_token: str @@ -6834,7 +6970,9 @@ class DatabricksProperties(_serialization.Model): "workspace_url": {"key": "workspaceUrl", "type": "str"}, } - def __init__(self, *, databricks_access_token: Optional[str] = None, workspace_url: Optional[str] = None, **kwargs): + def __init__( + self, *, databricks_access_token: Optional[str] = None, workspace_url: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword databricks_access_token: Databricks access token. :paramtype databricks_access_token: str @@ -6884,7 +7022,7 @@ class DataContainer(Resource): "properties": {"key": "properties", "type": "DataContainerProperties"}, } - def __init__(self, *, properties: "_models.DataContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.DataContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DataContainerProperties @@ -6941,8 +7079,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -6976,8 +7114,8 @@ class DataContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataContainer"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataContainer"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of DataContainer objects. If null, there are no additional pages. @@ -7055,8 +7193,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword compute_location: Location for the underlying compute. :paramtype compute_location: str @@ -7090,7 +7228,9 @@ class DataLakeAnalyticsSchema(_serialization.Model): "properties": {"key": "properties", "type": "DataLakeAnalyticsSchemaProperties"}, } - def __init__(self, *, properties: Optional["_models.DataLakeAnalyticsSchemaProperties"] = None, **kwargs): + def __init__( + self, *, properties: Optional["_models.DataLakeAnalyticsSchemaProperties"] = None, **kwargs: Any + ) -> None: """ :keyword properties: :paramtype properties: @@ -7170,8 +7310,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: :paramtype properties: @@ -7218,7 +7358,7 @@ class DataLakeAnalyticsSchemaProperties(_serialization.Model): "data_lake_store_account_name": {"key": "dataLakeStoreAccountName", "type": "str"}, } - def __init__(self, *, data_lake_store_account_name: Optional[str] = None, **kwargs): + def __init__(self, *, data_lake_store_account_name: Optional[str] = None, **kwargs: Any) -> None: """ :keyword data_lake_store_account_name: DataLake Store Account Name. :paramtype data_lake_store_account_name: str @@ -7251,7 +7391,7 @@ class DataPathAssetReference(AssetReferenceBase): "path": {"key": "path", "type": "str"}, } - def __init__(self, *, datastore_id: Optional[str] = None, path: Optional[str] = None, **kwargs): + def __init__(self, *, datastore_id: Optional[str] = None, path: Optional[str] = None, **kwargs: Any) -> None: """ :keyword datastore_id: ARM resource ID of the datastore where the asset is located. :paramtype datastore_id: str @@ -7302,7 +7442,7 @@ class Datastore(Resource): "properties": {"key": "properties", "type": "DatastoreProperties"}, } - def __init__(self, *, properties: "_models.DatastoreProperties", **kwargs): + def __init__(self, *, properties: "_models.DatastoreProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DatastoreProperties @@ -7326,7 +7466,9 @@ class DatastoreResourceArmPaginatedResult(_serialization.Model): "value": {"key": "value", "type": "[Datastore]"}, } - def __init__(self, *, next_link: Optional[str] = None, value: Optional[List["_models.Datastore"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.Datastore"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of Datastore objects. If null, there are no additional pages. @@ -7377,7 +7519,7 @@ class DataVersionBase(Resource): "properties": {"key": "properties", "type": "DataVersionBaseProperties"}, } - def __init__(self, *, properties: "_models.DataVersionBaseProperties", **kwargs): + def __init__(self, *, properties: "_models.DataVersionBaseProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.DataVersionBaseProperties @@ -7441,8 +7583,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -7487,8 +7629,8 @@ class DataVersionBaseResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataVersionBase"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.DataVersionBase"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of DataVersionBase objects. If null, there are no additional pages. @@ -7526,7 +7668,7 @@ class OnlineScaleSettings(_serialization.Model): "scale_type": {"Default": "DefaultScaleSettings", "TargetUtilization": "TargetUtilizationScaleSettings"} } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.scale_type: Optional[str] = None @@ -7550,7 +7692,7 @@ class DefaultScaleSettings(OnlineScaleSettings): "scale_type": {"key": "scaleType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.scale_type: str = "Default" @@ -7567,7 +7709,7 @@ class DeploymentLogs(_serialization.Model): "content": {"key": "content", "type": "str"}, } - def __init__(self, *, content: Optional[str] = None, **kwargs): + def __init__(self, *, content: Optional[str] = None, **kwargs: Any) -> None: """ :keyword content: The retrieved online deployment logs. :paramtype content: str @@ -7596,8 +7738,8 @@ def __init__( *, container_type: Optional[Union[str, "_models.ContainerType"]] = None, tail: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword container_type: The type of container to retrieve logs from. Known values are: "StorageInitializer" and "InferenceServer". @@ -7633,8 +7775,8 @@ def __init__( instance_count: int = 1, instance_type: Optional[str] = None, properties: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword instance_count: Optional number of instances or nodes used by the compute target. :paramtype instance_count: int @@ -7672,8 +7814,8 @@ def __init__( instance_count: int = 1, instance_type: Optional[str] = None, properties: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword instance_count: Optional number of instances or nodes used by the compute target. :paramtype instance_count: int @@ -7732,8 +7874,8 @@ def __init__( container_registry: Optional[Dict[str, JSON]] = None, application_insights: Optional[Dict[str, JSON]] = None, others: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword udr: Setting for diagnosing user defined routing. :paramtype udr: dict[str, JSON] @@ -7777,7 +7919,7 @@ class DiagnoseResponseResult(_serialization.Model): "value": {"key": "value", "type": "DiagnoseResponseResultValue"}, } - def __init__(self, *, value: Optional["_models.DiagnoseResponseResultValue"] = None, **kwargs): + def __init__(self, *, value: Optional["_models.DiagnoseResponseResultValue"] = None, **kwargs: Any) -> None: """ :keyword value: :paramtype value: ~azure.mgmt.machinelearningservices.models.DiagnoseResponseResultValue @@ -7839,8 +7981,8 @@ def __init__( container_registry_results: Optional[List["_models.DiagnoseResult"]] = None, application_insights_results: Optional[List["_models.DiagnoseResult"]] = None, other_results: Optional[List["_models.DiagnoseResult"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword user_defined_route_results: :paramtype user_defined_route_results: @@ -7906,7 +8048,7 @@ class DiagnoseResult(_serialization.Model): "message": {"key": "message", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.code = None @@ -7925,7 +8067,7 @@ class DiagnoseWorkspaceParameters(_serialization.Model): "value": {"key": "value", "type": "DiagnoseRequestProperties"}, } - def __init__(self, *, value: Optional["_models.DiagnoseRequestProperties"] = None, **kwargs): + def __init__(self, *, value: Optional["_models.DiagnoseRequestProperties"] = None, **kwargs: Any) -> None: """ :keyword value: Value of Parameters. :paramtype value: ~azure.mgmt.machinelearningservices.models.DiagnoseRequestProperties @@ -7957,7 +8099,7 @@ class DistributionConfiguration(_serialization.Model): _subtype_map = {"distribution_type": {"Mpi": "Mpi", "PyTorch": "PyTorch", "TensorFlow": "TensorFlow"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.distribution_type: Optional[str] = None @@ -7990,8 +8132,8 @@ class EncryptionKeyVaultProperties(_serialization.Model): } def __init__( - self, *, key_vault_arm_id: str, key_identifier: str, identity_client_id: Optional[str] = None, **kwargs - ): + self, *, key_vault_arm_id: str, key_identifier: str, identity_client_id: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword key_vault_arm_id: The ArmId of the keyVault where the customer owned encryption key is present. Required. @@ -8040,8 +8182,8 @@ def __init__( status: Union[str, "_models.EncryptionStatus"], key_vault_properties: "_models.EncryptionKeyVaultProperties", identity: Optional["_models.IdentityForCmk"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Indicates whether or not the encryption is enabled for the workspace. Required. Known values are: "Enabled" and "Disabled". @@ -8073,7 +8215,9 @@ class EndpointAuthKeys(_serialization.Model): "secondary_key": {"key": "secondaryKey", "type": "str"}, } - def __init__(self, *, primary_key: Optional[str] = None, secondary_key: Optional[str] = None, **kwargs): + def __init__( + self, *, primary_key: Optional[str] = None, secondary_key: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword primary_key: The primary key. :paramtype primary_key: str @@ -8112,8 +8256,8 @@ def __init__( expiry_time_utc: int = 0, refresh_after_time_utc: int = 0, token_type: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword access_token: Access token for endpoint authentication. :paramtype access_token: str @@ -8154,7 +8298,7 @@ class ScheduleActionBase(_serialization.Model): _subtype_map = {"action_type": {"CreateJob": "JobScheduleAction", "InvokeBatchEndpoint": "EndpointScheduleAction"}} - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.action_type: Optional[str] = None @@ -8187,7 +8331,7 @@ class EndpointScheduleAction(ScheduleActionBase): "endpoint_invocation_definition": {"key": "endpointInvocationDefinition", "type": "object"}, } - def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs): + def __init__(self, *, endpoint_invocation_definition: JSON, **kwargs: Any) -> None: """ :keyword endpoint_invocation_definition: [Required] Defines Schedule action definition details. @@ -8240,7 +8384,7 @@ class EnvironmentContainer(Resource): "properties": {"key": "properties", "type": "EnvironmentContainerProperties"}, } - def __init__(self, *, properties: "_models.EnvironmentContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.EnvironmentContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: @@ -8290,8 +8434,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -8321,8 +8465,12 @@ class EnvironmentContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.EnvironmentContainer"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.EnvironmentContainer"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of EnvironmentContainer objects. If null, there are no additional pages. @@ -8373,7 +8521,7 @@ class EnvironmentVersion(Resource): "properties": {"key": "properties", "type": "EnvironmentVersionProperties"}, } - def __init__(self, *, properties: "_models.EnvironmentVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.EnvironmentVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.EnvironmentVersionProperties @@ -8471,8 +8619,8 @@ def __init__( image: Optional[str] = None, inference_config: Optional["_models.InferenceContainerProperties"] = None, os_type: Optional[Union[str, "_models.OperatingSystemType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -8547,8 +8695,12 @@ class EnvironmentVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.EnvironmentVersion"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.EnvironmentVersion"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of EnvironmentVersion objects. If null, there are no additional pages. @@ -8582,7 +8734,7 @@ class ErrorAdditionalInfo(_serialization.Model): "info": {"key": "info", "type": "object"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.type = None @@ -8622,7 +8774,7 @@ class ErrorDetail(_serialization.Model): "additional_info": {"key": "additionalInfo", "type": "[ErrorAdditionalInfo]"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.code = None @@ -8633,7 +8785,8 @@ def __init__(self, **kwargs): class ErrorResponse(_serialization.Model): - """Common error response for all Azure Resource Manager APIs to return error details for failed operations. (This also follows the OData error response format.). + """Common error response for all Azure Resource Manager APIs to return error details for failed + operations. (This also follows the OData error response format.). :ivar error: The error object. :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorDetail @@ -8643,7 +8796,7 @@ class ErrorResponse(_serialization.Model): "error": {"key": "error", "type": "ErrorDetail"}, } - def __init__(self, *, error: Optional["_models.ErrorDetail"] = None, **kwargs): + def __init__(self, *, error: Optional["_models.ErrorDetail"] = None, **kwargs: Any) -> None: """ :keyword error: The error object. :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorDetail @@ -8685,8 +8838,8 @@ def __init__( retail_price: float, os_type: Union[str, "_models.VMPriceOSType"], vm_tier: Union[str, "_models.VMTier"], - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword retail_price: The price charged for using the VM. Required. :paramtype retail_price: float @@ -8737,8 +8890,8 @@ def __init__( billing_currency: Union[str, "_models.BillingCurrency"], unit_of_measure: Union[str, "_models.UnitOfMeasure"], values: List["_models.EstimatedVMPrice"], - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword billing_currency: Three lettered code specifying the currency of the VM price. Example: USD. Required. "USD" @@ -8767,7 +8920,7 @@ class ExternalFQDNResponse(_serialization.Model): "value": {"key": "value", "type": "[FQDNEndpoints]"}, } - def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.FQDNEndpoints"]] = None, **kwargs: Any) -> None: """ :keyword value: :paramtype value: list[~azure.mgmt.machinelearningservices.models.FQDNEndpoints] @@ -8787,7 +8940,7 @@ class FeaturizationSettings(_serialization.Model): "dataset_language": {"key": "datasetLanguage", "type": "str"}, } - def __init__(self, *, dataset_language: Optional[str] = None, **kwargs): + def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) -> None: """ :keyword dataset_language: Dataset language, useful for the text data. :paramtype dataset_language: str @@ -8807,7 +8960,7 @@ class FlavorData(_serialization.Model): "data": {"key": "data", "type": "{str}"}, } - def __init__(self, *, data: Optional[Dict[str, str]] = None, **kwargs): + def __init__(self, *, data: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword data: Model flavor-specific data. :paramtype data: dict[str, str] @@ -8915,8 +9068,8 @@ def __init__( forecasting_settings: Optional["_models.ForecastingSettings"] = None, primary_metric: Optional[Union[str, "_models.ForecastingPrimaryMetrics"]] = None, training_settings: Optional["_models.ForecastingTrainingSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -9085,8 +9238,8 @@ def __init__( time_column_name: Optional[str] = None, time_series_id_column_names: Optional[List[str]] = None, use_stl: Optional[Union[str, "_models.UseStl"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword country_or_region_for_holidays: Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'. @@ -9208,8 +9361,8 @@ def __init__( stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, allowed_training_algorithms: Optional[List[Union[str, "_models.ForecastingModels"]]] = None, blocked_training_algorithms: Optional[List[Union[str, "_models.ForecastingModels"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -9268,8 +9421,8 @@ def __init__( *, domain_name: Optional[str] = None, endpoint_details: Optional[List["_models.FQDNEndpointDetail"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword domain_name: :paramtype domain_name: str @@ -9293,7 +9446,7 @@ class FQDNEndpointDetail(_serialization.Model): "port": {"key": "port", "type": "int"}, } - def __init__(self, *, port: Optional[int] = None, **kwargs): + def __init__(self, *, port: Optional[int] = None, **kwargs: Any) -> None: """ :keyword port: :paramtype port: int @@ -9313,7 +9466,7 @@ class FQDNEndpoints(_serialization.Model): "properties": {"key": "properties", "type": "FQDNEndpointsProperties"}, } - def __init__(self, *, properties: Optional["_models.FQDNEndpointsProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.FQDNEndpointsProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: :paramtype properties: ~azure.mgmt.machinelearningservices.models.FQDNEndpointsProperties @@ -9337,8 +9490,8 @@ class FQDNEndpointsProperties(_serialization.Model): } def __init__( - self, *, category: Optional[str] = None, endpoints: Optional[List["_models.FQDNEndpoint"]] = None, **kwargs - ): + self, *, category: Optional[str] = None, endpoints: Optional[List["_models.FQDNEndpoint"]] = None, **kwargs: Any + ) -> None: """ :keyword category: :paramtype category: str @@ -9370,7 +9523,7 @@ class GridSamplingAlgorithm(SamplingAlgorithm): "sampling_algorithm_type": {"key": "samplingAlgorithmType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.sampling_algorithm_type: str = "Grid" @@ -9387,7 +9540,7 @@ class HDInsightSchema(_serialization.Model): "properties": {"key": "properties", "type": "HDInsightProperties"}, } - def __init__(self, *, properties: Optional["_models.HDInsightProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.HDInsightProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: HDInsight compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties @@ -9465,8 +9618,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: HDInsight compute properties. :paramtype properties: ~azure.mgmt.machinelearningservices.models.HDInsightProperties @@ -9525,8 +9678,8 @@ def __init__( ssh_port: Optional[int] = None, address: Optional[str] = None, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ssh_port: Port open for ssh connections on the master node of the cluster. :paramtype ssh_port: int @@ -9564,7 +9717,7 @@ class IdAssetReference(AssetReferenceBase): "asset_id": {"key": "assetId", "type": "str"}, } - def __init__(self, *, asset_id: str, **kwargs): + def __init__(self, *, asset_id: str, **kwargs: Any) -> None: """ :keyword asset_id: [Required] ARM resource ID of the asset. Required. :paramtype asset_id: str @@ -9586,7 +9739,7 @@ class IdentityForCmk(_serialization.Model): "user_assigned_identity": {"key": "userAssignedIdentity", "type": "str"}, } - def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs): + def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs: Any) -> None: """ :keyword user_assigned_identity: The ArmId of the user assigned identity that will be used to access the customer managed key vault. @@ -9598,21 +9751,22 @@ def __init__(self, *, user_assigned_identity: Optional[str] = None, **kwargs): class ImageVertical(_serialization.Model): """Abstract class for AutoML tasks that train image (computer vision) models - - such as Image Classification / Image Classification Multilabel / Image Object Detection / Image Instance Segmentation. + such as Image Classification / Image Classification Multilabel / Image Object Detection / Image + Instance Segmentation. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float """ _validation = { @@ -9633,8 +9787,8 @@ def __init__( sweep_settings: Optional["_models.ImageSweepSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, validation_data_size: Optional[float] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword limit_settings: [Required] Limit settings for the AutoML job. Required. :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings @@ -9702,8 +9856,8 @@ def __init__( validation_data_size: Optional[float] = None, model_settings: Optional["_models.ImageModelSettingsClassification"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword limit_settings: [Required] Limit settings for the AutoML job. Required. :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings @@ -9736,47 +9890,49 @@ def __init__( class ImageClassification(ImageClassificationBase, AutoMLVertical): # pylint: disable=too-many-instance-attributes - """Image Classification. Multi-class image classification is used when an image is classified with only a single label - from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'. + """Image Classification. Multi-class image classification is used when an image is classified with + only a single label + from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' + or a 'duck'. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] - :ivar primary_metric: Primary metric to optimize for this task. Known values are: - "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and - "PrecisionScoreWeighted". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] + :ivar primary_metric: Primary metric to optimize for this task. Known values are: + "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and + "PrecisionScoreWeighted". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics """ _validation = { @@ -9812,8 +9968,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsClassification"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None, primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -9875,57 +10031,58 @@ def __init__( class ImageClassificationMultilabel( ImageClassificationBase, AutoMLVertical ): # pylint: disable=too-many-instance-attributes - """Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels + """Image Classification Multilabel. Multi-label image classification is used when an image could + have one or more labels from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. - All required parameters must be populated in order to send to Azure. - - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] - :ivar primary_metric: Primary metric to optimize for this task. Known values are: - "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", - "PrecisionScoreWeighted", and "IOU". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics - """ - - _validation = { - "task_type": {"required": True}, - "training_data": {"required": True}, - "limit_settings": {"required": True}, - } + All required parameters must be populated in order to send to Azure. - _attribute_map = { - "log_verbosity": {"key": "logVerbosity", "type": "str"}, + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsClassification + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsClassification] + :ivar primary_metric: Primary metric to optimize for this task. Known values are: + "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", + "PrecisionScoreWeighted", and "IOU". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics + """ + + _validation = { + "task_type": {"required": True}, + "training_data": {"required": True}, + "limit_settings": {"required": True}, + } + + _attribute_map = { + "log_verbosity": {"key": "logVerbosity", "type": "str"}, "target_column_name": {"key": "targetColumnName", "type": "str"}, "task_type": {"key": "taskType", "type": "str"}, "training_data": {"key": "trainingData", "type": "MLTableJobInput"}, @@ -9951,8 +10108,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsClassification"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsClassification"]] = None, primary_metric: Optional[Union[str, "_models.ClassificationMultilabelPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -10058,8 +10215,8 @@ def __init__( validation_data_size: Optional[float] = None, model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword limit_settings: [Required] Limit settings for the AutoML job. Required. :paramtype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings @@ -10094,45 +10251,46 @@ def __init__( class ImageInstanceSegmentation( ImageObjectDetectionBase, AutoMLVertical ): # pylint: disable=too-many-instance-attributes - """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level, + """Image Instance Segmentation. Instance segmentation is used to identify objects in an image at + the pixel level, drawing a polygon around each object in the image. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] - :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.InstanceSegmentationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] + :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.InstanceSegmentationPrimaryMetrics """ _validation = { @@ -10168,8 +10326,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None, primary_metric: Optional[Union[str, "_models.InstanceSegmentationPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -10244,8 +10402,8 @@ class ImageLimitSettings(_serialization.Model): } def __init__( - self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs - ): + self, *, max_concurrent_trials: int = 1, max_trials: int = 1, timeout: datetime.timedelta = "P7D", **kwargs: Any + ) -> None: """ :keyword max_concurrent_trials: Maximum number of concurrent AutoML iterations. :paramtype max_concurrent_trials: int @@ -10270,91 +10428,92 @@ class ImageModelDistributionSettings(_serialization.Model): # pylint: disable=t LearningRate = "uniform(0.001, 0.01)"; LayersToFreeze = "choice(0, 2)"; ` - All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., valn) + All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., + valn) where distribution name can be: uniform, quniform, loguniform, etc For more details on how to compose distribution expressions please check the documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: str - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: str - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: str - :ivar distributed: Whether to use distributer training. - :vartype distributed: str - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: str - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: str - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: str - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: str - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: str - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: str - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: str - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: str - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. - :vartype learning_rate_scheduler: str - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: str - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: str - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: str - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: str - :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. - :vartype optimizer: str - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: str - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: str - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: str - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: str - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: str - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: str - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: str - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: str + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: str + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: str + :ivar distributed: Whether to use distributer training. + :vartype distributed: str + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: str + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: str + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: str + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: str + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: str + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: str + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: str + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: str + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. + :vartype learning_rate_scheduler: str + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: str + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: str + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: str + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: str + :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. + :vartype optimizer: str + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: str + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: str + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: str + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: str + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: str + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: str + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: str + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: str """ _attribute_map = { @@ -10419,8 +10578,8 @@ def __init__( # pylint: disable=too-many-locals warmup_cosine_lr_cycles: