
To be able to decrease significantly the build time, you
need to use ccache with your Axmol project. The tool
ccache is a compiler cache that can drastically improve
the build for C and C++ projects and it is hosted here
(https://ccache.dev)

Before implementing this solution, it was taking us
about 14 to 15 minutes to build each time that we changed
a single line of code. Everything was rebuild at each time.
Obviously is not acceptable in a professional/production
environment.

 After implementing this solution, it takes us now about
1min30s to 2min to build (depending on the change).
That’s about 8 times faster than before. Now our
development time with Axmol is much faster and
acceptable. We are back into business.

These are the steps to configure your system with
ccache.

Step 1) Install ccahe:
a) On Mac: use brew to install ccache. It’s very simple.

From your terminal just enter the command:
brew install ccache

b) On Linux: you just install the ccache package. Any
distribution out there should have the package available.

https://ccache.dev/
https://ccache.dev

b) On Windows: I don’t have a Windows system so I’m
not sure. But I do believe that you can find the instructions
on ccache website (https://ccache.dev).

Step 2) create a test file ccache-clang script file:
Create a small script which will redirect the compile
command to ccache and use the CC and CXX attributes to tell
Xcode about the script. Add these lines in your “ccache-
clang” file.

#!/bin/sh
export PATH=$PATH:/usr/local/bin
if type -p ccache >/dev/null 2>&1; then
 export CCACHE_MAXSIZE=20G
 export CCACHE_CPP2=true
 export CCACHE_HARDLINK=true
 export
CCACHE_SLOPPINESS=file_macro,time_macros,include_file_mtime,incl
ude_file_ctime,file_stat_matches

 exec ccache /usr/bin/clang "$@"
else
 exec clang "$@"
fi

 

https://ccache.dev

You can find the signification of these parameters here and
adjust them for your case if needed (https://ccache.dev/
manual/3.2.1.html)

* CCACHE_MAXSIZE: sets the maximum size of the cache

* CCACHE_CPP2: This is to prevent certain pathalogical
cases related to the preprocessor and enabling it is strongly
recommended when using ccache with clang.

* CCACHE_HARDLINK: If true, ccache will attempt to use
hard links from the cache directory when creating the
compiler output rather than using a file copy. Using hard
links may be slightly faster in some situations

Step 3) Put the the ccache-clang (script) in project folder.
Where the CMake file resides.

https://ccache.dev/manual/3.2.1.html
https://ccache.dev/manual/3.2.1.html

Step 4) change the access permissions of “ccache-clang”
file by issuing the following command (from the project
folder):

chmod 777 ccache-clang

Step 5) Modify the CMake file to use ccache. The change
that I’m proposing will not attempt to use ccache if it’s not
installed on your system. That makes it easier if you
working in a team. It gives the time to your team members
to adjust at their own speed.

This is the CMake code to add to your CMake file:  

find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
 if(XCODE)
 set(CMAKE_XCODE_ATTRIBUTE_CC "${CMAKE_SOURCE_DIR}/ccache-clang")
 set(CMAKE_XCODE_ATTRIBUTE_CXX "${CMAKE_SOURCE_DIR}/ccache-
clang")
 else()
 set(CMAKE_C_COMPILER_LAUNCHER ccache)
 set(CMAKE_CXX_COMPILER_LAUNCHER ccache)
 endif()
 endif()

Step 5) Add the two values “CC” & “CXX” into xcode Build
Setting (User Defined Setting).
When Xcode projects contain user-defined build settings with
the names CC and CXX, they override what Xcode uses as the
compilers for C and C++ sources respectively. The compile
command will be redirected to ccache by using the “CC” and
“CXX” attributes.

Give these parameters the value: ${SOURCE_ROOT}/ccache-clang

Step 5) Compile again to build the ccache system. After
that when you will build again it will be 8x faster.

