-
Notifications
You must be signed in to change notification settings - Fork 753
/
module.py
592 lines (541 loc) · 20.6 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from gluonts.core.component import validated
from gluonts.time_feature import get_lags_for_frequency
from gluonts.torch.distributions import (
DistributionOutput,
StudentTOutput,
)
from gluonts.torch.scaler import Scaler, MeanScaler, NOPScaler
from gluonts.torch.modules.feature import FeatureEmbedder
from gluonts.torch.util import (
lagged_sequence_values,
repeat_along_dim,
take_last,
unsqueeze_expand,
)
from gluonts.itertools import prod
from gluonts.model import Input, InputSpec
class DeepARModel(nn.Module):
"""
Module implementing the DeepAR model, see [SFG17]_.
*Note:* the code of this model is unrelated to the implementation behind
`SageMaker's DeepAR Forecasting Algorithm
<https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html>`_.
Parameters
----------
freq
String indicating the sampling frequency of the data to be processed.
context_length
Length of the RNN unrolling prior to the forecast date.
prediction_length
Number of time points to predict.
num_feat_dynamic_real
Number of dynamic real features that will be provided to ``forward``.
num_feat_static_real
Number of static real features that will be provided to ``forward``.
num_feat_static_cat
Number of static categorical features that will be provided to
``forward``.
cardinality
List of cardinalities, one for each static categorical feature.
embedding_dimension
Dimension of the embedding space, one for each static categorical
feature.
num_layers
Number of layers in the RNN.
hidden_size
Size of the hidden layers in the RNN.
dropout_rate
Dropout rate to be applied at training time.
distr_output
Type of distribution to be output by the model at each time step
lags_seq
Indices of the lagged observations that the RNN takes as input. For
example, ``[1]`` indicates that the RNN only takes the observation at
time ``t-1`` to produce the output for time ``t``; instead,
``[1, 25]`` indicates that the RNN takes observations at times ``t-1``
and ``t-25`` as input.
scaling
Whether to apply mean scaling to the observations (target).
default_scale
Default scale that is applied if the context length window is
completely unobserved. If not set, the scale in this case will be
the mean scale in the batch.
num_parallel_samples
Number of samples to produce when unrolling the RNN in the prediction
time range.
nonnegative_pred_samples
Should final prediction samples be non-negative? If yes, an activation
function is applied to ensure non-negative. Observe that this is applied
only to the final samples and this is not applied during training.
"""
@validated()
def __init__(
self,
freq: str,
context_length: int,
prediction_length: int,
num_feat_dynamic_real: int = 1,
num_feat_static_real: int = 1,
num_feat_static_cat: int = 1,
cardinality: List[int] = [1],
embedding_dimension: Optional[List[int]] = None,
num_layers: int = 2,
hidden_size: int = 40,
dropout_rate: float = 0.1,
distr_output: DistributionOutput = StudentTOutput(),
lags_seq: Optional[List[int]] = None,
scaling: bool = True,
default_scale: Optional[float] = None,
num_parallel_samples: int = 100,
nonnegative_pred_samples: bool = False,
) -> None:
super().__init__()
assert distr_output.event_shape == ()
assert num_feat_dynamic_real > 0
assert num_feat_static_real > 0
assert num_feat_static_cat > 0
assert len(cardinality) == num_feat_static_cat
assert (
embedding_dimension is None
or len(embedding_dimension) == num_feat_static_cat
)
self.context_length = context_length
self.prediction_length = prediction_length
self.distr_output = distr_output
self.param_proj = distr_output.get_args_proj(hidden_size)
self.num_feat_dynamic_real = num_feat_dynamic_real
self.num_feat_static_cat = num_feat_static_cat
self.num_feat_static_real = num_feat_static_real
self.embedding_dimension = (
embedding_dimension
if embedding_dimension is not None or cardinality is None
else [min(50, (cat + 1) // 2) for cat in cardinality]
)
self.lags_seq = lags_seq or get_lags_for_frequency(freq_str=freq)
self.lags_seq = [l - 1 for l in self.lags_seq]
self.num_parallel_samples = num_parallel_samples
self.past_length = self.context_length + max(self.lags_seq)
self.embedder = FeatureEmbedder(
cardinalities=cardinality,
embedding_dims=self.embedding_dimension,
)
if scaling:
self.scaler: Scaler = MeanScaler(
dim=-1, keepdim=True, default_scale=default_scale
)
else:
self.scaler = NOPScaler(dim=-1, keepdim=True)
self.rnn_input_size = len(self.lags_seq) + self._number_of_features
self.rnn = nn.LSTM(
input_size=self.rnn_input_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout_rate,
batch_first=True,
)
self.nonnegative_pred_samples = nonnegative_pred_samples
def describe_inputs(self, batch_size=1) -> InputSpec:
return InputSpec(
{
"feat_static_cat": Input(
shape=(batch_size, self.num_feat_static_cat),
dtype=torch.long,
),
"feat_static_real": Input(
shape=(batch_size, self.num_feat_static_real),
dtype=torch.float,
),
"past_time_feat": Input(
shape=(
batch_size,
self._past_length,
self.num_feat_dynamic_real,
),
dtype=torch.float,
),
"past_target": Input(
shape=(batch_size, self._past_length),
dtype=torch.float,
),
"past_observed_values": Input(
shape=(batch_size, self._past_length),
dtype=torch.float,
),
"future_time_feat": Input(
shape=(
batch_size,
self.prediction_length,
self.num_feat_dynamic_real,
),
dtype=torch.float,
),
},
zeros_fn=torch.zeros,
)
@property
def _number_of_features(self) -> int:
return (
sum(self.embedding_dimension)
+ self.num_feat_dynamic_real
+ self.num_feat_static_real
+ 1 # the log(scale)
)
@property
def _past_length(self) -> int:
return self.context_length + max(self.lags_seq)
def prepare_rnn_input(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: Optional[torch.Tensor] = None,
) -> Tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
context = past_target[..., -self.context_length :]
observed_context = past_observed_values[..., -self.context_length :]
input, _, scale = self.scaler(context, observed_context)
future_length = future_time_feat.shape[-2]
if future_length > 1:
assert future_target is not None
input = torch.cat(
(input, future_target[..., : future_length - 1] / scale),
dim=-1,
)
prior_input = past_target[..., : -self.context_length] / scale
lags = lagged_sequence_values(
self.lags_seq, prior_input, input, dim=-1
)
time_feat = torch.cat(
(
take_last(past_time_feat, dim=-2, num=self.context_length - 1),
future_time_feat,
),
dim=-2,
)
embedded_cat = self.embedder(feat_static_cat)
static_feat = torch.cat(
(embedded_cat, feat_static_real, scale.log()),
dim=-1,
)
expanded_static_feat = unsqueeze_expand(
static_feat, dim=-2, size=time_feat.shape[-2]
)
features = torch.cat((expanded_static_feat, time_feat), dim=-1)
return torch.cat((lags, features), dim=-1), scale, static_feat
def unroll_lagged_rnn(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: Optional[torch.Tensor] = None,
) -> Tuple[
Tuple[torch.Tensor, ...],
torch.Tensor,
torch.Tensor,
torch.Tensor,
Tuple[torch.Tensor, torch.Tensor],
]:
"""
Applies the underlying RNN to the provided target data and covariates.
Parameters
----------
feat_static_cat
Tensor of static categorical features,
shape: ``(batch_size, num_feat_static_cat)``.
feat_static_real
Tensor of static real features,
shape: ``(batch_size, num_feat_static_real)``.
past_time_feat
Tensor of dynamic real features in the past,
shape: ``(batch_size, past_length, num_feat_dynamic_real)``.
past_target
Tensor of past target values,
shape: ``(batch_size, past_length)``.
past_observed_values
Tensor of observed values indicators,
shape: ``(batch_size, past_length)``.
future_time_feat
Tensor of dynamic real features in the future,
shape: ``(batch_size, prediction_length, num_feat_dynamic_real)``.
future_target
(Optional) tensor of future target values,
shape: ``(batch_size, prediction_length)``.
Returns
-------
Tuple
A tuple containing, in this order:
- Parameters of the output distribution
- Scaling factor applied to the target
- Raw output of the RNN
- Static input to the RNN
- Output state from the RNN
"""
rnn_input, scale, static_feat = self.prepare_rnn_input(
feat_static_cat,
feat_static_real,
past_time_feat,
past_target,
past_observed_values,
future_time_feat,
future_target,
)
output, new_state = self.rnn(rnn_input)
params = self.param_proj(output)
return params, scale, output, static_feat, new_state
@torch.jit.ignore
def output_distribution(
self, params, scale=None, trailing_n=None
) -> torch.distributions.Distribution:
"""
Instantiate the output distribution.
Parameters
----------
params
Tuple of distribution parameters.
scale
(Optional) scale tensor.
trailing_n
If set, the output distribution is created only for the last
``trailing_n`` time points.
Returns
-------
torch.distributions.Distribution
Output distribution from the model.
"""
sliced_params = params
if trailing_n is not None:
sliced_params = [p[:, -trailing_n:] for p in params]
return self.distr_output.distribution(sliced_params, scale=scale)
def post_process_samples(self, samples: torch.Tensor) -> torch.Tensor:
"""
Method to enforce domain-specific constraints on the generated samples.
For example, we can enforce forecasts to be nonnegative.
Parameters
----------
samples
Tensor of samples
Returns
-------
Tensor of processed samples with the same shape.
"""
if self.nonnegative_pred_samples:
return torch.relu(samples)
return samples
def forward(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
num_parallel_samples: Optional[int] = None,
) -> torch.Tensor:
"""
Invokes the model on input data, and produce outputs future samples.