Optional[str] = None, warmup_cosine_lr_warmup_epochs: Optional[str] = None, weight_decay: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. :paramtype ams_gradient: str @@ -10551,97 +10710,97 @@ class ImageModelDistributionSettingsClassification( For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: str - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: str - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: str - :ivar distributed: Whether to use distributer training. - :vartype distributed: str - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: str - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: str - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: str - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: str - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: str - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: str - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: str - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: str - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. - :vartype learning_rate_scheduler: str - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: str - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: str - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: str - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: str - :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. - :vartype optimizer: str - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: str - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: str - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: str - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: str - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: str - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: str - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: str - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: str - :ivar training_crop_size: Image crop size that is input to the neural network for the training - dataset. Must be a positive integer. - :vartype training_crop_size: str - :ivar validation_crop_size: Image crop size that is input to the neural network for the - validation dataset. Must be a positive integer. - :vartype validation_crop_size: str - :ivar validation_resize_size: Image size to which to resize before cropping for validation - dataset. Must be a positive integer. - :vartype validation_resize_size: str - :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. - 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be - 0 or 1 or 2. - :vartype weighted_loss: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: str + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: str + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: str + :ivar distributed: Whether to use distributer training. + :vartype distributed: str + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: str + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: str + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: str + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: str + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: str + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: str + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: str + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: str + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. + :vartype learning_rate_scheduler: str + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: str + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: str + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: str + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: str + :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. + :vartype optimizer: str + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: str + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: str + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: str + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: str + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: str + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: str + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: str + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: str + :ivar training_crop_size: Image crop size that is input to the neural network for the training + dataset. Must be a positive integer. + :vartype training_crop_size: str + :ivar validation_crop_size: Image crop size that is input to the neural network for the + validation dataset. Must be a positive integer. + :vartype validation_crop_size: str + :ivar validation_resize_size: Image size to which to resize before cropping for validation + dataset. Must be a positive integer. + :vartype validation_resize_size: str + :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. + 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be + 0 or 1 or 2. + :vartype weighted_loss: str """ _attribute_map = { @@ -10714,8 +10873,8 @@ def __init__( # pylint: disable=too-many-locals validation_crop_size: Optional[str] = None, validation_resize_size: Optional[str] = None, weighted_loss: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. :paramtype ams_gradient: str @@ -10865,136 +11024,136 @@ class ImageModelDistributionSettingsObjectDetection( For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: str - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: str - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: str - :ivar distributed: Whether to use distributer training. - :vartype distributed: str - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: str - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: str - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: str - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: str - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: str - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: str - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: str - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: str - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. - :vartype learning_rate_scheduler: str - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: str - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: str - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: str - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: str - :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. - :vartype optimizer: str - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: str - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: str - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: str - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: str - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: str - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: str - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: str - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: str - :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must - be a positive integer. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype box_detections_per_image: str - :ivar box_score_threshold: During inference, only return proposals with a classification score - greater than - BoxScoreThreshold. Must be a float in the range[0, 1]. - :vartype box_score_threshold: str - :ivar image_size: Image size for train and validation. Must be a positive integer. - Note: The training run may get into CUDA OOM if the size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype image_size: str - :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype max_size: str - :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype min_size: str - :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. - Note: training run may get into CUDA OOM if the model size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype model_size: str - :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. - Note: training run may get into CUDA OOM if no sufficient GPU memory. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype multi_scale: str - :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be - float in the range [0, 1]. - :vartype nms_iou_threshold: str - :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not - be - None to enable small object detection logic. A string containing two integers in mxn format. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_grid_size: str - :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float - in the range [0, 1). - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_overlap_ratio: str - :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging - predictions from tiles and image. - Used in validation/ inference. Must be float in the range [0, 1]. - Note: This settings is not supported for the 'yolov5' algorithm. - NMS: Non-maximum suppression. - :vartype tile_predictions_nms_threshold: str - :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be - float in the range [0, 1]. - :vartype validation_iou_threshold: str - :ivar validation_metric_type: Metric computation method to use for validation metrics. Must be - 'none', 'coco', 'voc', or 'coco_voc'. - :vartype validation_metric_type: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: str + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: str + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: str + :ivar distributed: Whether to use distributer training. + :vartype distributed: str + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: str + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: str + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: str + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: str + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: str + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: str + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: str + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: str + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. + :vartype learning_rate_scheduler: str + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: str + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: str + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: str + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: str + :ivar optimizer: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. + :vartype optimizer: str + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: str + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: str + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: str + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: str + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: str + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: str + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: str + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: str + :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must + be a positive integer. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype box_detections_per_image: str + :ivar box_score_threshold: During inference, only return proposals with a classification score + greater than + BoxScoreThreshold. Must be a float in the range[0, 1]. + :vartype box_score_threshold: str + :ivar image_size: Image size for train and validation. Must be a positive integer. + Note: The training run may get into CUDA OOM if the size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype image_size: str + :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype max_size: str + :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype min_size: str + :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. + Note: training run may get into CUDA OOM if the model size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype model_size: str + :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. + Note: training run may get into CUDA OOM if no sufficient GPU memory. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype multi_scale: str + :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be + float in the range [0, 1]. + :vartype nms_iou_threshold: str + :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not + be + None to enable small object detection logic. A string containing two integers in mxn format. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_grid_size: str + :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float + in the range [0, 1). + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_overlap_ratio: str + :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging + predictions from tiles and image. + Used in validation/ inference. Must be float in the range [0, 1]. + Note: This settings is not supported for the 'yolov5' algorithm. + NMS: Non-maximum suppression. + :vartype tile_predictions_nms_threshold: str + :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be + float in the range [0, 1]. + :vartype validation_iou_threshold: str + :ivar validation_metric_type: Metric computation method to use for validation metrics. Must be + 'none', 'coco', 'voc', or 'coco_voc'. + :vartype validation_metric_type: str """ _attribute_map = { @@ -11085,8 +11244,8 @@ def __init__( # pylint: disable=too-many-locals tile_predictions_nms_threshold: Optional[str] = None, validation_iou_threshold: Optional[str] = None, validation_metric_type: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. :paramtype ams_gradient: str @@ -11272,94 +11431,94 @@ class ImageModelSettings(_serialization.Model): # pylint: disable=too-many-inst For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar advanced_settings: Settings for advanced scenarios. - :vartype advanced_settings: str - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: bool - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: float - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: float - :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. - :vartype checkpoint_frequency: int - :ivar checkpoint_model: The pretrained checkpoint model for incremental training. - :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput - :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for - incremental training. - :vartype checkpoint_run_id: str - :ivar distributed: Whether to use distributed training. - :vartype distributed: bool - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: bool - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: int - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: int - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: bool - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: int - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: int - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: int - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: float - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. Known values are: "None", "WarmupCosine", and "Step". - :vartype learning_rate_scheduler: str or - ~azure.mgmt.machinelearningservices.models.LearningRateScheduler - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: float - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: bool - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: int - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: int - :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". - :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: int - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: float - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: int - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: int - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: int - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: float - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: int - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: float + :ivar advanced_settings: Settings for advanced scenarios. + :vartype advanced_settings: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: bool + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: float + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: float + :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. + :vartype checkpoint_frequency: int + :ivar checkpoint_model: The pretrained checkpoint model for incremental training. + :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput + :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for + incremental training. + :vartype checkpoint_run_id: str + :ivar distributed: Whether to use distributed training. + :vartype distributed: bool + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: bool + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: int + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: int + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: bool + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: int + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: int + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: int + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: float + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. Known values are: "None", "WarmupCosine", and "Step". + :vartype learning_rate_scheduler: str or + ~azure.mgmt.machinelearningservices.models.LearningRateScheduler + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: float + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: bool + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: int + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: int + :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". + :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: int + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: float + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: int + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: int + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: int + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: float + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: int + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: float """ _attribute_map = { @@ -11432,8 +11591,8 @@ def __init__( # pylint: disable=too-many-locals warmup_cosine_lr_cycles: Optional[float] = None, warmup_cosine_lr_warmup_epochs: Optional[int] = None, weight_decay: Optional[float] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword advanced_settings: Settings for advanced scenarios. :paramtype advanced_settings: str @@ -11567,107 +11726,107 @@ class ImageModelSettingsClassification(ImageModelSettings): # pylint: disable=t For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar advanced_settings: Settings for advanced scenarios. - :vartype advanced_settings: str - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: bool - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: float - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: float - :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. - :vartype checkpoint_frequency: int - :ivar checkpoint_model: The pretrained checkpoint model for incremental training. - :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput - :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for - incremental training. - :vartype checkpoint_run_id: str - :ivar distributed: Whether to use distributed training. - :vartype distributed: bool - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: bool - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: int - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: int - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: bool - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: int - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: int - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: int - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: float - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. Known values are: "None", "WarmupCosine", and "Step". - :vartype learning_rate_scheduler: str or - ~azure.mgmt.machinelearningservices.models.LearningRateScheduler - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: float - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: bool - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: int - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: int - :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". - :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: int - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: float - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: int - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: int - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: int - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: float - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: int - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: float - :ivar training_crop_size: Image crop size that is input to the neural network for the training - dataset. Must be a positive integer. - :vartype training_crop_size: int - :ivar validation_crop_size: Image crop size that is input to the neural network for the - validation dataset. Must be a positive integer. - :vartype validation_crop_size: int - :ivar validation_resize_size: Image size to which to resize before cropping for validation - dataset. Must be a positive integer. - :vartype validation_resize_size: int - :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. - 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be - 0 or 1 or 2. - :vartype weighted_loss: int + :ivar advanced_settings: Settings for advanced scenarios. + :vartype advanced_settings: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: bool + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: float + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: float + :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. + :vartype checkpoint_frequency: int + :ivar checkpoint_model: The pretrained checkpoint model for incremental training. + :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput + :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for + incremental training. + :vartype checkpoint_run_id: str + :ivar distributed: Whether to use distributed training. + :vartype distributed: bool + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: bool + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: int + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: int + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: bool + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: int + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: int + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: int + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: float + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. Known values are: "None", "WarmupCosine", and "Step". + :vartype learning_rate_scheduler: str or + ~azure.mgmt.machinelearningservices.models.LearningRateScheduler + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: float + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: bool + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: int + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: int + :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". + :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: int + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: float + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: int + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: int + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: int + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: float + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: int + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: float + :ivar training_crop_size: Image crop size that is input to the neural network for the training + dataset. Must be a positive integer. + :vartype training_crop_size: int + :ivar validation_crop_size: Image crop size that is input to the neural network for the + validation dataset. Must be a positive integer. + :vartype validation_crop_size: int + :ivar validation_resize_size: Image size to which to resize before cropping for validation + dataset. Must be a positive integer. + :vartype validation_resize_size: int + :ivar weighted_loss: Weighted loss. The accepted values are 0 for no weighted loss. + 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be + 0 or 1 or 2. + :vartype weighted_loss: int """ _attribute_map = { @@ -11748,8 +11907,8 @@ def __init__( # pylint: disable=too-many-locals validation_crop_size: Optional[int] = None, validation_resize_size: Optional[int] = None, weighted_loss: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword advanced_settings: Settings for advanced scenarios. :paramtype advanced_settings: str @@ -11902,147 +12061,147 @@ class ImageModelSettingsObjectDetection(ImageModelSettings): # pylint: disable= For more information on the available settings please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :ivar advanced_settings: Settings for advanced scenarios. - :vartype advanced_settings: str - :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. - :vartype ams_gradient: bool - :ivar augmentations: Settings for using Augmentations. - :vartype augmentations: str - :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta1: float - :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range - [0, 1]. - :vartype beta2: float - :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. - :vartype checkpoint_frequency: int - :ivar checkpoint_model: The pretrained checkpoint model for incremental training. - :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput - :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for - incremental training. - :vartype checkpoint_run_id: str - :ivar distributed: Whether to use distributed training. - :vartype distributed: bool - :ivar early_stopping: Enable early stopping logic during training. - :vartype early_stopping: bool - :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before - primary metric improvement - is tracked for early stopping. Must be a positive integer. - :vartype early_stopping_delay: int - :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no - primary metric improvement before - the run is stopped. Must be a positive integer. - :vartype early_stopping_patience: int - :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. - :vartype enable_onnx_normalization: bool - :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must - be a positive integer. - :vartype evaluation_frequency: int - :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of - "GradAccumulationStep" steps without - updating the model weights while accumulating the gradients of those steps, and then using - the accumulated gradients to compute the weight updates. Must be a positive integer. - :vartype gradient_accumulation_step: int - :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. - For instance, passing 2 as value for 'seresnext' means - freezing layer0 and layer1. For a full list of models supported and details on layer freeze, - please - see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype layers_to_freeze: int - :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. - :vartype learning_rate: float - :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or - 'step'. Known values are: "None", "WarmupCosine", and "Step". - :vartype learning_rate_scheduler: str or - ~azure.mgmt.machinelearningservices.models.LearningRateScheduler - :ivar model_name: Name of the model to use for training. - For more information on the available models please visit the official documentation: - https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. - :vartype model_name: str - :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. - :vartype momentum: float - :ivar nesterov: Enable nesterov when optimizer is 'sgd'. - :vartype nesterov: bool - :ivar number_of_epochs: Number of training epochs. Must be a positive integer. - :vartype number_of_epochs: int - :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. - :vartype number_of_workers: int - :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". - :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer - :ivar random_seed: Random seed to be used when using deterministic training. - :vartype random_seed: int - :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in - the range [0, 1]. - :vartype step_lr_gamma: float - :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a - positive integer. - :vartype step_lr_step_size: int - :ivar training_batch_size: Training batch size. Must be a positive integer. - :vartype training_batch_size: int - :ivar validation_batch_size: Validation batch size. Must be a positive integer. - :vartype validation_batch_size: int - :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is - 'warmup_cosine'. Must be a float in the range [0, 1]. - :vartype warmup_cosine_lr_cycles: float - :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is - 'warmup_cosine'. Must be a positive integer. - :vartype warmup_cosine_lr_warmup_epochs: int - :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be - a float in the range[0, 1]. - :vartype weight_decay: float - :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must - be a positive integer. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype box_detections_per_image: int - :ivar box_score_threshold: During inference, only return proposals with a classification score - greater than - BoxScoreThreshold. Must be a float in the range[0, 1]. - :vartype box_score_threshold: float - :ivar image_size: Image size for train and validation. Must be a positive integer. - Note: The training run may get into CUDA OOM if the size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype image_size: int - :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype max_size: int - :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. - Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype min_size: int - :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. - Note: training run may get into CUDA OOM if the model size is too big. - Note: This settings is only supported for the 'yolov5' algorithm. Known values are: "None", - "Small", "Medium", "Large", and "ExtraLarge". - :vartype model_size: str or ~azure.mgmt.machinelearningservices.models.ModelSize - :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. - Note: training run may get into CUDA OOM if no sufficient GPU memory. - Note: This settings is only supported for the 'yolov5' algorithm. - :vartype multi_scale: bool - :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be a - float in the range [0, 1]. - :vartype nms_iou_threshold: float - :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not - be - None to enable small object detection logic. A string containing two integers in mxn format. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_grid_size: str - :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float - in the range [0, 1). - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_overlap_ratio: float - :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging - predictions from tiles and image. - Used in validation/ inference. Must be float in the range [0, 1]. - Note: This settings is not supported for the 'yolov5' algorithm. - :vartype tile_predictions_nms_threshold: float - :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be - float in the range [0, 1]. - :vartype validation_iou_threshold: float - :ivar validation_metric_type: Metric computation method to use for validation metrics. Known - values are: "None", "Coco", "Voc", and "CocoVoc". - :vartype validation_metric_type: str or - ~azure.mgmt.machinelearningservices.models.ValidationMetricType + :ivar advanced_settings: Settings for advanced scenarios. + :vartype advanced_settings: str + :ivar ams_gradient: Enable AMSGrad when optimizer is 'adam' or 'adamw'. + :vartype ams_gradient: bool + :ivar augmentations: Settings for using Augmentations. + :vartype augmentations: str + :ivar beta1: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta1: float + :ivar beta2: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range + [0, 1]. + :vartype beta2: float + :ivar checkpoint_frequency: Frequency to store model checkpoints. Must be a positive integer. + :vartype checkpoint_frequency: int + :ivar checkpoint_model: The pretrained checkpoint model for incremental training. + :vartype checkpoint_model: ~azure.mgmt.machinelearningservices.models.MLFlowModelJobInput + :ivar checkpoint_run_id: The id of a previous run that has a pretrained checkpoint for + incremental training. + :vartype checkpoint_run_id: str + :ivar distributed: Whether to use distributed training. + :vartype distributed: bool + :ivar early_stopping: Enable early stopping logic during training. + :vartype early_stopping: bool + :ivar early_stopping_delay: Minimum number of epochs or validation evaluations to wait before + primary metric improvement + is tracked for early stopping. Must be a positive integer. + :vartype early_stopping_delay: int + :ivar early_stopping_patience: Minimum number of epochs or validation evaluations with no + primary metric improvement before + the run is stopped. Must be a positive integer. + :vartype early_stopping_patience: int + :ivar enable_onnx_normalization: Enable normalization when exporting ONNX model. + :vartype enable_onnx_normalization: bool + :ivar evaluation_frequency: Frequency to evaluate validation dataset to get metric scores. Must + be a positive integer. + :vartype evaluation_frequency: int + :ivar gradient_accumulation_step: Gradient accumulation means running a configured number of + "GradAccumulationStep" steps without + updating the model weights while accumulating the gradients of those steps, and then using + the accumulated gradients to compute the weight updates. Must be a positive integer. + :vartype gradient_accumulation_step: int + :ivar layers_to_freeze: Number of layers to freeze for the model. Must be a positive integer. + For instance, passing 2 as value for 'seresnext' means + freezing layer0 and layer1. For a full list of models supported and details on layer freeze, + please + see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype layers_to_freeze: int + :ivar learning_rate: Initial learning rate. Must be a float in the range [0, 1]. + :vartype learning_rate: float + :ivar learning_rate_scheduler: Type of learning rate scheduler. Must be 'warmup_cosine' or + 'step'. Known values are: "None", "WarmupCosine", and "Step". + :vartype learning_rate_scheduler: str or + ~azure.mgmt.machinelearningservices.models.LearningRateScheduler + :ivar model_name: Name of the model to use for training. + For more information on the available models please visit the official documentation: + https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models. + :vartype model_name: str + :ivar momentum: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. + :vartype momentum: float + :ivar nesterov: Enable nesterov when optimizer is 'sgd'. + :vartype nesterov: bool + :ivar number_of_epochs: Number of training epochs. Must be a positive integer. + :vartype number_of_epochs: int + :ivar number_of_workers: Number of data loader workers. Must be a non-negative integer. + :vartype number_of_workers: int + :ivar optimizer: Type of optimizer. Known values are: "None", "Sgd", "Adam", and "Adamw". + :vartype optimizer: str or ~azure.mgmt.machinelearningservices.models.StochasticOptimizer + :ivar random_seed: Random seed to be used when using deterministic training. + :vartype random_seed: int + :ivar step_lr_gamma: Value of gamma when learning rate scheduler is 'step'. Must be a float in + the range [0, 1]. + :vartype step_lr_gamma: float + :ivar step_lr_step_size: Value of step size when learning rate scheduler is 'step'. Must be a + positive integer. + :vartype step_lr_step_size: int + :ivar training_batch_size: Training batch size. Must be a positive integer. + :vartype training_batch_size: int + :ivar validation_batch_size: Validation batch size. Must be a positive integer. + :vartype validation_batch_size: int + :ivar warmup_cosine_lr_cycles: Value of cosine cycle when learning rate scheduler is + 'warmup_cosine'. Must be a float in the range [0, 1]. + :vartype warmup_cosine_lr_cycles: float + :ivar warmup_cosine_lr_warmup_epochs: Value of warmup epochs when learning rate scheduler is + 'warmup_cosine'. Must be a positive integer. + :vartype warmup_cosine_lr_warmup_epochs: int + :ivar weight_decay: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be + a float in the range[0, 1]. + :vartype weight_decay: float + :ivar box_detections_per_image: Maximum number of detections per image, for all classes. Must + be a positive integer. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype box_detections_per_image: int + :ivar box_score_threshold: During inference, only return proposals with a classification score + greater than + BoxScoreThreshold. Must be a float in the range[0, 1]. + :vartype box_score_threshold: float + :ivar image_size: Image size for train and validation. Must be a positive integer. + Note: The training run may get into CUDA OOM if the size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype image_size: int + :ivar max_size: Maximum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype max_size: int + :ivar min_size: Minimum size of the image to be rescaled before feeding it to the backbone. + Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype min_size: int + :ivar model_size: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. + Note: training run may get into CUDA OOM if the model size is too big. + Note: This settings is only supported for the 'yolov5' algorithm. Known values are: "None", + "Small", "Medium", "Large", and "ExtraLarge". + :vartype model_size: str or ~azure.mgmt.machinelearningservices.models.ModelSize + :ivar multi_scale: Enable multi-scale image by varying image size by +/- 50%. + Note: training run may get into CUDA OOM if no sufficient GPU memory. + Note: This settings is only supported for the 'yolov5' algorithm. + :vartype multi_scale: bool + :ivar nms_iou_threshold: IOU threshold used during inference in NMS post processing. Must be a + float in the range [0, 1]. + :vartype nms_iou_threshold: float + :ivar tile_grid_size: The grid size to use for tiling each image. Note: TileGridSize must not + be + None to enable small object detection logic. A string containing two integers in mxn format. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_grid_size: str + :ivar tile_overlap_ratio: Overlap ratio between adjacent tiles in each dimension. Must be float + in the range [0, 1). + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_overlap_ratio: float + :ivar tile_predictions_nms_threshold: The IOU threshold to use to perform NMS while merging + predictions from tiles and image. + Used in validation/ inference. Must be float in the range [0, 1]. + Note: This settings is not supported for the 'yolov5' algorithm. + :vartype tile_predictions_nms_threshold: float + :ivar validation_iou_threshold: IOU threshold to use when computing validation metric. Must be + float in the range [0, 1]. + :vartype validation_iou_threshold: float + :ivar validation_metric_type: Metric computation method to use for validation metrics. Known + values are: "None", "Coco", "Voc", and "CocoVoc". + :vartype validation_metric_type: str or + ~azure.mgmt.machinelearningservices.models.ValidationMetricType """ _attribute_map = { @@ -12141,8 +12300,8 @@ def __init__( # pylint: disable=too-many-locals tile_predictions_nms_threshold: Optional[float] = None, validation_iou_threshold: Optional[float] = None, validation_metric_type: Optional[Union[str, "_models.ValidationMetricType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword advanced_settings: Settings for advanced scenarios. :paramtype advanced_settings: str @@ -12340,45 +12499,46 @@ def __init__( # pylint: disable=too-many-locals class ImageObjectDetection(ImageObjectDetectionBase, AutoMLVertical): # pylint: disable=too-many-instance-attributes - """Image Object Detection. Object detection is used to identify objects in an image and locate each object with a + """Image Object Detection. Object detection is used to identify objects in an image and locate + each object with a bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings - :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. - :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar validation_data_size: The fraction of training dataset that needs to be set aside for - validation purpose. - Values between (0.0 , 1.0) - Applied when validation dataset is not provided. - :vartype validation_data_size: float - :ivar model_settings: Settings used for training the model. - :vartype model_settings: - ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection - :ivar search_space: Search space for sampling different combinations of models and their - hyperparameters. - :vartype search_space: - list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] - :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ObjectDetectionPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar limit_settings: [Required] Limit settings for the AutoML job. Required. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.ImageLimitSettings + :ivar sweep_settings: Model sweeping and hyperparameter sweeping related settings. + :vartype sweep_settings: ~azure.mgmt.machinelearningservices.models.ImageSweepSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar validation_data_size: The fraction of training dataset that needs to be set aside for + validation purpose. + Values between (0.0 , 1.0) + Applied when validation dataset is not provided. + :vartype validation_data_size: float + :ivar model_settings: Settings used for training the model. + :vartype model_settings: + ~azure.mgmt.machinelearningservices.models.ImageModelSettingsObjectDetection + :ivar search_space: Search space for sampling different combinations of models and their + hyperparameters. + :vartype search_space: + list[~azure.mgmt.machinelearningservices.models.ImageModelDistributionSettingsObjectDetection] + :ivar primary_metric: Primary metric to optimize for this task. "MeanAveragePrecision" + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ObjectDetectionPrimaryMetrics """ _validation = { @@ -12414,8 +12574,8 @@ def __init__( model_settings: Optional["_models.ImageModelSettingsObjectDetection"] = None, search_space: Optional[List["_models.ImageModelDistributionSettingsObjectDetection"]] = None, primary_metric: Optional[Union[str, "_models.ObjectDetectionPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -12499,8 +12659,8 @@ def __init__( *, sampling_algorithm: Union[str, "_models.SamplingAlgorithmType"], early_termination: Optional["_models.EarlyTerminationPolicy"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword early_termination: Type of early termination policy. :paramtype early_termination: ~azure.mgmt.machinelearningservices.models.EarlyTerminationPolicy @@ -12538,8 +12698,8 @@ def __init__( liveness_route: Optional["_models.Route"] = None, readiness_route: Optional["_models.Route"] = None, scoring_route: Optional["_models.Route"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword liveness_route: The route to check the liveness of the inference server container. :paramtype liveness_route: ~azure.mgmt.machinelearningservices.models.Route @@ -12574,8 +12734,8 @@ def __init__( *, node_selector: Optional[Dict[str, str]] = None, resources: Optional["_models.InstanceTypeSchemaResources"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword node_selector: Node Selector. :paramtype node_selector: dict[str, str] @@ -12601,7 +12761,9 @@ class InstanceTypeSchemaResources(_serialization.Model): "limits": {"key": "limits", "type": "{str}"}, } - def __init__(self, *, requests: Optional[Dict[str, str]] = None, limits: Optional[Dict[str, str]] = None, **kwargs): + def __init__( + self, *, requests: Optional[Dict[str, str]] = None, limits: Optional[Dict[str, str]] = None, **kwargs: Any + ) -> None: """ :keyword requests: Resource requests for this instance type. :paramtype requests: dict[str, str] @@ -12651,7 +12813,7 @@ class JobBase(Resource): "properties": {"key": "properties", "type": "JobBaseProperties"}, } - def __init__(self, *, properties: "_models.JobBaseProperties", **kwargs): + def __init__(self, *, properties: "_models.JobBaseProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.JobBaseProperties @@ -12675,7 +12837,9 @@ class JobBaseResourceArmPaginatedResult(_serialization.Model): "value": {"key": "value", "type": "[JobBase]"}, } - def __init__(self, *, next_link: Optional[str] = None, value: Optional[List["_models.JobBase"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.JobBase"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of JobBase objects. If null, there are no additional pages. @@ -12727,8 +12891,8 @@ def __init__( properties: Optional[Dict[str, JSON]] = None, docker_args: Optional[str] = None, shm_size: str = "2g", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword instance_count: Optional number of instances or nodes used by the compute target. :paramtype instance_count: int @@ -12772,7 +12936,7 @@ class JobScheduleAction(ScheduleActionBase): "job_definition": {"key": "jobDefinition", "type": "JobBaseProperties"}, } - def __init__(self, *, job_definition: "_models.JobBaseProperties", **kwargs): + def __init__(self, *, job_definition: "_models.JobBaseProperties", **kwargs: Any) -> None: """ :keyword job_definition: [Required] Defines Schedule action definition details. Required. :paramtype job_definition: ~azure.mgmt.machinelearningservices.models.JobBaseProperties @@ -12822,8 +12986,8 @@ def __init__( job_service_type: Optional[str] = None, port: Optional[int] = None, properties: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword endpoint: Url for endpoint. :paramtype endpoint: str @@ -12854,7 +13018,7 @@ class KubernetesSchema(_serialization.Model): "properties": {"key": "properties", "type": "KubernetesProperties"}, } - def __init__(self, *, properties: Optional["_models.KubernetesProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.KubernetesProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: Properties of Kubernetes. :paramtype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties @@ -12932,8 +13096,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Properties of Kubernetes. :paramtype properties: ~azure.mgmt.machinelearningservices.models.KubernetesProperties @@ -13069,8 +13233,8 @@ def __init__( readiness_probe: Optional["_models.ProbeSettings"] = None, request_settings: Optional["_models.OnlineRequestSettings"] = None, scale_settings: Optional["_models.OnlineScaleSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -13233,8 +13397,8 @@ def __init__( request_settings: Optional["_models.OnlineRequestSettings"] = None, scale_settings: Optional["_models.OnlineScaleSettings"] = None, container_resource_requirements: Optional["_models.ContainerResourceRequirements"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -13342,8 +13506,8 @@ def __init__( namespace: str = "default", default_instance_type: Optional[str] = None, instance_types: Optional[Dict[str, "_models.InstanceTypeSchema"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword relay_connection_string: Relay connection string. :paramtype relay_connection_string: str @@ -13396,7 +13560,7 @@ class ListAmlUserFeatureResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -13424,7 +13588,7 @@ class ListNotebookKeysResult(_serialization.Model): "secondary_access_key": {"key": "secondaryAccessKey", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.primary_access_key = None @@ -13448,7 +13612,7 @@ class ListStorageAccountKeysResult(_serialization.Model): "user_storage_key": {"key": "userStorageKey", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.user_storage_key = None @@ -13476,7 +13640,7 @@ class ListUsagesResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -13521,7 +13685,7 @@ class ListWorkspaceKeysResult(_serialization.Model): "notebook_access_keys": {"key": "notebookAccessKeys", "type": "ListNotebookKeysResult"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.user_storage_key = None @@ -13553,7 +13717,7 @@ class ListWorkspaceQuotas(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -13586,7 +13750,7 @@ class LiteralJobInput(JobInput): "value": {"key": "value", "type": "str"}, } - def __init__(self, *, value: str, description: Optional[str] = None, **kwargs): + def __init__(self, *, value: str, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -13635,8 +13799,8 @@ def __init__( client_id: Optional[str] = None, object_id: Optional[str] = None, resource_id: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword client_id: Specifies a user-assigned identity by client ID. For system-assigned, do not set this field. @@ -13708,8 +13872,8 @@ def __init__( target: Optional[str] = None, value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -13772,8 +13936,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionManagedIdentity"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -13887,8 +14051,8 @@ def __init__( readiness_probe: Optional["_models.ProbeSettings"] = None, request_settings: Optional["_models.OnlineRequestSettings"] = None, scale_settings: Optional["_models.OnlineScaleSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_configuration: Code configuration for the endpoint deployment. :paramtype code_configuration: ~azure.mgmt.machinelearningservices.models.CodeConfiguration @@ -13990,8 +14154,8 @@ def __init__( *, type: Union[str, "_models.ManagedServiceIdentityType"], user_assigned_identities: Optional[Dict[str, "_models.UserAssignedIdentity"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword type: Type of managed service identity (where both SystemAssigned and UserAssigned types are allowed). Required. Known values are: "None", "SystemAssigned", "UserAssigned", and @@ -14012,7 +14176,8 @@ def __init__( class MedianStoppingPolicy(EarlyTerminationPolicy): - """Defines an early termination policy based on running averages of the primary metric of all runs. + """Defines an early termination policy based on running averages of the primary metric of all + runs. All required parameters must be populated in order to send to Azure. @@ -14036,7 +14201,7 @@ class MedianStoppingPolicy(EarlyTerminationPolicy): "policy_type": {"key": "policyType", "type": "str"}, } - def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs): + def __init__(self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, **kwargs: Any) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -14083,8 +14248,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -14134,8 +14299,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -14203,8 +14368,8 @@ def __init__( is_anonymous: bool = False, is_archived: bool = False, referenced_uris: Optional[List[str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -14272,8 +14437,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -14323,8 +14488,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -14378,7 +14543,7 @@ class ModelContainer(Resource): "properties": {"key": "properties", "type": "ModelContainerProperties"}, } - def __init__(self, *, properties: "_models.ModelContainerProperties", **kwargs): + def __init__(self, *, properties: "_models.ModelContainerProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ModelContainerProperties @@ -14427,8 +14592,8 @@ def __init__( properties: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -14458,8 +14623,8 @@ class ModelContainerResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelContainer"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelContainer"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ModelContainer objects. If null, there are no additional pages. @@ -14510,7 +14675,7 @@ class ModelVersion(Resource): "properties": {"key": "properties", "type": "ModelVersionProperties"}, } - def __init__(self, *, properties: "_models.ModelVersionProperties", **kwargs): + def __init__(self, *, properties: "_models.ModelVersionProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ModelVersionProperties @@ -14566,8 +14731,8 @@ def __init__( job_name: Optional[str] = None, model_type: Optional[str] = None, model_uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -14618,8 +14783,8 @@ class ModelVersionResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.ModelVersion"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of ModelVersion objects. If null, there are no additional pages. @@ -14653,7 +14818,7 @@ class Mpi(DistributionConfiguration): "process_count_per_instance": {"key": "processCountPerInstance", "type": "int"}, } - def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs): + def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs: Any) -> None: """ :keyword process_count_per_instance: Number of processes per MPI node. :paramtype process_count_per_instance: int @@ -14667,13 +14832,13 @@ class NlpVertical(_serialization.Model): """Abstract class for NLP related AutoML tasks. NLP - Natural Language Processing. - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput """ _attribute_map = { @@ -14688,8 +14853,8 @@ def __init__( featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None, limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword featurization_settings: Featurization inputs needed for AutoML job. :paramtype featurization_settings: @@ -14716,7 +14881,7 @@ class NlpVerticalFeaturizationSettings(FeaturizationSettings): "dataset_language": {"key": "datasetLanguage", "type": "str"}, } - def __init__(self, *, dataset_language: Optional[str] = None, **kwargs): + def __init__(self, *, dataset_language: Optional[str] = None, **kwargs: Any) -> None: """ :keyword dataset_language: Dataset language, useful for the text data. :paramtype dataset_language: str @@ -14747,8 +14912,8 @@ def __init__( max_concurrent_trials: int = 1, max_trials: int = 1, timeout: Optional[datetime.timedelta] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_concurrent_trials: Maximum Concurrent AutoML iterations. :paramtype max_concurrent_trials: int @@ -14800,7 +14965,7 @@ class NodeStateCounts(_serialization.Model): "preempted_node_count": {"key": "preemptedNodeCount", "type": "int"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.idle_node_count = None @@ -14849,8 +15014,8 @@ def __init__( target: Optional[str] = None, value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -14884,7 +15049,7 @@ class NoneDatastoreCredentials(DatastoreCredentials): "credentials_type": {"key": "credentialsType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.credentials_type: str = "None" @@ -14935,7 +15100,7 @@ class NotebookAccessTokenResult(_serialization.Model): "scope": {"key": "scope", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.notebook_resource_id = None @@ -14962,7 +15127,9 @@ class NotebookPreparationError(_serialization.Model): "status_code": {"key": "statusCode", "type": "int"}, } - def __init__(self, *, error_message: Optional[str] = None, status_code: Optional[int] = None, **kwargs): + def __init__( + self, *, error_message: Optional[str] = None, status_code: Optional[int] = None, **kwargs: Any + ) -> None: """ :keyword error_message: :paramtype error_message: str @@ -14998,8 +15165,8 @@ def __init__( fqdn: Optional[str] = None, resource_id: Optional[str] = None, notebook_preparation_error: Optional["_models.NotebookPreparationError"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword fqdn: :paramtype fqdn: str @@ -15037,7 +15204,7 @@ class Objective(_serialization.Model): "primary_metric": {"key": "primaryMetric", "type": "str"}, } - def __init__(self, *, goal: Union[str, "_models.Goal"], primary_metric: str, **kwargs): + def __init__(self, *, goal: Union[str, "_models.Goal"], primary_metric: str, **kwargs: Any) -> None: """ :keyword goal: [Required] Defines supported metric goals for hyperparameter tuning. Required. Known values are: "Minimize" and "Maximize". @@ -15114,8 +15281,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15154,8 +15321,12 @@ class OnlineDeploymentTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineDeployment"]] = None, **kwargs - ): + self, + *, + next_link: Optional[str] = None, + value: Optional[List["_models.OnlineDeployment"]] = None, + **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of OnlineDeployment objects. If null, there are no additional pages. @@ -15232,8 +15403,8 @@ def __init__( identity: Optional["_models.ManagedServiceIdentity"] = None, kind: Optional[str] = None, sku: Optional["_models.Sku"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15325,8 +15496,8 @@ def __init__( compute: Optional[str] = None, public_network_access: Optional[Union[str, "_models.PublicNetworkAccessType"]] = None, traffic: Optional[Dict[str, int]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auth_mode: [Required] Use 'Key' for key based authentication and 'AMLToken' for Azure Machine Learning token-based authentication. 'Key' doesn't expire but 'AMLToken' does. @@ -15374,8 +15545,8 @@ class OnlineEndpointTrackedResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineEndpoint"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.OnlineEndpoint"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of OnlineEndpoint objects. If null, there are no additional pages. @@ -15415,8 +15586,8 @@ def __init__( max_concurrent_requests_per_instance: int = 1, max_queue_wait: datetime.timedelta = "PT0.5S", request_timeout: datetime.timedelta = "PT5S", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_concurrent_requests_per_instance: The number of maximum concurrent requests per node allowed per deployment. Defaults to 1. @@ -15459,7 +15630,7 @@ class OutputPathAssetReference(AssetReferenceBase): "path": {"key": "path", "type": "str"}, } - def __init__(self, *, job_id: Optional[str] = None, path: Optional[str] = None, **kwargs): + def __init__(self, *, job_id: Optional[str] = None, path: Optional[str] = None, **kwargs: Any) -> None: """ :keyword job_id: ARM resource ID of the job. :paramtype job_id: str @@ -15487,8 +15658,8 @@ class PaginatedComputeResourcesList(_serialization.Model): } def __init__( - self, *, value: Optional[List["_models.ComputeResource"]] = None, next_link: Optional[str] = None, **kwargs - ): + self, *, value: Optional[List["_models.ComputeResource"]] = None, next_link: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword value: An array of Machine Learning compute objects wrapped in ARM resource envelope. :paramtype value: list[~azure.mgmt.machinelearningservices.models.ComputeResource] @@ -15511,7 +15682,7 @@ class PartialBatchDeployment(_serialization.Model): "description": {"key": "description", "type": "str"}, } - def __init__(self, *, description: Optional[str] = None, **kwargs): + def __init__(self, *, description: Optional[str] = None, **kwargs: Any) -> None: """ :keyword description: Description of the endpoint deployment. :paramtype description: str @@ -15539,8 +15710,8 @@ def __init__( *, properties: Optional["_models.PartialBatchDeployment"] = None, tags: Optional[Dict[str, str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: Additional attributes of the entity. :paramtype properties: ~azure.mgmt.machinelearningservices.models.PartialBatchDeployment @@ -15575,8 +15746,8 @@ def __init__( *, type: Optional[Union[str, "_models.ManagedServiceIdentityType"]] = None, user_assigned_identities: Optional[Dict[str, JSON]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword type: Managed service identity (system assigned and/or user assigned identities). Known values are: "None", "SystemAssigned", "UserAssigned", and "SystemAssigned,UserAssigned". @@ -15603,7 +15774,7 @@ class PartialMinimalTrackedResource(_serialization.Model): "tags": {"key": "tags", "type": "{str}"}, } - def __init__(self, *, tags: Optional[Dict[str, str]] = None, **kwargs): + def __init__(self, *, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15631,8 +15802,8 @@ def __init__( *, tags: Optional[Dict[str, str]] = None, identity: Optional["_models.PartialManagedServiceIdentity"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15657,7 +15828,9 @@ class PartialMinimalTrackedResourceWithSku(PartialMinimalTrackedResource): "sku": {"key": "sku", "type": "PartialSku"}, } - def __init__(self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.PartialSku"] = None, **kwargs): + def __init__( + self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.PartialSku"] = None, **kwargs: Any + ) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] @@ -15668,6 +15841,61 @@ def __init__(self, *, tags: Optional[Dict[str, str]] = None, sku: Optional["_mod self.sku = sku +class PartialRegistryPartialTrackedResource(_serialization.Model): + """Strictly used in update requests. + + :ivar identity: Managed service identity (system assigned and/or user assigned identities). + :vartype identity: ~azure.mgmt.machinelearningservices.models.PartialManagedServiceIdentity + :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for + resources of the same type. + :vartype kind: str + :ivar properties: Additional attributes of the entity. + :vartype properties: JSON + :ivar sku: Sku details required for ARM contract for Autoscaling. + :vartype sku: ~azure.mgmt.machinelearningservices.models.PartialSku + :ivar tags: Resource tags. + :vartype tags: dict[str, str] + """ + + _attribute_map = { + "identity": {"key": "identity", "type": "PartialManagedServiceIdentity"}, + "kind": {"key": "kind", "type": "str"}, + "properties": {"key": "properties", "type": "object"}, + "sku": {"key": "sku", "type": "PartialSku"}, + "tags": {"key": "tags", "type": "{str}"}, + } + + def __init__( + self, + *, + identity: Optional["_models.PartialManagedServiceIdentity"] = None, + kind: Optional[str] = None, + properties: Optional[JSON] = None, + sku: Optional["_models.PartialSku"] = None, + tags: Optional[Dict[str, str]] = None, + **kwargs: Any + ) -> None: + """ + :keyword identity: Managed service identity (system assigned and/or user assigned identities). + :paramtype identity: ~azure.mgmt.machinelearningservices.models.PartialManagedServiceIdentity + :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for + resources of the same type. + :paramtype kind: str + :keyword properties: Additional attributes of the entity. + :paramtype properties: JSON + :keyword sku: Sku details required for ARM contract for Autoscaling. + :paramtype sku: ~azure.mgmt.machinelearningservices.models.PartialSku + :keyword tags: Resource tags. + :paramtype tags: dict[str, str] + """ + super().__init__(**kwargs) + self.identity = identity + self.kind = kind + self.properties = properties + self.sku = sku + self.tags = tags + + class PartialSku(_serialization.Model): """Common SKU definition. @@ -15704,8 +15932,8 @@ def __init__( name: Optional[str] = None, size: Optional[str] = None, tier: Optional[Union[str, "_models.SkuTier"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword capacity: If the SKU supports scale out/in then the capacity integer should be included. If scale out/in is not possible for the resource this may be omitted. @@ -15752,7 +15980,7 @@ class Password(_serialization.Model): "value": {"key": "value", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.name = None @@ -15802,8 +16030,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionPersonalAccessToken"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -15834,7 +16062,7 @@ class PersonalComputeInstanceSettings(_serialization.Model): "assigned_user": {"key": "assignedUser", "type": "AssignedUser"}, } - def __init__(self, *, assigned_user: Optional["_models.AssignedUser"] = None, **kwargs): + def __init__(self, *, assigned_user: Optional["_models.AssignedUser"] = None, **kwargs: Any) -> None: """ :keyword assigned_user: A user explicitly assigned to a personal compute instance. :paramtype assigned_user: ~azure.mgmt.machinelearningservices.models.AssignedUser @@ -15936,8 +16164,8 @@ def __init__( outputs: Optional[Dict[str, "_models.JobOutput"]] = None, settings: Optional[JSON] = None, source_job_id: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -16016,7 +16244,7 @@ class PrivateEndpoint(_serialization.Model): "subnet_arm_id": {"key": "subnetArmId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -16093,8 +16321,8 @@ def __init__( sku: Optional["_models.Sku"] = None, private_endpoint: Optional["_models.PrivateEndpoint"] = None, private_link_service_connection_state: Optional["_models.PrivateLinkServiceConnectionState"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword identity: The identity of the resource. :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity @@ -16132,7 +16360,7 @@ class PrivateEndpointConnectionListResult(_serialization.Model): "value": {"key": "value", "type": "[PrivateEndpointConnection]"}, } - def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] = None, **kwargs: Any) -> None: """ :keyword value: Array of private endpoint connections. :paramtype value: list[~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection] @@ -16204,8 +16432,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, sku: Optional["_models.Sku"] = None, required_zone_names: Optional[List[str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword identity: The identity of the resource. :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity @@ -16239,7 +16467,7 @@ class PrivateLinkResourceListResult(_serialization.Model): "value": {"key": "value", "type": "[PrivateLinkResource]"}, } - def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = None, **kwargs: Any) -> None: """ :keyword value: Array of private link resources. :paramtype value: list[~azure.mgmt.machinelearningservices.models.PrivateLinkResource] @@ -16249,7 +16477,8 @@ def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = Non class PrivateLinkServiceConnectionState(_serialization.Model): - """A collection of information about the state of the connection between service consumer and provider. + """A collection of information about the state of the connection between service consumer and + provider. :ivar status: Indicates whether the connection has been Approved/Rejected/Removed by the owner of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and @@ -16275,8 +16504,8 @@ def __init__( status: Optional[Union[str, "_models.PrivateEndpointServiceConnectionStatus"]] = None, description: Optional[str] = None, actions_required: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Indicates whether the connection has been Approved/Rejected/Removed by the owner of the service. Known values are: "Pending", "Approved", "Rejected", "Disconnected", and @@ -16326,8 +16555,8 @@ def __init__( period: datetime.timedelta = "PT10S", success_threshold: int = 1, timeout: datetime.timedelta = "PT2S", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword failure_threshold: The number of failures to allow before returning an unhealthy status. @@ -16370,7 +16599,7 @@ class PyTorch(DistributionConfiguration): "process_count_per_instance": {"key": "processCountPerInstance", "type": "int"}, } - def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs): + def __init__(self, *, process_count_per_instance: Optional[int] = None, **kwargs: Any) -> None: """ :keyword process_count_per_instance: Number of processes per node. :paramtype process_count_per_instance: int @@ -16407,8 +16636,8 @@ def __init__( type: Optional[str] = None, limit: Optional[int] = None, unit: Optional[Union[str, "_models.QuotaUnit"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword id: Specifies the resource ID. :paramtype id: str @@ -16441,8 +16670,12 @@ class QuotaUpdateParameters(_serialization.Model): } def __init__( - self, *, value: Optional[List["_models.QuotaBaseProperties"]] = None, location: Optional[str] = None, **kwargs - ): + self, + *, + value: Optional[List["_models.QuotaBaseProperties"]] = None, + location: Optional[str] = None, + **kwargs: Any + ) -> None: """ :keyword value: The list for update quota. :paramtype value: list[~azure.mgmt.machinelearningservices.models.QuotaBaseProperties] @@ -16485,8 +16718,8 @@ def __init__( *, rule: Optional[Union[str, "_models.RandomSamplingAlgorithmRule"]] = None, seed: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword rule: The specific type of random algorithm. Known values are: "Random" and "Sobol". :paramtype rule: str or ~azure.mgmt.machinelearningservices.models.RandomSamplingAlgorithmRule @@ -16499,6 +16732,65 @@ def __init__( self.seed = seed +class Recurrence(_serialization.Model): + """The workflow trigger recurrence for ComputeStartStop schedule type. + + :ivar frequency: [Required] The frequency to trigger schedule. Known values are: "Minute", + "Hour", "Day", "Week", and "Month". + :vartype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency + :ivar interval: [Required] Specifies schedule interval in conjunction with frequency. + :vartype interval: int + :ivar start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :vartype start_time: str + :ivar time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :vartype time_zone: str + :ivar schedule: [Required] The recurrence schedule. + :vartype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule + """ + + _attribute_map = { + "frequency": {"key": "frequency", "type": "str"}, + "interval": {"key": "interval", "type": "int"}, + "start_time": {"key": "startTime", "type": "str"}, + "time_zone": {"key": "timeZone", "type": "str"}, + "schedule": {"key": "schedule", "type": "RecurrenceSchedule"}, + } + + def __init__( + self, + *, + frequency: Optional[Union[str, "_models.RecurrenceFrequency"]] = None, + interval: Optional[int] = None, + start_time: Optional[str] = None, + time_zone: str = "UTC", + schedule: Optional["_models.RecurrenceSchedule"] = None, + **kwargs: Any + ) -> None: + """ + :keyword frequency: [Required] The frequency to trigger schedule. Known values are: "Minute", + "Hour", "Day", "Week", and "Month". + :paramtype frequency: str or ~azure.mgmt.machinelearningservices.models.RecurrenceFrequency + :keyword interval: [Required] Specifies schedule interval in conjunction with frequency. + :paramtype interval: int + :keyword start_time: The start time in yyyy-MM-ddTHH:mm:ss format. + :paramtype start_time: str + :keyword time_zone: Specifies time zone in which the schedule runs. + TimeZone should follow Windows time zone format. Refer: + https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11. + :paramtype time_zone: str + :keyword schedule: [Required] The recurrence schedule. + :paramtype schedule: ~azure.mgmt.machinelearningservices.models.RecurrenceSchedule + """ + super().__init__(**kwargs) + self.frequency = frequency + self.interval = interval + self.start_time = start_time + self.time_zone = time_zone + self.schedule = schedule + + class RecurrenceSchedule(_serialization.Model): """RecurrenceSchedule. @@ -16533,8 +16825,8 @@ def __init__( minutes: List[int], month_days: Optional[List[int]] = None, week_days: Optional[List[Union[str, "_models.WeekDay"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword hours: [Required] List of hours for the schedule. Required. :paramtype hours: list[int] @@ -16605,8 +16897,8 @@ def __init__( start_time: Optional[str] = None, time_zone: str = "UTC", schedule: Optional["_models.RecurrenceSchedule"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword end_time: Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601. @@ -16657,17 +16949,107 @@ class RegenerateEndpointKeysRequest(_serialization.Model): "key_value": {"key": "keyValue", "type": "str"}, } - def __init__(self, *, key_type: Union[str, "_models.KeyType"], key_value: Optional[str] = None, **kwargs): + def __init__( + self, *, key_type: Union[str, "_models.KeyType"], key_value: Optional[str] = None, **kwargs: Any + ) -> None: + """ + :keyword key_type: [Required] Specification for which type of key to generate. Primary or + Secondary. Required. Known values are: "Primary" and "Secondary". + :paramtype key_type: str or ~azure.mgmt.machinelearningservices.models.KeyType + :keyword key_value: The value the key is set to. + :paramtype key_value: str + """ + super().__init__(**kwargs) + self.key_type = key_type + self.key_value = key_value + + +class Registry(TrackedResource): + """Registry. + + Variables are only populated by the server, and will be ignored when sending a request. + + All required parameters must be populated in order to send to Azure. + + :ivar id: Fully qualified resource ID for the resource. Ex - + /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}. + :vartype id: str + :ivar name: The name of the resource. + :vartype name: str + :ivar type: The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or + "Microsoft.Storage/storageAccounts". + :vartype type: str + :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy + information. + :vartype system_data: ~azure.mgmt.machinelearningservices.models.SystemData + :ivar tags: Resource tags. + :vartype tags: dict[str, str] + :ivar location: The geo-location where the resource lives. Required. + :vartype location: str + :ivar identity: Managed service identity (system assigned and/or user assigned identities). + :vartype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity + :ivar kind: Metadata used by portal/tooling/etc to render different UX experiences for + resources of the same type. + :vartype kind: str + :ivar properties: [Required] Additional attributes of the entity. Required. + :vartype properties: ~azure.mgmt.machinelearningservices.models.RegistryProperties + :ivar sku: Sku details required for ARM contract for Autoscaling. + :vartype sku: ~azure.mgmt.machinelearningservices.models.Sku + """ + + _validation = { + "id": {"readonly": True}, + "name": {"readonly": True}, + "type": {"readonly": True}, + "system_data": {"readonly": True}, + "location": {"required": True}, + "properties": {"required": True}, + } + + _attribute_map = { + "id": {"key": "id", "type": "str"}, + "name": {"key": "name", "type": "str"}, + "type": {"key": "type", "type": "str"}, + "system_data": {"key": "systemData", "type": "SystemData"}, + "tags": {"key": "tags", "type": "{str}"}, + "location": {"key": "location", "type": "str"}, + "identity": {"key": "identity", "type": "ManagedServiceIdentity"}, + "kind": {"key": "kind", "type": "str"}, + "properties": {"key": "properties", "type": "RegistryProperties"}, + "sku": {"key": "sku", "type": "Sku"}, + } + + def __init__( + self, + *, + location: str, + properties: "_models.RegistryProperties", + tags: Optional[Dict[str, str]] = None, + identity: Optional["_models.ManagedServiceIdentity"] = None, + kind: Optional[str] = None, + sku: Optional["_models.Sku"] = None, + **kwargs: Any + ) -> None: """ - :keyword key_type: [Required] Specification for which type of key to generate. Primary or - Secondary. Required. Known values are: "Primary" and "Secondary". - :paramtype key_type: str or ~azure.mgmt.machinelearningservices.models.KeyType - :keyword key_value: The value the key is set to. - :paramtype key_value: str + :keyword tags: Resource tags. + :paramtype tags: dict[str, str] + :keyword location: The geo-location where the resource lives. Required. + :paramtype location: str + :keyword identity: Managed service identity (system assigned and/or user assigned identities). + :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity + :keyword kind: Metadata used by portal/tooling/etc to render different UX experiences for + resources of the same type. + :paramtype kind: str + :keyword properties: [Required] Additional attributes of the entity. Required. + :paramtype properties: ~azure.mgmt.machinelearningservices.models.RegistryProperties + :keyword sku: Sku details required for ARM contract for Autoscaling. + :paramtype sku: ~azure.mgmt.machinelearningservices.models.Sku """ - super().__init__(**kwargs) - self.key_type = key_type - self.key_value = key_value + super().__init__(tags=tags, location=location, **kwargs) + self.identity = identity + self.kind = kind + self.properties = properties + self.sku = sku class RegistryListCredentialsResult(_serialization.Model): @@ -16694,7 +17076,7 @@ class RegistryListCredentialsResult(_serialization.Model): "passwords": {"key": "passwords", "type": "[Password]"}, } - def __init__(self, *, passwords: Optional[List["_models.Password"]] = None, **kwargs): + def __init__(self, *, passwords: Optional[List["_models.Password"]] = None, **kwargs: Any) -> None: """ :keyword passwords: :paramtype passwords: list[~azure.mgmt.machinelearningservices.models.Password] @@ -16705,6 +17087,173 @@ def __init__(self, *, passwords: Optional[List["_models.Password"]] = None, **kw self.passwords = passwords +class RegistryProperties(ResourceBase): # pylint: disable=too-many-instance-attributes + """Details of the Registry. + + :ivar description: The asset description text. + :vartype description: str + :ivar properties: The asset property dictionary. + :vartype properties: dict[str, str] + :ivar tags: Tag dictionary. Tags can be added, removed, and updated. + :vartype tags: dict[str, str] + :ivar public_network_access: + :vartype public_network_access: str + :ivar discovery_url: + :vartype discovery_url: str + :ivar intellectual_property_publisher: + :vartype intellectual_property_publisher: str + :ivar managed_resource_group: Managed resource group created for the registry. + :vartype managed_resource_group: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :ivar ml_flow_registry_uri: + :vartype ml_flow_registry_uri: str + :ivar private_link_count: + :vartype private_link_count: int + :ivar region_details: Details of each region the registry is in. + :vartype region_details: + list[~azure.mgmt.machinelearningservices.models.RegistryRegionArmDetails] + :ivar managed_resource_group_tags: Tags to be applied to the managed resource group associated + with this registry. + :vartype managed_resource_group_tags: dict[str, str] + """ + + _attribute_map = { + "description": {"key": "description", "type": "str"}, + "properties": {"key": "properties", "type": "{str}"}, + "tags": {"key": "tags", "type": "{str}"}, + "public_network_access": {"key": "publicNetworkAccess", "type": "str"}, + "discovery_url": {"key": "discoveryUrl", "type": "str"}, + "intellectual_property_publisher": {"key": "intellectualPropertyPublisher", "type": "str"}, + "managed_resource_group": {"key": "managedResourceGroup", "type": "ArmResourceId"}, + "ml_flow_registry_uri": {"key": "mlFlowRegistryUri", "type": "str"}, + "private_link_count": {"key": "privateLinkCount", "type": "int"}, + "region_details": {"key": "regionDetails", "type": "[RegistryRegionArmDetails]"}, + "managed_resource_group_tags": {"key": "managedResourceGroupTags", "type": "{str}"}, + } + + def __init__( + self, + *, + description: Optional[str] = None, + properties: Optional[Dict[str, str]] = None, + tags: Optional[Dict[str, str]] = None, + public_network_access: Optional[str] = None, + discovery_url: Optional[str] = None, + intellectual_property_publisher: Optional[str] = None, + managed_resource_group: Optional["_models.ArmResourceId"] = None, + ml_flow_registry_uri: Optional[str] = None, + private_link_count: Optional[int] = None, + region_details: Optional[List["_models.RegistryRegionArmDetails"]] = None, + managed_resource_group_tags: Optional[Dict[str, str]] = None, + **kwargs: Any + ) -> None: + """ + :keyword description: The asset description text. + :paramtype description: str + :keyword properties: The asset property dictionary. + :paramtype properties: dict[str, str] + :keyword tags: Tag dictionary. Tags can be added, removed, and updated. + :paramtype tags: dict[str, str] + :keyword public_network_access: + :paramtype public_network_access: str + :keyword discovery_url: + :paramtype discovery_url: str + :keyword intellectual_property_publisher: + :paramtype intellectual_property_publisher: str + :keyword managed_resource_group: Managed resource group created for the registry. + :paramtype managed_resource_group: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :keyword ml_flow_registry_uri: + :paramtype ml_flow_registry_uri: str + :keyword private_link_count: + :paramtype private_link_count: int + :keyword region_details: Details of each region the registry is in. + :paramtype region_details: + list[~azure.mgmt.machinelearningservices.models.RegistryRegionArmDetails] + :keyword managed_resource_group_tags: Tags to be applied to the managed resource group + associated with this registry. + :paramtype managed_resource_group_tags: dict[str, str] + """ + super().__init__(description=description, properties=properties, tags=tags, **kwargs) + self.public_network_access = public_network_access + self.discovery_url = discovery_url + self.intellectual_property_publisher = intellectual_property_publisher + self.managed_resource_group = managed_resource_group + self.ml_flow_registry_uri = ml_flow_registry_uri + self.private_link_count = private_link_count + self.region_details = region_details + self.managed_resource_group_tags = managed_resource_group_tags + + +class RegistryRegionArmDetails(_serialization.Model): + """Details for each region the registry is in. + + :ivar acr_details: List of ACR accounts. + :vartype acr_details: list[~azure.mgmt.machinelearningservices.models.AcrDetails] + :ivar location: The location where the registry exists. + :vartype location: str + :ivar storage_account_details: List of storage accounts. + :vartype storage_account_details: + list[~azure.mgmt.machinelearningservices.models.StorageAccountDetails] + """ + + _attribute_map = { + "acr_details": {"key": "acrDetails", "type": "[AcrDetails]"}, + "location": {"key": "location", "type": "str"}, + "storage_account_details": {"key": "storageAccountDetails", "type": "[StorageAccountDetails]"}, + } + + def __init__( + self, + *, + acr_details: Optional[List["_models.AcrDetails"]] = None, + location: Optional[str] = None, + storage_account_details: Optional[List["_models.StorageAccountDetails"]] = None, + **kwargs: Any + ) -> None: + """ + :keyword acr_details: List of ACR accounts. + :paramtype acr_details: list[~azure.mgmt.machinelearningservices.models.AcrDetails] + :keyword location: The location where the registry exists. + :paramtype location: str + :keyword storage_account_details: List of storage accounts. + :paramtype storage_account_details: + list[~azure.mgmt.machinelearningservices.models.StorageAccountDetails] + """ + super().__init__(**kwargs) + self.acr_details = acr_details + self.location = location + self.storage_account_details = storage_account_details + + +class RegistryTrackedResourceArmPaginatedResult(_serialization.Model): + """A paginated list of Registry entities. + + :ivar next_link: The link to the next page of Registry objects. If null, there are no + additional pages. + :vartype next_link: str + :ivar value: An array of objects of type Registry. + :vartype value: list[~azure.mgmt.machinelearningservices.models.Registry] + """ + + _attribute_map = { + "next_link": {"key": "nextLink", "type": "str"}, + "value": {"key": "value", "type": "[Registry]"}, + } + + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.Registry"]] = None, **kwargs: Any + ) -> None: + """ + :keyword next_link: The link to the next page of Registry objects. If null, there are no + additional pages. + :paramtype next_link: str + :keyword value: An array of objects of type Registry. + :paramtype value: list[~azure.mgmt.machinelearningservices.models.Registry] + """ + super().__init__(**kwargs) + self.next_link = next_link + self.value = value + + class Regression(TableVertical, AutoMLVertical): # pylint: disable=too-many-instance-attributes """Regression task in AutoML Table vertical. @@ -16800,8 +17349,8 @@ def __init__( weight_column_name: Optional[str] = None, primary_metric: Optional[Union[str, "_models.RegressionPrimaryMetrics"]] = None, training_settings: Optional["_models.RegressionTrainingSettings"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -16933,8 +17482,8 @@ def __init__( stack_ensemble_settings: Optional["_models.StackEnsembleSettings"] = None, allowed_training_algorithms: Optional[List[Union[str, "_models.RegressionModels"]]] = None, blocked_training_algorithms: Optional[List[Union[str, "_models.RegressionModels"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_dnn_training: Enable recommendation of DNN models. :paramtype enable_dnn_training: bool @@ -16991,7 +17540,7 @@ class ResourceId(_serialization.Model): "id": {"key": "id", "type": "str"}, } - def __init__(self, *, id: str, **kwargs): # pylint: disable=redefined-builtin + def __init__(self, *, id: str, **kwargs: Any) -> None: # pylint: disable=redefined-builtin """ :keyword id: The ID of the resource. Required. :paramtype id: str @@ -17021,7 +17570,7 @@ class ResourceName(_serialization.Model): "localized_value": {"key": "localizedValue", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -17065,7 +17614,7 @@ class ResourceQuota(_serialization.Model): "unit": {"key": "unit", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -17097,7 +17646,7 @@ class Route(_serialization.Model): "port": {"key": "port", "type": "int"}, } - def __init__(self, *, path: str, port: int, **kwargs): + def __init__(self, *, path: str, port: int, **kwargs: Any) -> None: """ :keyword path: [Required] The path for the route. Required. :paramtype path: str @@ -17152,8 +17701,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionSharedAccessSignature"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -17195,7 +17744,7 @@ class SasDatastoreCredentials(DatastoreCredentials): "secrets": {"key": "secrets", "type": "SasDatastoreSecrets"}, } - def __init__(self, *, secrets: "_models.SasDatastoreSecrets", **kwargs): + def __init__(self, *, secrets: "_models.SasDatastoreSecrets", **kwargs: Any) -> None: """ :keyword secrets: [Required] Storage container secrets. Required. :paramtype secrets: ~azure.mgmt.machinelearningservices.models.SasDatastoreSecrets @@ -17226,7 +17775,7 @@ class SasDatastoreSecrets(DatastoreSecrets): "sas_token": {"key": "sasToken", "type": "str"}, } - def __init__(self, *, sas_token: Optional[str] = None, **kwargs): + def __init__(self, *, sas_token: Optional[str] = None, **kwargs: Any) -> None: """ :keyword sas_token: Storage container SAS token. :paramtype sas_token: str @@ -17266,8 +17815,8 @@ def __init__( max_node_count: int, min_node_count: int = 0, node_idle_time_before_scale_down: Optional[datetime.timedelta] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_node_count: Max number of nodes to use. Required. :paramtype max_node_count: int @@ -17294,7 +17843,7 @@ class ScaleSettingsInformation(_serialization.Model): "scale_settings": {"key": "scaleSettings", "type": "ScaleSettings"}, } - def __init__(self, *, scale_settings: Optional["_models.ScaleSettings"] = None, **kwargs): + def __init__(self, *, scale_settings: Optional["_models.ScaleSettings"] = None, **kwargs: Any) -> None: """ :keyword scale_settings: scale settings for AML Compute. :paramtype scale_settings: ~azure.mgmt.machinelearningservices.models.ScaleSettings @@ -17341,7 +17890,7 @@ class Schedule(Resource): "properties": {"key": "properties", "type": "ScheduleProperties"}, } - def __init__(self, *, properties: "_models.ScheduleProperties", **kwargs): + def __init__(self, *, properties: "_models.ScheduleProperties", **kwargs: Any) -> None: """ :keyword properties: [Required] Additional attributes of the entity. Required. :paramtype properties: ~azure.mgmt.machinelearningservices.models.ScheduleProperties @@ -17375,8 +17924,8 @@ def __init__( id: Optional[str] = None, # pylint: disable=redefined-builtin provisioning_status: Optional[Union[str, "_models.ScheduleProvisioningState"]] = None, status: Optional[Union[str, "_models.ScheduleStatus"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword id: A system assigned id for the schedule. :paramtype id: str @@ -17448,8 +17997,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, display_name: Optional[str] = None, is_enabled: bool = True, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -17489,7 +18038,9 @@ class ScheduleResourceArmPaginatedResult(_serialization.Model): "value": {"key": "value", "type": "[Schedule]"}, } - def __init__(self, *, next_link: Optional[str] = None, value: Optional[List["_models.Schedule"]] = None, **kwargs): + def __init__( + self, *, next_link: Optional[str] = None, value: Optional[List["_models.Schedule"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of Schedule objects. If null, there are no additional pages. @@ -17529,8 +18080,8 @@ def __init__( script_data: Optional[str] = None, script_arguments: Optional[str] = None, timeout: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword script_source: The storage source of the script: workspace. :paramtype script_source: str @@ -17567,8 +18118,8 @@ def __init__( *, startup_script: Optional["_models.ScriptReference"] = None, creation_script: Optional["_models.ScriptReference"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword startup_script: Script that's run every time the machine starts. :paramtype startup_script: ~azure.mgmt.machinelearningservices.models.ScriptReference @@ -17591,7 +18142,7 @@ class ServiceManagedResourcesSettings(_serialization.Model): "cosmos_db": {"key": "cosmosDb", "type": "CosmosDbSettings"}, } - def __init__(self, *, cosmos_db: Optional["_models.CosmosDbSettings"] = None, **kwargs): + def __init__(self, *, cosmos_db: Optional["_models.CosmosDbSettings"] = None, **kwargs: Any) -> None: """ :keyword cosmos_db: The settings for the service managed cosmosdb account. :paramtype cosmos_db: ~azure.mgmt.machinelearningservices.models.CosmosDbSettings @@ -17644,8 +18195,8 @@ def __init__( tenant_id: str, authority_url: Optional[str] = None, resource_url: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword authority_url: Authority URL used for authentication. :paramtype authority_url: str @@ -17689,7 +18240,7 @@ class ServicePrincipalDatastoreSecrets(DatastoreSecrets): "client_secret": {"key": "clientSecret", "type": "str"}, } - def __init__(self, *, client_secret: Optional[str] = None, **kwargs): + def __init__(self, *, client_secret: Optional[str] = None, **kwargs: Any) -> None: """ :keyword client_secret: Service principal secret. :paramtype client_secret: str @@ -17710,7 +18261,7 @@ class SetupScripts(_serialization.Model): "scripts": {"key": "scripts", "type": "ScriptsToExecute"}, } - def __init__(self, *, scripts: Optional["_models.ScriptsToExecute"] = None, **kwargs): + def __init__(self, *, scripts: Optional["_models.ScriptsToExecute"] = None, **kwargs: Any) -> None: """ :keyword scripts: Customized setup scripts. :paramtype scripts: ~azure.mgmt.machinelearningservices.models.ScriptsToExecute @@ -17753,8 +18304,8 @@ def __init__( group_id: Optional[str] = None, request_message: Optional[str] = None, status: Optional[Union[str, "_models.PrivateEndpointServiceConnectionStatus"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: Unique name of the private link. :paramtype name: str @@ -17820,8 +18371,8 @@ def __init__( size: Optional[str] = None, family: Optional[str] = None, capacity: Optional[int] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword name: The name of the SKU. Ex - P3. It is typically a letter+number code. Required. :paramtype name: str @@ -17875,8 +18426,8 @@ def __init__( maximum: int = 0, minimum: int = 0, scale_type: Optional[Union[str, "_models.SkuScaleType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword default: Gets or sets the default capacity. :paramtype default: int @@ -17919,8 +18470,12 @@ class SkuResource(_serialization.Model): } def __init__( - self, *, capacity: Optional["_models.SkuCapacity"] = None, sku: Optional["_models.SkuSetting"] = None, **kwargs - ): + self, + *, + capacity: Optional["_models.SkuCapacity"] = None, + sku: Optional["_models.SkuSetting"] = None, + **kwargs: Any + ) -> None: """ :keyword capacity: Gets or sets the Sku Capacity. :paramtype capacity: ~azure.mgmt.machinelearningservices.models.SkuCapacity @@ -17949,8 +18504,8 @@ class SkuResourceArmPaginatedResult(_serialization.Model): } def __init__( - self, *, next_link: Optional[str] = None, value: Optional[List["_models.SkuResource"]] = None, **kwargs - ): + self, *, next_link: Optional[str] = None, value: Optional[List["_models.SkuResource"]] = None, **kwargs: Any + ) -> None: """ :keyword next_link: The link to the next page of SkuResource objects. If null, there are no additional pages. @@ -17986,7 +18541,7 @@ class SkuSetting(_serialization.Model): "tier": {"key": "tier", "type": "str"}, } - def __init__(self, *, name: str, tier: Optional[Union[str, "_models.SkuTier"]] = None, **kwargs): + def __init__(self, *, name: str, tier: Optional[Union[str, "_models.SkuTier"]] = None, **kwargs: Any) -> None: """ :keyword name: [Required] The name of the SKU. Ex - P3. It is typically a letter+number code. Required. @@ -18037,8 +18592,8 @@ def __init__( cname: Optional[str] = None, leaf_domain_label: Optional[str] = None, overwrite_existing_domain: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword status: Enable or disable ssl for scoring. Known values are: "Disabled", "Enabled", and "Auto". @@ -18093,8 +18648,8 @@ def __init__( stack_meta_learner_k_wargs: Optional[JSON] = None, stack_meta_learner_train_percentage: float = 0.2, stack_meta_learner_type: Optional[Union[str, "_models.StackMetaLearnerType"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword stack_meta_learner_k_wargs: Optional parameters to pass to the initializer of the meta-learner. @@ -18116,6 +18671,42 @@ def __init__( self.stack_meta_learner_type = stack_meta_learner_type +class StorageAccountDetails(_serialization.Model): + """Details of storage account to be used for the Registry. + + :ivar system_created_storage_account: + :vartype system_created_storage_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedStorageAccount + :ivar user_created_storage_account: + :vartype user_created_storage_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedStorageAccount + """ + + _attribute_map = { + "system_created_storage_account": {"key": "systemCreatedStorageAccount", "type": "SystemCreatedStorageAccount"}, + "user_created_storage_account": {"key": "userCreatedStorageAccount", "type": "UserCreatedStorageAccount"}, + } + + def __init__( + self, + *, + system_created_storage_account: Optional["_models.SystemCreatedStorageAccount"] = None, + user_created_storage_account: Optional["_models.UserCreatedStorageAccount"] = None, + **kwargs: Any + ) -> None: + """ + :keyword system_created_storage_account: + :paramtype system_created_storage_account: + ~azure.mgmt.machinelearningservices.models.SystemCreatedStorageAccount + :keyword user_created_storage_account: + :paramtype user_created_storage_account: + ~azure.mgmt.machinelearningservices.models.UserCreatedStorageAccount + """ + super().__init__(**kwargs) + self.system_created_storage_account = system_created_storage_account + self.user_created_storage_account = user_created_storage_account + + class SweepJob(JobBaseProperties): # pylint: disable=too-many-instance-attributes """Sweep job definition. @@ -18227,8 +18818,8 @@ def __init__( inputs: Optional[Dict[str, "_models.JobInput"]] = None, limits: Optional["_models.SweepJobLimits"] = None, outputs: Optional[Dict[str, "_models.JobOutput"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -18335,8 +18926,8 @@ def __init__( max_concurrent_trials: Optional[int] = None, max_total_trials: Optional[int] = None, trial_timeout: Optional[datetime.timedelta] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword timeout: The max run duration in ISO 8601 format, after which the job will be cancelled. Only supports duration with precision as low as Seconds. @@ -18424,8 +19015,8 @@ def __init__( resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, properties: Optional["_models.SynapseSparkProperties"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword compute_location: Location for the underlying compute. :paramtype compute_location: str @@ -18501,8 +19092,8 @@ def __init__( resource_group: Optional[str] = None, workspace_name: Optional[str] = None, pool_name: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword auto_scale_properties: Auto scale properties. :paramtype auto_scale_properties: @@ -18540,6 +19131,100 @@ def __init__( self.pool_name = pool_name +class SystemCreatedAcrAccount(_serialization.Model): + """SystemCreatedAcrAccount. + + :ivar acr_account_sku: + :vartype acr_account_sku: str + :ivar arm_resource_id: ARM ResourceId of a resource. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + + _attribute_map = { + "acr_account_sku": {"key": "acrAccountSku", "type": "str"}, + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + } + + def __init__( + self, + *, + acr_account_sku: Optional[str] = None, + arm_resource_id: Optional["_models.ArmResourceId"] = None, + **kwargs: Any + ) -> None: + """ + :keyword acr_account_sku: + :paramtype acr_account_sku: str + :keyword arm_resource_id: ARM ResourceId of a resource. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + super().__init__(**kwargs) + self.acr_account_sku = acr_account_sku + self.arm_resource_id = arm_resource_id + + +class SystemCreatedStorageAccount(_serialization.Model): + """SystemCreatedStorageAccount. + + :ivar arm_resource_id: ARM ResourceId of a resource. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :ivar storage_account_hns_enabled: + :vartype storage_account_hns_enabled: bool + :ivar storage_account_type: Allowed values: + "Standard_LRS", + "Standard_GRS", + "Standard_RAGRS", + "Standard_ZRS", + "Standard_GZRS", + "Standard_RAGZRS", + "Premium_LRS", + "Premium_ZRS". + :vartype storage_account_type: str + :ivar allow_blob_public_access: + :vartype allow_blob_public_access: bool + """ + + _attribute_map = { + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + "storage_account_hns_enabled": {"key": "storageAccountHnsEnabled", "type": "bool"}, + "storage_account_type": {"key": "storageAccountType", "type": "str"}, + "allow_blob_public_access": {"key": "allowBlobPublicAccess", "type": "bool"}, + } + + def __init__( + self, + *, + arm_resource_id: Optional["_models.ArmResourceId"] = None, + storage_account_hns_enabled: Optional[bool] = None, + storage_account_type: Optional[str] = None, + allow_blob_public_access: Optional[bool] = None, + **kwargs: Any + ) -> None: + """ + :keyword arm_resource_id: ARM ResourceId of a resource. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + :keyword storage_account_hns_enabled: + :paramtype storage_account_hns_enabled: bool + :keyword storage_account_type: Allowed values: + "Standard_LRS", + "Standard_GRS", + "Standard_RAGRS", + "Standard_ZRS", + "Standard_GZRS", + "Standard_RAGZRS", + "Premium_LRS", + "Premium_ZRS". + :paramtype storage_account_type: str + :keyword allow_blob_public_access: + :paramtype allow_blob_public_access: bool + """ + super().__init__(**kwargs) + self.arm_resource_id = arm_resource_id + self.storage_account_hns_enabled = storage_account_hns_enabled + self.storage_account_type = storage_account_type + self.allow_blob_public_access = allow_blob_public_access + + class SystemData(_serialization.Model): """Metadata pertaining to creation and last modification of the resource. @@ -18577,8 +19262,8 @@ def __init__( last_modified_by: Optional[str] = None, last_modified_by_type: Optional[Union[str, "_models.CreatedByType"]] = None, last_modified_at: Optional[datetime.datetime] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword created_by: The identity that created the resource. :paramtype created_by: str @@ -18630,7 +19315,7 @@ class SystemService(_serialization.Model): "version": {"key": "version", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.system_service_type = None @@ -18682,8 +19367,8 @@ def __init__( enable_dnn_featurization: bool = False, mode: Optional[Union[str, "_models.FeaturizationMode"]] = None, transformer_params: Optional[Dict[str, List["_models.ColumnTransformer"]]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword dataset_language: Dataset language, useful for the text data. :paramtype dataset_language: str @@ -18755,8 +19440,8 @@ def __init__( max_trials: int = 1000, timeout: datetime.timedelta = "PT6H", trial_timeout: datetime.timedelta = "PT30M", - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword enable_early_termination: Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. @@ -18823,8 +19508,8 @@ def __init__( min_instances: int = 1, polling_interval: datetime.timedelta = "PT1S", target_utilization_percentage: int = 70, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword max_instances: The maximum number of instances that the deployment can scale to. The quota will be reserved for max_instances. @@ -18869,7 +19554,7 @@ class TensorFlow(DistributionConfiguration): "worker_count": {"key": "workerCount", "type": "int"}, } - def __init__(self, *, parameter_server_count: int = 0, worker_count: Optional[int] = None, **kwargs): + def __init__(self, *, parameter_server_count: int = 0, worker_count: Optional[int] = None, **kwargs: Any) -> None: """ :keyword parameter_server_count: Number of parameter server tasks. :paramtype parameter_server_count: int @@ -18886,33 +19571,33 @@ class TextClassification(NlpVertical, AutoMLVertical): """Text Classification task in AutoML NLP vertical. NLP - Natural Language Processing. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar primary_metric: Primary metric for Text-Classification task. Known values are: - "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and - "PrecisionScoreWeighted". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar primary_metric: Primary metric for Text-Classification task. Known values are: + "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and + "PrecisionScoreWeighted". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics """ _validation = { @@ -18941,8 +19626,8 @@ def __init__( limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, primary_metric: Optional[Union[str, "_models.ClassificationPrimaryMetrics"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -18988,36 +19673,36 @@ class TextClassificationMultilabel(NlpVertical, AutoMLVertical): """Text Classification Multilabel task in AutoML NLP vertical. NLP - Natural Language Processing. - Variables are only populated by the server, and will be ignored when sending a request. + Variables are only populated by the server, and will be ignored when sending a request. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar primary_metric: Primary metric for Text-Classification-Multilabel task. - Currently only Accuracy is supported as primary metric, hence user need not set it explicitly. - Known values are: "AUCWeighted", "Accuracy", "NormMacroRecall", - "AveragePrecisionScoreWeighted", "PrecisionScoreWeighted", and "IOU". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar primary_metric: Primary metric for Text-Classification-Multilabel task. + Currently only Accuracy is supported as primary metric, hence user need not set it explicitly. + Known values are: "AUCWeighted", "Accuracy", "NormMacroRecall", + "AveragePrecisionScoreWeighted", "PrecisionScoreWeighted", and "IOU". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationMultilabelPrimaryMetrics """ _validation = { @@ -19046,8 +19731,8 @@ def __init__( featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None, limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -19089,36 +19774,36 @@ class TextNer(NlpVertical, AutoMLVertical): NER - Named Entity Recognition. NLP - Natural Language Processing. - Variables are only populated by the server, and will be ignored when sending a request. + Variables are only populated by the server, and will be ignored when sending a request. - All required parameters must be populated in order to send to Azure. + All required parameters must be populated in order to send to Azure. - :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", - "Warning", "Error", and "Critical". - :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity - :ivar target_column_name: Target column name: This is prediction values column. - Also known as label column name in context of classification tasks. - :vartype target_column_name: str - :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: - "Classification", "Regression", "Forecasting", "ImageClassification", - "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", - "TextClassification", "TextClassificationMultilabel", and "TextNER". - :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType - :ivar training_data: [Required] Training data input. Required. - :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar featurization_settings: Featurization inputs needed for AutoML job. - :vartype featurization_settings: - ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings - :ivar limit_settings: Execution constraints for AutoMLJob. - :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings - :ivar validation_data: Validation data inputs. - :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput - :ivar primary_metric: Primary metric for Text-NER task. - Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly. Known values - are: "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and - "PrecisionScoreWeighted". - :vartype primary_metric: str or - ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics + :ivar log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", + "Warning", "Error", and "Critical". + :vartype log_verbosity: str or ~azure.mgmt.machinelearningservices.models.LogVerbosity + :ivar target_column_name: Target column name: This is prediction values column. + Also known as label column name in context of classification tasks. + :vartype target_column_name: str + :ivar task_type: [Required] Task type for AutoMLJob. Required. Known values are: + "Classification", "Regression", "Forecasting", "ImageClassification", + "ImageClassificationMultilabel", "ImageObjectDetection", "ImageInstanceSegmentation", + "TextClassification", "TextClassificationMultilabel", and "TextNER". + :vartype task_type: str or ~azure.mgmt.machinelearningservices.models.TaskType + :ivar training_data: [Required] Training data input. Required. + :vartype training_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar featurization_settings: Featurization inputs needed for AutoML job. + :vartype featurization_settings: + ~azure.mgmt.machinelearningservices.models.NlpVerticalFeaturizationSettings + :ivar limit_settings: Execution constraints for AutoMLJob. + :vartype limit_settings: ~azure.mgmt.machinelearningservices.models.NlpVerticalLimitSettings + :ivar validation_data: Validation data inputs. + :vartype validation_data: ~azure.mgmt.machinelearningservices.models.MLTableJobInput + :ivar primary_metric: Primary metric for Text-NER task. + Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly. Known values + are: "AUCWeighted", "Accuracy", "NormMacroRecall", "AveragePrecisionScoreWeighted", and + "PrecisionScoreWeighted". + :vartype primary_metric: str or + ~azure.mgmt.machinelearningservices.models.ClassificationPrimaryMetrics """ _validation = { @@ -19147,8 +19832,8 @@ def __init__( featurization_settings: Optional["_models.NlpVerticalFeaturizationSettings"] = None, limit_settings: Optional["_models.NlpVerticalLimitSettings"] = None, validation_data: Optional["_models.MLTableJobInput"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword log_verbosity: Log verbosity for the job. Known values are: "NotSet", "Debug", "Info", "Warning", "Error", and "Critical". @@ -19230,8 +19915,8 @@ def __init__( distribution: Optional["_models.DistributionConfiguration"] = None, environment_variables: Optional[Dict[str, str]] = None, resources: Optional["_models.JobResourceConfiguration"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword code_id: ARM resource ID of the code asset. :paramtype code_id: str @@ -19294,8 +19979,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -19345,8 +20030,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -19363,7 +20048,8 @@ def __init__( class TruncationSelectionPolicy(EarlyTerminationPolicy): - """Defines an early termination policy that cancels a given percentage of runs at each evaluation interval. + """Defines an early termination policy that cancels a given percentage of runs at each evaluation + interval. All required parameters must be populated in order to send to Azure. @@ -19391,8 +20077,8 @@ class TruncationSelectionPolicy(EarlyTerminationPolicy): } def __init__( - self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0, **kwargs - ): + self, *, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0, **kwargs: Any + ) -> None: """ :keyword delay_evaluation: Number of intervals by which to delay the first evaluation. :paramtype delay_evaluation: int @@ -19439,7 +20125,9 @@ class UpdateWorkspaceQuotas(_serialization.Model): "status": {"key": "status", "type": "str"}, } - def __init__(self, *, limit: Optional[int] = None, status: Optional[Union[str, "_models.Status"]] = None, **kwargs): + def __init__( + self, *, limit: Optional[int] = None, status: Optional[Union[str, "_models.Status"]] = None, **kwargs: Any + ) -> None: """ :keyword limit: The maximum permitted quota of the resource. :paramtype limit: int @@ -19478,7 +20166,7 @@ class UpdateWorkspaceQuotasResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -19533,8 +20221,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -19599,8 +20287,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -19650,8 +20338,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -19715,8 +20403,8 @@ def __init__( tags: Optional[Dict[str, str]] = None, is_anonymous: bool = False, is_archived: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: The asset description text. :paramtype description: str @@ -19781,8 +20469,8 @@ def __init__( uri: str, description: Optional[str] = None, mode: Optional[Union[str, "_models.InputDeliveryMode"]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the input. :paramtype description: str @@ -19832,8 +20520,8 @@ def __init__( description: Optional[str] = None, mode: Optional[Union[str, "_models.OutputDeliveryMode"]] = None, uri: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword description: Description for the output. :paramtype description: str @@ -19890,7 +20578,7 @@ class Usage(_serialization.Model): "name": {"key": "name", "type": "UsageName"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None @@ -19923,7 +20611,7 @@ class UsageName(_serialization.Model): "localized_value": {"key": "localizedValue", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None @@ -19960,8 +20648,8 @@ def __init__( admin_user_name: str, admin_user_ssh_public_key: Optional[str] = None, admin_user_password: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword admin_user_name: Name of the administrator user account which can be used to SSH to nodes. Required. @@ -19998,13 +20686,53 @@ class UserAssignedIdentity(_serialization.Model): "client_id": {"key": "clientId", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.principal_id = None self.client_id = None +class UserCreatedAcrAccount(_serialization.Model): + """UserCreatedAcrAccount. + + :ivar arm_resource_id: ARM ResourceId of a resource. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + + _attribute_map = { + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + } + + def __init__(self, *, arm_resource_id: Optional["_models.ArmResourceId"] = None, **kwargs: Any) -> None: + """ + :keyword arm_resource_id: ARM ResourceId of a resource. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + super().__init__(**kwargs) + self.arm_resource_id = arm_resource_id + + +class UserCreatedStorageAccount(_serialization.Model): + """UserCreatedStorageAccount. + + :ivar arm_resource_id: ARM ResourceId of a resource. + :vartype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + + _attribute_map = { + "arm_resource_id": {"key": "armResourceId", "type": "ArmResourceId"}, + } + + def __init__(self, *, arm_resource_id: Optional["_models.ArmResourceId"] = None, **kwargs: Any) -> None: + """ + :keyword arm_resource_id: ARM ResourceId of a resource. + :paramtype arm_resource_id: ~azure.mgmt.machinelearningservices.models.ArmResourceId + """ + super().__init__(**kwargs) + self.arm_resource_id = arm_resource_id + + class UserIdentity(IdentityConfiguration): """User identity configuration. @@ -20024,7 +20752,7 @@ class UserIdentity(IdentityConfiguration): "identity_type": {"key": "identityType", "type": "str"}, } - def __init__(self, **kwargs): + def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.identity_type: str = "UserIdentity" @@ -20073,8 +20801,8 @@ def __init__( value: Optional[str] = None, value_format: Optional[Union[str, "_models.ValueFormat"]] = None, credentials: Optional["_models.WorkspaceConnectionUsernamePassword"] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword category: Category of the connection. Known values are: "PythonFeed", "ContainerRegistry", and "Git". @@ -20105,7 +20833,7 @@ class VirtualMachineSchema(_serialization.Model): "properties": {"key": "properties", "type": "VirtualMachineSchemaProperties"}, } - def __init__(self, *, properties: Optional["_models.VirtualMachineSchemaProperties"] = None, **kwargs): + def __init__(self, *, properties: Optional["_models.VirtualMachineSchemaProperties"] = None, **kwargs: Any) -> None: """ :keyword properties: :paramtype properties: @@ -20184,8 +20912,8 @@ def __init__( description: Optional[str] = None, resource_id: Optional[str] = None, disable_local_auth: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword properties: :paramtype properties: @@ -20238,7 +20966,7 @@ class VirtualMachineImage(_serialization.Model): "id": {"key": "id", "type": "str"}, } - def __init__(self, *, id: str, **kwargs): # pylint: disable=redefined-builtin + def __init__(self, *, id: str, **kwargs: Any) -> None: # pylint: disable=redefined-builtin """ :keyword id: Virtual Machine image path. Required. :paramtype id: str @@ -20284,8 +21012,8 @@ def __init__( address: Optional[str] = None, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, is_notebook_instance_compute: Optional[bool] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword virtual_machine_size: Virtual Machine size. :paramtype virtual_machine_size: str @@ -20323,7 +21051,9 @@ class VirtualMachineSecretsSchema(_serialization.Model): "administrator_account": {"key": "administratorAccount", "type": "VirtualMachineSshCredentials"}, } - def __init__(self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs): + def __init__( + self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs: Any + ) -> None: """ :keyword administrator_account: Admin credentials for virtual machine. :paramtype administrator_account: @@ -20356,7 +21086,9 @@ class VirtualMachineSecrets(ComputeSecrets, VirtualMachineSecretsSchema): "compute_type": {"key": "computeType", "type": "str"}, } - def __init__(self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs): + def __init__( + self, *, administrator_account: Optional["_models.VirtualMachineSshCredentials"] = None, **kwargs: Any + ) -> None: """ :keyword administrator_account: Admin credentials for virtual machine. :paramtype administrator_account: @@ -20429,8 +21161,8 @@ def __init__( *, estimated_vm_prices: Optional["_models.EstimatedVMPrices"] = None, supported_compute_types: Optional[List[str]] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword estimated_vm_prices: The estimated price information for using a VM. :paramtype estimated_vm_prices: ~azure.mgmt.machinelearningservices.models.EstimatedVMPrices @@ -20463,7 +21195,7 @@ class VirtualMachineSizeListResult(_serialization.Model): "value": {"key": "value", "type": "[VirtualMachineSize]"}, } - def __init__(self, *, value: Optional[List["_models.VirtualMachineSize"]] = None, **kwargs): + def __init__(self, *, value: Optional[List["_models.VirtualMachineSize"]] = None, **kwargs: Any) -> None: """ :keyword value: The list of virtual machine sizes supported by AmlCompute. :paramtype value: list[~azure.mgmt.machinelearningservices.models.VirtualMachineSize] @@ -20499,8 +21231,8 @@ def __init__( password: Optional[str] = None, public_key_data: Optional[str] = None, private_key_data: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword username: Username of admin account. :paramtype username: str @@ -20697,8 +21429,8 @@ def __init__( # pylint: disable=too-many-locals service_managed_resources_settings: Optional["_models.ServiceManagedResourcesSettings"] = None, primary_user_assigned_identity: Optional[str] = None, v1_legacy_mode: bool = False, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword identity: The identity of the resource. :paramtype identity: ~azure.mgmt.machinelearningservices.models.ManagedServiceIdentity @@ -20800,7 +21532,7 @@ class WorkspaceConnectionManagedIdentity(_serialization.Model): "client_id": {"key": "clientId", "type": "str"}, } - def __init__(self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, **kwargs): + def __init__(self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, **kwargs: Any) -> None: """ :keyword resource_id: :paramtype resource_id: str @@ -20823,7 +21555,7 @@ class WorkspaceConnectionPersonalAccessToken(_serialization.Model): "pat": {"key": "pat", "type": "str"}, } - def __init__(self, *, pat: Optional[str] = None, **kwargs): + def __init__(self, *, pat: Optional[str] = None, **kwargs: Any) -> None: """ :keyword pat: :paramtype pat: str @@ -20870,7 +21602,7 @@ class WorkspaceConnectionPropertiesV2BasicResource(Resource): "properties": {"key": "properties", "type": "WorkspaceConnectionPropertiesV2"}, } - def __init__(self, *, properties: "_models.WorkspaceConnectionPropertiesV2", **kwargs): + def __init__(self, *, properties: "_models.WorkspaceConnectionPropertiesV2", **kwargs: Any) -> None: """ :keyword properties: Required. :paramtype properties: @@ -20902,8 +21634,8 @@ class WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult(_serializat } def __init__( - self, *, value: Optional[List["_models.WorkspaceConnectionPropertiesV2BasicResource"]] = None, **kwargs - ): + self, *, value: Optional[List["_models.WorkspaceConnectionPropertiesV2BasicResource"]] = None, **kwargs: Any + ) -> None: """ :keyword value: :paramtype value: @@ -20925,7 +21657,7 @@ class WorkspaceConnectionSharedAccessSignature(_serialization.Model): "sas": {"key": "sas", "type": "str"}, } - def __init__(self, *, sas: Optional[str] = None, **kwargs): + def __init__(self, *, sas: Optional[str] = None, **kwargs: Any) -> None: """ :keyword sas: :paramtype sas: str @@ -20948,7 +21680,7 @@ class WorkspaceConnectionUsernamePassword(_serialization.Model): "password": {"key": "password", "type": "str"}, } - def __init__(self, *, username: Optional[str] = None, password: Optional[str] = None, **kwargs): + def __init__(self, *, username: Optional[str] = None, password: Optional[str] = None, **kwargs: Any) -> None: """ :keyword username: :paramtype username: str @@ -20976,7 +21708,9 @@ class WorkspaceListResult(_serialization.Model): "next_link": {"key": "nextLink", "type": "str"}, } - def __init__(self, *, value: Optional[List["_models.Workspace"]] = None, next_link: Optional[str] = None, **kwargs): + def __init__( + self, *, value: Optional[List["_models.Workspace"]] = None, next_link: Optional[str] = None, **kwargs: Any + ) -> None: """ :keyword value: The list of machine learning workspaces. Since this list may be incomplete, the nextLink field should be used to request the next list of machine learning workspaces. @@ -21052,8 +21786,8 @@ def __init__( public_network_access: Optional[Union[str, "_models.PublicNetworkAccess"]] = None, application_insights: Optional[str] = None, container_registry: Optional[str] = None, - **kwargs - ): + **kwargs: Any + ) -> None: """ :keyword tags: The resource tags for the machine learning workspace. :paramtype tags: dict[str, str] diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py index 0065485916d9..3a8e74c05cba 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/__init__.py @@ -32,6 +32,7 @@ from ._online_endpoints_operations import OnlineEndpointsOperations from ._online_deployments_operations import OnlineDeploymentsOperations from ._schedules_operations import SchedulesOperations +from ._registries_operations import RegistriesOperations from ._workspace_features_operations import WorkspaceFeaturesOperations from ._patch import __all__ as _patch_all @@ -65,6 +66,7 @@ "OnlineEndpointsOperations", "OnlineDeploymentsOperations", "SchedulesOperations", + "RegistriesOperations", "WorkspaceFeaturesOperations", ] __all__.extend([p for p in _patch_all if p not in __all__]) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py index 944b8300d2f5..afc4724f9e78 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_deployments_operations.py @@ -57,7 +57,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -102,7 +102,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -142,7 +142,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -182,7 +182,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -229,7 +229,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -321,7 +321,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -381,8 +381,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -413,7 +414,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -432,8 +433,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -490,7 +492,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -567,7 +569,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchDeployment] = kwargs.pop("cls", None) @@ -586,8 +588,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -628,7 +631,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -659,8 +662,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -805,8 +809,8 @@ def begin_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a + PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialBatchDeploymentPartialMinimalTrackedResourceWithProperties or IO @@ -830,7 +834,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -899,7 +903,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -930,8 +934,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1077,8 +1082,8 @@ def begin_create_or_update( :type endpoint_name: str :param deployment_name: The identifier for the Batch inference deployment. Required. :type deployment_name: str - :param body: Batch inference deployment definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference deployment definition object. Is either a BatchDeployment type or + a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1100,7 +1105,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py index 5813ab488a03..74007ad8dade 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_batch_endpoints_operations.py @@ -55,7 +55,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -92,7 +92,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -126,7 +126,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -160,7 +160,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -199,7 +199,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -238,7 +238,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -315,7 +315,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -373,8 +373,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -405,7 +406,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -423,8 +424,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -479,7 +481,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -553,7 +555,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.BatchEndpoint] = kwargs.pop("cls", None) @@ -571,8 +573,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -612,7 +615,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -642,8 +645,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -777,8 +781,8 @@ def begin_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Mutable batch inference endpoint definition object. Is either a model type or a IO - type. Required. + :param body: Mutable batch inference endpoint definition object. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -800,7 +804,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -867,7 +871,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -897,8 +901,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1033,8 +1038,8 @@ def begin_create_or_update( :type workspace_name: str :param endpoint_name: Name for the Batch inference endpoint. Required. :type endpoint_name: str - :param body: Batch inference endpoint definition object. Is either a model type or a IO type. - Required. + :param body: Batch inference endpoint definition object. Is either a BatchEndpoint type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.BatchEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1055,7 +1060,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1134,7 +1139,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) @@ -1152,8 +1157,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py index 637d9072c910..6dfd8d3faee2 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_containers_operations.py @@ -47,7 +47,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -82,7 +82,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -116,7 +116,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -150,7 +150,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -223,7 +223,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -280,8 +280,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -329,7 +330,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -347,8 +348,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -394,7 +396,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeContainer] = kwargs.pop("cls", None) @@ -412,8 +414,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -520,7 +523,7 @@ def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a CodeContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -542,7 +545,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -572,8 +575,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py index 561baa83676c..ac8245188034 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_code_versions_operations.py @@ -55,7 +55,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -95,7 +95,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -130,7 +130,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -165,7 +165,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -252,7 +252,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -312,8 +312,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -363,7 +364,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -382,8 +383,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -433,7 +435,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.CodeVersion] = kwargs.pop("cls", None) @@ -452,8 +454,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -569,7 +572,8 @@ def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a CodeVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.CodeVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -590,7 +594,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -621,8 +625,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py index 4b9361f4a37c..d029c64be2b1 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_containers_operations.py @@ -53,7 +53,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -90,7 +90,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -124,7 +124,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -158,7 +158,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -240,7 +240,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -298,8 +298,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -347,7 +348,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -365,8 +366,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -414,7 +416,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentContainer] = kwargs.pop("cls", None) @@ -432,8 +434,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -540,8 +543,8 @@ def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ComponentContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -562,7 +565,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -592,8 +595,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py index 5e99740483db..118194c1e6ec 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_component_versions_operations.py @@ -56,7 +56,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -98,7 +98,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -133,7 +133,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -168,7 +168,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -260,7 +260,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -321,8 +321,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -372,7 +373,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -391,8 +392,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -442,7 +444,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComponentVersion] = kwargs.pop("cls", None) @@ -461,8 +463,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -578,7 +581,8 @@ def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ComponentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ComponentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -599,7 +603,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -630,8 +634,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py index 51927e5687de..f091444fa8f7 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_compute_operations.py @@ -49,7 +49,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -84,7 +84,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -118,7 +118,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -155,7 +155,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -198,7 +198,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -235,7 +235,7 @@ def build_list_nodes_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -269,7 +269,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -303,7 +303,7 @@ def build_start_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -337,7 +337,7 @@ def build_stop_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -371,7 +371,7 @@ def build_restart_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -440,7 +440,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PaginatedComputeResourcesList] = kwargs.pop("cls", None) @@ -497,8 +497,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -545,7 +546,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComputeResource] = kwargs.pop("cls", None) @@ -563,8 +564,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -604,7 +606,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -634,8 +636,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -769,8 +772,8 @@ def begin_create_or_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Payload with Machine Learning compute definition. Is either a model type or - a IO type. Required. + :param parameters: Payload with Machine Learning compute definition. Is either a + ComputeResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ComputeResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -792,7 +795,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -859,7 +862,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -889,8 +892,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1012,8 +1016,8 @@ def begin_update( :type workspace_name: str :param compute_name: Name of the Azure Machine Learning compute. Required. :type compute_name: str - :param parameters: Additional parameters for cluster update. Is either a model type or a IO - type. Required. + :param parameters: Additional parameters for cluster update. Is either a + ClusterUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.ClusterUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1035,7 +1039,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1102,7 +1106,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1121,8 +1125,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1184,7 +1189,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1251,7 +1256,7 @@ def list_nodes( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.AmlComputeNodesInformation] = kwargs.pop("cls", None) @@ -1308,8 +1313,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1355,7 +1361,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ComputeSecrets] = kwargs.pop("cls", None) @@ -1373,8 +1379,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1409,7 +1416,7 @@ def _start_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1427,8 +1434,9 @@ def _start_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1473,7 +1481,7 @@ def begin_start( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1530,7 +1538,7 @@ def _stop_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1548,8 +1556,9 @@ def _stop_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1594,7 +1603,7 @@ def begin_stop( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1651,7 +1660,7 @@ def _restart_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1669,8 +1678,9 @@ def _restart_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1715,7 +1725,7 @@ def begin_restart( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py index 3b5d3acc38c6..f2d538df0733 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_containers_operations.py @@ -53,7 +53,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -90,7 +90,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -124,7 +124,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -158,7 +158,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -239,7 +239,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -297,8 +297,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -346,7 +347,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -364,8 +365,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -411,7 +413,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataContainer] = kwargs.pop("cls", None) @@ -429,8 +431,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -537,7 +540,7 @@ def create_or_update( :type workspace_name: str :param name: Container name. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. + :param body: Container entity to create or update. Is either a DataContainer type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DataContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -559,7 +562,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -589,8 +592,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py index 092363a5e2f3..822831c7c866 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_data_versions_operations.py @@ -57,7 +57,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -101,7 +101,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -136,7 +136,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -171,7 +171,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -271,7 +271,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataVersionBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -333,8 +333,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -384,7 +385,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -403,8 +404,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -454,7 +456,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DataVersionBase] = kwargs.pop("cls", None) @@ -473,8 +475,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -590,7 +593,8 @@ def create_or_update( :type name: str :param version: Version identifier. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a DataVersionBase type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.DataVersionBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -611,7 +615,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -642,8 +646,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py index bc01c32a0983..acdb28d35025 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_datastores_operations.py @@ -58,7 +58,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -105,7 +105,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -139,7 +139,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -179,7 +179,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -218,7 +218,7 @@ def build_list_secrets_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -310,7 +310,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DatastoreResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -373,8 +373,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -422,7 +423,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -440,8 +441,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -487,7 +489,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.Datastore] = kwargs.pop("cls", None) @@ -505,8 +507,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -620,7 +623,7 @@ def create_or_update( :type workspace_name: str :param name: Datastore name. Required. :type name: str - :param body: Datastore entity to create or update. Is either a model type or a IO type. + :param body: Datastore entity to create or update. Is either a Datastore type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Datastore or IO :param skip_validation: Flag to skip validation. Default value is False. @@ -644,7 +647,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -675,8 +678,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -732,7 +736,7 @@ def list_secrets( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DatastoreSecrets] = kwargs.pop("cls", None) @@ -750,8 +754,9 @@ def list_secrets( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py index d80de1f2b3c7..38e3fb219121 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_containers_operations.py @@ -53,7 +53,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -90,7 +90,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -124,7 +124,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -158,7 +158,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -241,7 +241,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -299,8 +299,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -348,7 +349,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -366,8 +367,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -415,7 +417,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentContainer] = kwargs.pop("cls", None) @@ -433,8 +435,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -541,8 +544,8 @@ def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a EnvironmentContainer type or a + IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -563,7 +566,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -593,8 +596,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py index d898cb3c67dd..948e65acd3ec 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_environment_versions_operations.py @@ -56,7 +56,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -98,7 +98,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -133,7 +133,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -168,7 +168,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -260,7 +260,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -321,8 +321,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -372,7 +373,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -391,8 +392,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -442,7 +444,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EnvironmentVersion] = kwargs.pop("cls", None) @@ -461,8 +463,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -578,7 +581,8 @@ def create_or_update( :type name: str :param version: Version of EnvironmentVersion. Required. :type version: str - :param body: Definition of EnvironmentVersion. Is either a model type or a IO type. Required. + :param body: Definition of EnvironmentVersion. Is either a EnvironmentVersion type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.EnvironmentVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -599,7 +603,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -630,8 +634,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py index cd8bd0bd0c47..be5e5bdc69b4 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_jobs_operations.py @@ -57,7 +57,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -98,7 +98,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -132,7 +132,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -166,7 +166,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -203,7 +203,7 @@ def build_cancel_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -287,7 +287,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.JobBaseResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -347,8 +347,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -379,7 +380,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -397,8 +398,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -451,7 +453,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, id: str, * _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -523,7 +525,7 @@ def get(self, resource_group_name: str, workspace_name: str, id: str, **kwargs: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.JobBase] = kwargs.pop("cls", None) @@ -541,8 +543,9 @@ def get(self, resource_group_name: str, workspace_name: str, id: str, **kwargs: request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -644,7 +647,7 @@ def create_or_update( :type workspace_name: str :param id: The name and identifier for the Job. This is case-sensitive. Required. :type id: str - :param body: Job definition object. Is either a model type or a IO type. Required. + :param body: Job definition object. Is either a JobBase type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.JobBase or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -665,7 +668,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -695,8 +698,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -735,7 +739,7 @@ def _cancel_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -753,8 +757,9 @@ def _cancel_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -804,7 +809,7 @@ def begin_cancel(self, resource_group_name: str, workspace_name: str, id: str, * _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py index 2c416fba2772..507fea97e352 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_containers_operations.py @@ -54,7 +54,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -93,7 +93,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -127,7 +127,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -161,7 +161,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -245,7 +245,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelContainerResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -304,8 +304,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -353,7 +354,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -371,8 +372,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -418,7 +420,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelContainer] = kwargs.pop("cls", None) @@ -436,8 +438,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -544,8 +547,8 @@ def create_or_update( :type workspace_name: str :param name: Container name. This is case-sensitive. Required. :type name: str - :param body: Container entity to create or update. Is either a model type or a IO type. - Required. + :param body: Container entity to create or update. Is either a ModelContainer type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelContainer or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -566,7 +569,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -596,8 +599,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py index 775841fe3ae4..814430c362a9 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_model_versions_operations.py @@ -62,7 +62,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -116,7 +116,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -151,7 +151,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -186,7 +186,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -297,7 +297,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelVersionResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -364,8 +364,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -415,7 +416,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -434,8 +435,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -485,7 +487,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ModelVersion] = kwargs.pop("cls", None) @@ -504,8 +506,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -621,7 +624,8 @@ def create_or_update( :type name: str :param version: Version identifier. This is case-sensitive. Required. :type version: str - :param body: Version entity to create or update. Is either a model type or a IO type. Required. + :param body: Version entity to create or update. Is either a ModelVersion type or a IO type. + Required. :type body: ~azure.mgmt.machinelearningservices.models.ModelVersion or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -642,7 +646,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -673,8 +677,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py index cf048b3e2993..0fe4ef4b7724 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_deployments_operations.py @@ -57,7 +57,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -102,7 +102,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -142,7 +142,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -182,7 +182,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -229,7 +229,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -276,7 +276,7 @@ def build_get_logs_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -322,7 +322,7 @@ def build_list_skus_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -411,7 +411,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineDeploymentTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -471,8 +471,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -503,7 +504,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -522,8 +523,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -580,7 +582,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -657,7 +659,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineDeployment] = kwargs.pop("cls", None) @@ -676,8 +678,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -718,7 +721,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -749,8 +752,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -894,8 +898,8 @@ def begin_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithSku type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithSku or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -918,7 +922,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -987,7 +991,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1018,8 +1022,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1165,8 +1170,8 @@ def begin_create_or_update( :type endpoint_name: str :param deployment_name: Inference Endpoint Deployment name. Required. :type deployment_name: str - :param body: Inference Endpoint entity to apply during operation. Is either a model type or a - IO type. Required. + :param body: Inference Endpoint entity to apply during operation. Is either a OnlineDeployment + type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineDeployment or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1188,7 +1193,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1332,8 +1337,8 @@ def get_logs( :type endpoint_name: str :param deployment_name: The name and identifier for the endpoint. Required. :type deployment_name: str - :param body: The request containing parameters for retrieving logs. Is either a model type or a - IO type. Required. + :param body: The request containing parameters for retrieving logs. Is either a + DeploymentLogsRequest type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.DeploymentLogsRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1354,7 +1359,7 @@ def get_logs( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1385,8 +1390,9 @@ def get_logs( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1443,7 +1449,7 @@ def list_skus( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.SkuResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -1503,8 +1509,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py index 9d9051dce1f7..ed4ede148a8e 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_online_endpoints_operations.py @@ -60,7 +60,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -107,7 +107,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -141,7 +141,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -175,7 +175,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -212,7 +212,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -251,7 +251,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -285,7 +285,7 @@ def build_regenerate_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -322,7 +322,7 @@ def build_get_token_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -420,7 +420,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineEndpointTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -483,8 +483,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -515,7 +516,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -533,8 +534,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -589,7 +591,7 @@ def begin_delete( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -663,7 +665,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.OnlineEndpoint] = kwargs.pop("cls", None) @@ -681,8 +683,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -722,7 +725,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -752,8 +755,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -889,8 +893,8 @@ def begin_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a + PartialMinimalTrackedResourceWithIdentity type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.PartialMinimalTrackedResourceWithIdentity or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -913,7 +917,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -980,7 +984,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1010,8 +1014,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1148,8 +1153,8 @@ def begin_create_or_update( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: Online Endpoint entity to apply during operation. Is either a model type or a IO - type. Required. + :param body: Online Endpoint entity to apply during operation. Is either a OnlineEndpoint type + or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.OnlineEndpoint or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1171,7 +1176,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1250,7 +1255,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EndpointAuthKeys] = kwargs.pop("cls", None) @@ -1268,8 +1273,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1309,7 +1315,7 @@ def _regenerate_keys_initial( # pylint: disable=inconsistent-return-statements _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1339,8 +1345,9 @@ def _regenerate_keys_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1462,7 +1469,8 @@ def begin_regenerate_keys( :type workspace_name: str :param endpoint_name: Online Endpoint name. Required. :type endpoint_name: str - :param body: RegenerateKeys request . Is either a model type or a IO type. Required. + :param body: RegenerateKeys request . Is either a RegenerateEndpointKeysRequest type or a IO + type. Required. :type body: ~azure.mgmt.machinelearningservices.models.RegenerateEndpointKeysRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1482,7 +1490,7 @@ def begin_regenerate_keys( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1561,7 +1569,7 @@ def get_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EndpointAuthToken] = kwargs.pop("cls", None) @@ -1579,8 +1587,9 @@ def get_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py index 369a4a8166c9..7dc0790a315d 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_operations.py @@ -45,7 +45,7 @@ def build_list_request(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -91,7 +91,7 @@ def list(self, **kwargs: Any) -> Iterable["_models.AmlOperation"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.AmlOperationListResult] = kwargs.pop("cls", None) @@ -144,8 +144,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py index 6be9a15c5c60..be4b0cda4df1 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_endpoint_connections_operations.py @@ -47,7 +47,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -84,7 +84,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -124,7 +124,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -167,7 +167,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -237,7 +237,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PrivateEndpointConnectionListResult] = kwargs.pop("cls", None) @@ -293,8 +293,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -341,7 +342,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PrivateEndpointConnection] = kwargs.pop("cls", None) @@ -359,8 +360,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -464,8 +466,8 @@ def create_or_update( :param private_endpoint_connection_name: The name of the private endpoint connection associated with the workspace. Required. :type private_endpoint_connection_name: str - :param properties: The private endpoint connection properties. Is either a model type or a IO - type. Required. + :param properties: The private endpoint connection properties. Is either a + PrivateEndpointConnection type or a IO type. Required. :type properties: ~azure.mgmt.machinelearningservices.models.PrivateEndpointConnection or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -486,7 +488,7 @@ def create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -516,8 +518,9 @@ def create_or_update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -568,7 +571,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -586,8 +589,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py index 330afa1b8940..7a35653079f8 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_private_link_resources_operations.py @@ -45,7 +45,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -118,7 +118,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.PrivateLinkResourceListResult] = kwargs.pop("cls", None) @@ -135,8 +135,9 @@ def list( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py index 926e7f8d9baa..b7af732a2582 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_quotas_operations.py @@ -45,7 +45,7 @@ def build_update_request(location: str, subscription_id: str, **kwargs: Any) -> _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -76,7 +76,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -170,7 +170,8 @@ def update( :param location: The location for update quota is queried. Required. :type location: str - :param parameters: Quota update parameters. Is either a model type or a IO type. Required. + :param parameters: Quota update parameters. Is either a QuotaUpdateParameters type or a IO + type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.QuotaUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -191,7 +192,7 @@ def update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -219,8 +220,9 @@ def update( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -255,7 +257,7 @@ def list(self, location: str, **kwargs: Any) -> Iterable["_models.ResourceQuota" _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListWorkspaceQuotas] = kwargs.pop("cls", None) @@ -310,8 +312,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py new file mode 100644 index 000000000000..f064305bf939 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_registries_operations.py @@ -0,0 +1,1116 @@ +# pylint: disable=too-many-lines +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- +import sys +from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload +import urllib.parse + +from azure.core.exceptions import ( + ClientAuthenticationError, + HttpResponseError, + ResourceExistsError, + ResourceNotFoundError, + ResourceNotModifiedError, + map_error, +) +from azure.core.paging import ItemPaged +from azure.core.pipeline import PipelineResponse +from azure.core.pipeline.transport import HttpResponse +from azure.core.polling import LROPoller, NoPolling, PollingMethod +from azure.core.rest import HttpRequest +from azure.core.tracing.decorator import distributed_trace +from azure.core.utils import case_insensitive_dict +from azure.mgmt.core.exceptions import ARMErrorFormat +from azure.mgmt.core.polling.arm_polling import ARMPolling + +from .. import models as _models +from .._serialization import Serializer +from .._vendor import _convert_request, _format_url_section + +if sys.version_info >= (3, 8): + from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports +else: + from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports +T = TypeVar("T") +ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] + +_SERIALIZER = Serializer() +_SERIALIZER.client_side_validation = False + + +def build_list_by_subscription_request( + subscription_id: str, *, skip: Optional[str] = None, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", "/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearningServices/registries" + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_list_request( + resource_group_name: str, subscription_id: str, *, skip: Optional[str] = None, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + if skip is not None: + _params["$skip"] = _SERIALIZER.query("skip", skip, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_delete_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_get_request(resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url("registry_name", registry_name, "str"), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_update_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PATCH", url=_url, params=_params, headers=_headers, **kwargs) + + +def build_create_or_update_request( + resource_group_name: str, registry_name: str, subscription_id: str, **kwargs: Any +) -> HttpRequest: + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + accept = _headers.pop("Accept", "application/json") + + # Construct URL + _url = kwargs.pop( + "template_url", + "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}", + ) # pylint: disable=line-too-long + path_format_arguments = { + "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), + "resourceGroupName": _SERIALIZER.url( + "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 + ), + "registryName": _SERIALIZER.url( + "registry_name", registry_name, "str", pattern=r"^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$" + ), + } + + _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore + + # Construct parameters + _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") + + # Construct headers + if content_type is not None: + _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") + _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") + + return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) + + +class RegistriesOperations: + """ + .. warning:: + **DO NOT** instantiate this class directly. + + Instead, you should access the following operations through + :class:`~azure.mgmt.machinelearningservices.MachineLearningServicesMgmtClient`'s + :attr:`registries` attribute. + """ + + models = _models + + def __init__(self, *args, **kwargs): + input_args = list(args) + self._client = input_args.pop(0) if input_args else kwargs.pop("client") + self._config = input_args.pop(0) if input_args else kwargs.pop("config") + self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") + self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") + + @distributed_trace + def list_by_subscription(self, skip: Optional[str] = None, **kwargs: Any) -> Iterable["_models.Registry"]: + """List registries by subscription. + + List registries by subscription. + + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_by_subscription_request( + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list_by_subscription.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list_by_subscription.metadata = { + "url": "/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearningServices/registries" + } + + @distributed_trace + def list(self, resource_group_name: str, skip: Optional[str] = None, **kwargs: Any) -> Iterable["_models.Registry"]: + """List registries. + + List registries. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param skip: Continuation token for pagination. Default value is None. + :type skip: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: An iterator like instance of either Registry or the result of cls(response) + :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[_models.RegistryTrackedResourceArmPaginatedResult] = kwargs.pop("cls", None) + + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + def prepare_request(next_link=None): + if not next_link: + + request = build_list_request( + resource_group_name=resource_group_name, + subscription_id=self._config.subscription_id, + skip=skip, + api_version=api_version, + template_url=self.list.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + else: + # make call to next link with the client's api-version + _parsed_next_link = urllib.parse.urlparse(next_link) + _next_request_params = case_insensitive_dict( + { + key: [urllib.parse.quote(v) for v in value] + for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() + } + ) + _next_request_params["api-version"] = self._config.api_version + request = HttpRequest( + "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + request.method = "GET" + return request + + def extract_data(pipeline_response): + deserialized = self._deserialize("RegistryTrackedResourceArmPaginatedResult", pipeline_response) + list_of_elem = deserialized.value + if cls: + list_of_elem = cls(list_of_elem) # type: ignore + return deserialized.next_link or None, iter(list_of_elem) + + def get_next(next_link=None): + request = prepare_request(next_link) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + return pipeline_response + + return ItemPaged(get_next, extract_data) + + list.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries" + } + + def _delete_initial( # pylint: disable=inconsistent-return-statements + self, resource_group_name: str, registry_name: str, **kwargs: Any + ) -> None: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[None] = kwargs.pop("cls", None) + + request = build_delete_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self._delete_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202, 204]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 202: + response_headers["x-ms-async-operation-timeout"] = self._deserialize( + "duration", response.headers.get("x-ms-async-operation-timeout") + ) + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + if cls: + return cls(pipeline_response, None, response_headers) + + _delete_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace + def begin_delete(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> LROPoller[None]: + """Delete registry. + + Delete registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either None or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[None] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[None] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._delete_initial( # type: ignore + resource_group_name=resource_group_name, + registry_name=registry_name, + api_version=api_version, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements + if cls: + return cls(pipeline_response, None, {}) + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_delete.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @distributed_trace + def get(self, resource_group_name: str, registry_name: str, **kwargs: Any) -> _models.Registry: + """Get registry. + + Get registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :keyword callable cls: A custom type or function that will be passed the direct response + :return: Registry or the result of cls(response) + :rtype: ~azure.mgmt.machinelearningservices.models.Registry + :raises ~azure.core.exceptions.HttpResponseError: + """ + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = kwargs.pop("headers", {}) or {} + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + request = build_get_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + template_url=self.get.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + get.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + def _update_initial( + self, + resource_group_name: str, + registry_name: str, + body: Union[_models.PartialRegistryPartialTrackedResource, IO], + **kwargs: Any + ) -> _models.Registry: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "PartialRegistryPartialTrackedResource") + + request = build_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 202]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + response_headers = {} + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 202: + response_headers["Location"] = self._deserialize("str", response.headers.get("Location")) + response_headers["Retry-After"] = self._deserialize("int", response.headers.get("Retry-After")) + + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, response_headers) # type: ignore + + return deserialized # type: ignore + + _update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + def begin_update( + self, + resource_group_name: str, + registry_name: str, + body: _models.PartialRegistryPartialTrackedResource, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_update( + self, + resource_group_name: str, + registry_name: str, + body: Union[_models.PartialRegistryPartialTrackedResource, IO], + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Update tags. + + Update tags. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a + PartialRegistryPartialTrackedResource type or a IO type. Required. + :type body: ~azure.mgmt.machinelearningservices.models.PartialRegistryPartialTrackedResource or + IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + def _create_or_update_initial( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> Optional[_models.Registry]: + error_map = { + 401: ClientAuthenticationError, + 404: ResourceNotFoundError, + 409: ResourceExistsError, + 304: ResourceNotModifiedError, + } + error_map.update(kwargs.pop("error_map", {}) or {}) + + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[Optional[_models.Registry]] = kwargs.pop("cls", None) + + content_type = content_type or "application/json" + _json = None + _content = None + if isinstance(body, (IO, bytes)): + _content = body + else: + _json = self._serialize.body(body, "Registry") + + request = build_create_or_update_request( + resource_group_name=resource_group_name, + registry_name=registry_name, + subscription_id=self._config.subscription_id, + api_version=api_version, + content_type=content_type, + json=_json, + content=_content, + template_url=self._create_or_update_initial.metadata["url"], + headers=_headers, + params=_params, + ) + request = _convert_request(request) + request.url = self._client.format_url(request.url) + + _stream = False + pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access + request, stream=_stream, **kwargs + ) + + response = pipeline_response.http_response + + if response.status_code not in [200, 201, 202]: + map_error(status_code=response.status_code, response=response, error_map=error_map) + error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) + raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) + + deserialized = None + if response.status_code == 200: + deserialized = self._deserialize("Registry", pipeline_response) + + if response.status_code == 201: + deserialized = self._deserialize("Registry", pipeline_response) + + if cls: + return cls(pipeline_response, deserialized, {}) + + return deserialized + + _create_or_update_initial.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: _models.Registry, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry + :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @overload + def begin_create_or_update( + self, + resource_group_name: str, + registry_name: str, + body: IO, + *, + content_type: str = "application/json", + **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Required. + :type body: IO + :keyword content_type: Body Parameter content-type. Content type parameter for binary body. + Default value is "application/json". + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + + @distributed_trace + def begin_create_or_update( + self, resource_group_name: str, registry_name: str, body: Union[_models.Registry, IO], **kwargs: Any + ) -> LROPoller[_models.Registry]: + """Create or update registry. + + Create or update registry. + + :param resource_group_name: The name of the resource group. The name is case insensitive. + Required. + :type resource_group_name: str + :param registry_name: Name of registry. This is case-insensitive. Required. + :type registry_name: str + :param body: Details required to create the registry. Is either a Registry type or a IO type. + Required. + :type body: ~azure.mgmt.machinelearningservices.models.Registry or IO + :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. + Default value is None. + :paramtype content_type: str + :keyword callable cls: A custom type or function that will be passed the direct response + :keyword str continuation_token: A continuation token to restart a poller from a saved state. + :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this + operation to not poll, or pass in your own initialized polling object for a personal polling + strategy. + :paramtype polling: bool or ~azure.core.polling.PollingMethod + :keyword int polling_interval: Default waiting time between two polls for LRO operations if no + Retry-After header is present. + :return: An instance of LROPoller that returns either Registry or the result of cls(response) + :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.Registry] + :raises ~azure.core.exceptions.HttpResponseError: + """ + _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) + _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) + + api_version: Literal["2023-04-01"] = kwargs.pop( + "api_version", _params.pop("api-version", self._config.api_version) + ) + content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) + cls: ClsType[_models.Registry] = kwargs.pop("cls", None) + polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) + lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) + cont_token: Optional[str] = kwargs.pop("continuation_token", None) + if cont_token is None: + raw_result = self._create_or_update_initial( + resource_group_name=resource_group_name, + registry_name=registry_name, + body=body, + api_version=api_version, + content_type=content_type, + cls=lambda x, y, z: x, + headers=_headers, + params=_params, + **kwargs + ) + kwargs.pop("error_map", None) + + def get_long_running_output(pipeline_response): + deserialized = self._deserialize("Registry", pipeline_response) + if cls: + return cls(pipeline_response, deserialized, {}) + return deserialized + + if polling is True: + polling_method: PollingMethod = cast( + PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "azure-async-operation"}, **kwargs) + ) + elif polling is False: + polling_method = cast(PollingMethod, NoPolling()) + else: + polling_method = polling + if cont_token: + return LROPoller.from_continuation_token( + polling_method=polling_method, + continuation_token=cont_token, + client=self._client, + deserialization_callback=get_long_running_output, + ) + return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore + + begin_create_or_update.metadata = { + "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/registries/{registryName}" + } diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py index ccf22fb3aed1..926a94c40b2a 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_schedules_operations.py @@ -55,7 +55,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -92,7 +92,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -126,7 +126,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -160,7 +160,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -241,7 +241,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ScheduleResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -299,8 +299,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -331,7 +332,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -349,8 +350,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -403,7 +405,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, name: str, _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -475,7 +477,7 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.Schedule] = kwargs.pop("cls", None) @@ -493,8 +495,9 @@ def get(self, resource_group_name: str, workspace_name: str, name: str, **kwargs request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -529,7 +532,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -559,8 +562,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -688,7 +692,7 @@ def begin_create_or_update( :type workspace_name: str :param name: Schedule name. Required. :type name: str - :param body: Schedule definition. Is either a model type or a IO type. Required. + :param body: Schedule definition. Is either a Schedule type or a IO type. Required. :type body: ~azure.mgmt.machinelearningservices.models.Schedule or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -708,7 +712,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py index 87b60742ab08..bde1d0f96e80 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_usages_operations.py @@ -45,7 +45,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -103,7 +103,7 @@ def list(self, location: str, **kwargs: Any) -> Iterable["_models.Usage"]: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListUsagesResult] = kwargs.pop("cls", None) @@ -158,8 +158,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py index 4928f81dcedf..422824e3b4e4 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_virtual_machine_sizes_operations.py @@ -43,7 +43,7 @@ def build_list_request(location: str, subscription_id: str, **kwargs: Any) -> Ht _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -108,7 +108,7 @@ def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSizeListRe _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.VirtualMachineSizeListResult] = kwargs.pop("cls", None) @@ -124,8 +124,9 @@ def list(self, location: str, **kwargs: Any) -> _models.VirtualMachineSizeListRe request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py index c85caf24b6e8..173a3d1214e4 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_connections_operations.py @@ -47,7 +47,7 @@ def build_create_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -84,7 +84,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -118,7 +118,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -158,7 +158,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -290,7 +290,7 @@ def create( :param connection_name: Friendly name of the workspace connection. Required. :type connection_name: str :param parameters: The object for creating or updating a new workspace connection. Is either a - model type or a IO type. Required. + WorkspaceConnectionPropertiesV2BasicResource type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceConnectionPropertiesV2BasicResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. @@ -312,7 +312,7 @@ def create( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -342,8 +342,9 @@ def create( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -393,7 +394,7 @@ def get( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResource] = kwargs.pop("cls", None) @@ -411,8 +412,9 @@ def get( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -462,7 +464,7 @@ def delete( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -480,8 +482,9 @@ def delete( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -528,7 +531,7 @@ def list( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceConnectionPropertiesV2BasicResourceArmPaginatedResult] = kwargs.pop("cls", None) @@ -588,8 +591,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py index 00c72c0a8b82..5cfdb08d7e2e 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspace_features_operations.py @@ -47,7 +47,7 @@ def build_list_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -110,7 +110,7 @@ def list(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListAmlUserFeatureResult] = kwargs.pop("cls", None) @@ -166,8 +166,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py index 3d8220b5fefa..fbb7c3003bec 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/azure/mgmt/machinelearningservices/operations/_workspaces_operations.py @@ -49,7 +49,7 @@ def build_get_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -82,7 +82,7 @@ def build_create_or_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -118,7 +118,7 @@ def build_delete_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -151,7 +151,7 @@ def build_update_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -187,7 +187,7 @@ def build_list_by_resource_group_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -221,7 +221,7 @@ def build_diagnose_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") @@ -257,7 +257,7 @@ def build_list_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -290,7 +290,7 @@ def build_resync_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -323,7 +323,7 @@ def build_list_by_subscription_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -353,7 +353,7 @@ def build_list_notebook_access_token_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -386,7 +386,7 @@ def build_prepare_notebook_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -419,7 +419,7 @@ def build_list_storage_account_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -452,7 +452,7 @@ def build_list_notebook_keys_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -485,7 +485,7 @@ def build_list_outbound_network_dependencies_endpoints_request( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-10-01")) + api_version: Literal["2023-04-01"] = kwargs.pop("api_version", _params.pop("api-version", "2023-04-01")) accept = _headers.pop("Accept", "application/json") # Construct URL @@ -556,7 +556,7 @@ def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> _ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.Workspace] = kwargs.pop("cls", None) @@ -573,8 +573,9 @@ def get(self, resource_group_name: str, workspace_name: str, **kwargs: Any) -> _ request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -609,7 +610,7 @@ def _create_or_update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -638,8 +639,9 @@ def _create_or_update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -746,7 +748,7 @@ def begin_create_or_update( :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str :param parameters: The parameters for creating or updating a machine learning workspace. Is - either a model type or a IO type. Required. + either a Workspace type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.Workspace or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -766,7 +768,7 @@ def begin_create_or_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -827,7 +829,7 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -844,8 +846,9 @@ def _delete_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -886,7 +889,7 @@ def begin_delete(self, resource_group_name: str, workspace_name: str, **kwargs: _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -946,7 +949,7 @@ def _update_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -975,8 +978,9 @@ def _update_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1084,8 +1088,8 @@ def begin_update( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameters for updating a machine learning workspace. Is either a model - type or a IO type. Required. + :param parameters: The parameters for updating a machine learning workspace. Is either a + WorkspaceUpdateParameters type or a IO type. Required. :type parameters: ~azure.mgmt.machinelearningservices.models.WorkspaceUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1105,7 +1109,7 @@ def begin_update( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1171,7 +1175,7 @@ def list_by_resource_group( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) @@ -1227,8 +1231,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1263,7 +1268,7 @@ def _diagnose_initial( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1295,8 +1300,9 @@ def _diagnose_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1419,8 +1425,8 @@ def begin_diagnose( :type resource_group_name: str :param workspace_name: Name of Azure Machine Learning workspace. Required. :type workspace_name: str - :param parameters: The parameter of diagnosing workspace health. Is either a model type or a IO - type. Default value is None. + :param parameters: The parameter of diagnosing workspace health. Is either a + DiagnoseWorkspaceParameters type or a IO type. Default value is None. :type parameters: ~azure.mgmt.machinelearningservices.models.DiagnoseWorkspaceParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. @@ -1442,7 +1448,7 @@ def begin_diagnose( _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) @@ -1519,7 +1525,7 @@ def list_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListWorkspaceKeysResult] = kwargs.pop("cls", None) @@ -1536,8 +1542,9 @@ def list_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1572,7 +1579,7 @@ def _resync_keys_initial( # pylint: disable=inconsistent-return-statements _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1589,8 +1596,9 @@ def _resync_keys_initial( # pylint: disable=inconsistent-return-statements request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1632,7 +1640,7 @@ def begin_resync_keys(self, resource_group_name: str, workspace_name: str, **kwa _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) @@ -1688,7 +1696,7 @@ def list_by_subscription(self, skip: Optional[str] = None, **kwargs: Any) -> Ite _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.WorkspaceListResult] = kwargs.pop("cls", None) @@ -1743,8 +1751,9 @@ def extract_data(pipeline_response): def get_next(next_link=None): request = prepare_request(next_link) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1788,7 +1797,7 @@ def list_notebook_access_token( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.NotebookAccessTokenResult] = kwargs.pop("cls", None) @@ -1805,8 +1814,9 @@ def list_notebook_access_token( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1841,7 +1851,7 @@ def _prepare_notebook_initial( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[Optional[_models.NotebookResourceInfo]] = kwargs.pop("cls", None) @@ -1858,8 +1868,9 @@ def _prepare_notebook_initial( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -1910,7 +1921,7 @@ def begin_prepare_notebook( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.NotebookResourceInfo] = kwargs.pop("cls", None) @@ -1983,7 +1994,7 @@ def list_storage_account_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListStorageAccountKeysResult] = kwargs.pop("cls", None) @@ -2000,8 +2011,9 @@ def list_storage_account_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -2049,7 +2061,7 @@ def list_notebook_keys( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ListNotebookKeysResult] = kwargs.pop("cls", None) @@ -2066,8 +2078,9 @@ def list_notebook_keys( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response @@ -2119,7 +2132,7 @@ def list_outbound_network_dependencies_endpoints( _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) - api_version: Literal["2022-10-01"] = kwargs.pop( + api_version: Literal["2023-04-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ExternalFQDNResponse] = kwargs.pop("cls", None) @@ -2136,8 +2149,9 @@ def list_outbound_network_dependencies_endpoints( request = _convert_request(request) request.url = self._client.format_url(request.url) + _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access - request, stream=False, **kwargs + request, stream=_stream, **kwargs ) response = pipeline_response.http_response diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py index 4154ad04114e..4692f63ff9d7 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aks_compute.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/AKSCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/AKSCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py index 9b60010544b5..59ea7d05e296 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/aml_compute.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/AmlCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/AmlCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py index 7bf0144d06dc..c4f5100e5166 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aks_compute.py @@ -38,6 +38,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/BasicAKSCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicAKSCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py index d6cfcd909034..4e8789e3ef24 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_aml_compute.py @@ -55,6 +55,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/BasicAmlCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicAmlCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py index c7256aaa7266..322dec99f0ea 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/basic_data_factory_compute.py @@ -38,6 +38,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/BasicDataFactoryCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/BasicDataFactoryCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py index 14832bc92a6c..be40485be034 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/cancel.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Job/cancel.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Job/cancel.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py index 8be35ceb91e4..fe66677f7193 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/ComputeInstance.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/ComputeInstance.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py index f67029c8ca3c..575439d32563 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_minimal.py @@ -41,6 +41,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/ComputeInstanceMinimal.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstanceMinimal.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py index c5ef7c03d6b9..4134df53117f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/compute_instance_with_schedules.py @@ -69,6 +69,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/createOrUpdate/ComputeInstanceWithSchedules.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/createOrUpdate/ComputeInstanceWithSchedules.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py index 0d7e657dba30..cd04a676e0e1 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create.py @@ -76,6 +76,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/create.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/create.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py index d69a53bd684c..4f95d6a5bdef 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update.py @@ -40,6 +40,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/PrivateEndpointConnection/createOrUpdate.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/PrivateEndpointConnection/createOrUpdate.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_system_created.py new file mode 100644 index 000000000000..9fc7c5cc4965 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_system_created.py @@ -0,0 +1,76 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python create_or_update_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_create_or_update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "None", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "location": "string", + "properties": { + "description": "string", + "properties": {"string": "string"}, + "regionDetails": [ + { + "acrDetails": [ + { + "systemCreatedAcrAccount": { + "acrAccountSku": "string", + "armResourceId": {"resourceId": "string"}, + } + } + ], + "location": "string", + "storageAccountDetails": [ + { + "systemCreatedStorageAccount": { + "allowBlobPublicAccess": False, + "armResourceId": {"resourceId": "string"}, + "storageAccountHnsEnabled": False, + "storageAccountType": "string", + } + } + ], + } + ], + "tags": {"string": "string"}, + }, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Basic"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/createOrUpdate-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_user_created.py new file mode 100644 index 000000000000..64e82af8fad5 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/create_or_update_user_created.py @@ -0,0 +1,62 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python create_or_update_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_create_or_update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "None", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "location": "string", + "properties": { + "description": "string", + "properties": {"string": "string"}, + "regionDetails": [ + { + "acrDetails": [{"userCreatedAcrAccount": {"armResourceId": {"resourceId": "string"}}}], + "location": "string", + "storageAccountDetails": [ + {"userCreatedStorageAccount": {"armResourceId": {"resourceId": "string"}}} + ], + } + ], + "tags": {"string": "string"}, + }, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Basic"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/createOrUpdate-UserCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py index 1ab7cceee3e0..6332bd1c2462 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/delete.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/delete.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/delete.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py index e7d53be6b011..3077375cd454 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/diagnose.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/diagnose.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/diagnose.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py index ae2325915702..4c2f399080e3 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/get.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/get.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py index 08ca1c985e42..2bae655720a4 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_logs.py @@ -39,6 +39,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineDeployment/getLogs.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/getLogs.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_system_created.py new file mode 100644 index 000000000000..fd5b114248b7 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_system_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python get_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.get( + resource_group_name="test-rg", + registry_name="string", + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/get-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py index ce3165223bbc..bdd0e74314a5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_token.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineEndpoint/getToken.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineEndpoint/getToken.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_user_created.py new file mode 100644 index 000000000000..bd86983df7e3 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/get_user_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python get_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.get( + resource_group_name="test-rg", + registry_name="string", + ) + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/get-UserCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py index 1c4abcb9c998..b09cac4f3f62 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/kubernetes_compute.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/get/KubernetesCompute.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/get/KubernetesCompute.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py index 803939df104d..ccff07e2fa36 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list.py @@ -36,6 +36,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Usage/list.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Usage/list.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py index ab77ccf41bcb..48ad1779487f 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_resource_group.py @@ -36,6 +36,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listByResourceGroup.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listByResourceGroup.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py index 021a94dc65b3..921bfb2b59f6 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_by_subscription.py @@ -34,6 +34,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listBySubscription.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listBySubscription.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py index 4329788bf08c..9e0e183e60ef 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_keys.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py index 08a92686eed7..66ee6a0f4bee 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_nodes.py @@ -38,6 +38,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/listNodes.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/listNodes.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py index 2231f08361b1..d180f3ee30c2 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_notebook_access_token.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listNotebookAccessToken.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listNotebookAccessToken.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py index 6c9f9145642c..74fe51d50b35 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_secrets.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Datastore/listSecrets.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Datastore/listSecrets.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py index a1cd89f08c22..532af7db70b6 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_skus.py @@ -39,6 +39,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineDeployment/KubernetesOnlineDeployment/listSkus.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineDeployment/KubernetesOnlineDeployment/listSkus.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py index 84b7f19567c0..dbc963513d84 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_storage_account_keys.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/listStorageAccountKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/listStorageAccountKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_system_created.py new file mode 100644 index 000000000000..d9ef5482f599 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_system_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python list_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.list( + resource_group_name="test-rg", + ) + for item in response: + print(item) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/list-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_user_created.py new file mode 100644 index 000000000000..193089df5170 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/list_user_created.py @@ -0,0 +1,41 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python list_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.list( + resource_group_name="test-rg", + ) + for item in response: + print(item) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/list-UserCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py index 1ed3dd9d1da4..91510c53d5b5 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/operations_list.py @@ -34,6 +34,6 @@ def main(): print(item) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/operationsList.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/operationsList.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py index 88d3d61b0099..344934f7929b 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/patch.py @@ -44,6 +44,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/patch.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/patch.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py index c6038615acb6..009f750c227c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/prepare.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Notebook/prepare.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Notebook/prepare.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py index 7e4eb60a2634..376397f12e36 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/regenerate_keys.py @@ -38,6 +38,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/OnlineEndpoint/regenerateKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/OnlineEndpoint/regenerateKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py index df42109f655d..3a911b9a6697 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/restart.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/restart.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/restart.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py index 02b711c19636..2e671e8eab13 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/resync_keys.py @@ -36,6 +36,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/resyncKeys.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/resyncKeys.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py index b2754e281b74..ba8fe5e94d0c 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/start.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/start.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/start.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py index 4337f64aa158..0015e7d4156d 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/stop.py @@ -37,6 +37,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Compute/stop.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Compute/stop.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py index 482c71b07c8c..f8b3fae5c4cc 100644 --- a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update.py @@ -43,6 +43,6 @@ def main(): print(response) -# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2022-10-01/examples/Workspace/update.json +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Workspace/update.json if __name__ == "__main__": main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_system_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_system_created.py new file mode 100644 index 000000000000..6658ff696c21 --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_system_created.py @@ -0,0 +1,48 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python update_system_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "UserAssigned", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "properties": {}, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Premium"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/update-SystemCreated.json +if __name__ == "__main__": + main() diff --git a/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_user_created.py b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_user_created.py new file mode 100644 index 000000000000..73dae5da8e4e --- /dev/null +++ b/sdk/machinelearning/azure-mgmt-machinelearningservices/generated_samples/update_user_created.py @@ -0,0 +1,48 @@ +# coding=utf-8 +# -------------------------------------------------------------------------- +# Copyright (c) Microsoft Corporation. All rights reserved. +# Licensed under the MIT License. See License.txt in the project root for license information. +# Code generated by Microsoft (R) AutoRest Code Generator. +# Changes may cause incorrect behavior and will be lost if the code is regenerated. +# -------------------------------------------------------------------------- + +from azure.identity import DefaultAzureCredential +from azure.mgmt.machinelearningservices import MachineLearningServicesMgmtClient + +""" +# PREREQUISITES + pip install azure-identity + pip install azure-mgmt-machinelearningservices +# USAGE + python update_user_created.py + + Before run the sample, please set the values of the client ID, tenant ID and client secret + of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, + AZURE_CLIENT_SECRET. For more info about how to get the value, please see: + https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal +""" + + +def main(): + client = MachineLearningServicesMgmtClient( + credential=DefaultAzureCredential(), + subscription_id="00000000-1111-2222-3333-444444444444", + ) + + response = client.registries.begin_update( + resource_group_name="test-rg", + registry_name="string", + body={ + "identity": {"type": "UserAssigned", "userAssignedIdentities": {"string": {}}}, + "kind": "string", + "properties": {}, + "sku": {"capacity": 1, "family": "string", "name": "string", "size": "string", "tier": "Premium"}, + "tags": {}, + }, + ).result() + print(response) + + +# x-ms-original-file: specification/machinelearningservices/resource-manager/Microsoft.MachineLearningServices/stable/2023-04-01/examples/Registries/update-UserCreated.json +if __name__ == "__main__": + main()