Parameters
----------
feat_static_cat
Tensor of static categorical features,
shape: ``(batch_size, num_feat_static_cat)``.
feat_static_real
Tensor of static real features,
shape: ``(batch_size, num_feat_static_real)``.
past_time_feat
Tensor of dynamic real features in the past,
shape: ``(batch_size, past_length, num_feat_dynamic_real)``.
past_target
Tensor of past target values,
shape: ``(batch_size, past_length)``.
past_observed_values
Tensor of observed values indicators,
shape: ``(batch_size, past_length)``.
future_time_feat
(Optional) tensor of dynamic real features in the past,
shape: ``(batch_size, prediction_length, num_feat_dynamic_real)``.
num_parallel_samples
How many future samples to produce.
By default, self.num_parallel_samples is used.
"""
if num_parallel_samples is None:
num_parallel_samples = self.num_parallel_samples
params, scale, _, static_feat, state = self.unroll_lagged_rnn(
feat_static_cat,
feat_static_real,
past_time_feat,
past_target,
past_observed_values,
future_time_feat[:, :1],
)
repeated_scale = scale.repeat_interleave(
repeats=num_parallel_samples, dim=0
)
repeated_static_feat = static_feat.repeat_interleave(
repeats=num_parallel_samples, dim=0
).unsqueeze(dim=1)
repeated_past_target = (
past_target.repeat_interleave(repeats=num_parallel_samples, dim=0)
/ repeated_scale
)
repeated_time_feat = future_time_feat.repeat_interleave(
repeats=num_parallel_samples, dim=0
)
repeated_state = [
s.repeat_interleave(repeats=num_parallel_samples, dim=1)
for s in state
]
repeated_params = [
s.repeat_interleave(repeats=num_parallel_samples, dim=0)
for s in params
]
distr = self.output_distribution(
repeated_params, trailing_n=1, scale=repeated_scale
)
next_sample = distr.sample()
future_samples = [next_sample]
for k in range(1, self.prediction_length):
scaled_next_sample = next_sample / repeated_scale
next_features = torch.cat(
(repeated_static_feat, repeated_time_feat[:, k : k + 1]),
dim=-1,
)
next_lags = lagged_sequence_values(
self.lags_seq, repeated_past_target, scaled_next_sample, dim=-1
)
rnn_input = torch.cat((next_lags, next_features), dim=-1)
output, repeated_state = self.rnn(rnn_input, repeated_state)
repeated_past_target = torch.cat(
(repeated_past_target, scaled_next_sample), dim=1
)
params = self.param_proj(output)
distr = self.output_distribution(params, scale=repeated_scale)
next_sample = distr.sample()
future_samples.append(next_sample)
future_samples_concat = torch.cat(future_samples, dim=1)
future_samples_concat = self.post_process_samples(
future_samples_concat
)
return future_samples_concat.reshape(
(-1, num_parallel_samples, self.prediction_length)
)
def log_prob(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: torch.Tensor,
) -> torch.Tensor:
return -self.loss(
feat_static_cat=feat_static_cat,
feat_static_real=feat_static_real,
past_time_feat=past_time_feat,
past_target=past_target,
past_observed_values=past_observed_values,
future_time_feat=future_time_feat,
future_target=future_target,
future_observed_values=torch.ones_like(future_target),
future_only=True,
aggregate_by=torch.sum,
)
def loss(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: torch.Tensor,
future_observed_values: torch.Tensor,
future_only: bool = False,
aggregate_by=torch.mean,
) -> torch.Tensor:
extra_dims = len(future_target.shape) - len(past_target.shape)
extra_shape = future_target.shape[:extra_dims]
batch_shape = future_target.shape[: extra_dims + 1]
repeats = prod(extra_shape)
feat_static_cat = repeat_along_dim(feat_static_cat, 0, repeats)
feat_static_real = repeat_along_dim(feat_static_real, 0, repeats)
past_time_feat = repeat_along_dim(past_time_feat, 0, repeats)
past_target = repeat_along_dim(past_target, 0, repeats)
past_observed_values = repeat_along_dim(
past_observed_values, 0, repeats
)
future_time_feat = repeat_along_dim(future_time_feat, 0, repeats)
future_target_reshaped = future_target.reshape(
-1,
*future_target.shape[extra_dims + 1 :],
)
future_observed_reshaped = future_observed_values.reshape(
-1,
*future_observed_values.shape[extra_dims + 1 :],
)
params, scale, _, _, _ = self.unroll_lagged_rnn(
feat_static_cat,
feat_static_real,
past_time_feat,
past_target,
past_observed_values,
future_time_feat,
future_target_reshaped,
)
if future_only:
sliced_params = tuple(
[p[:, -self.prediction_length :] for p in params]
)
loss_values = self.distr_output.loss(
target=future_target_reshaped,
distr_args=sliced_params,
scale=scale,
)
loss_values = loss_values * future_observed_reshaped
else:
context_target = take_last(
past_target, dim=-1, num=self.context_length - 1
)
target = torch.cat(
(context_target, future_target_reshaped),
dim=1,
)
context_observed = take_last(
past_observed_values, dim=-1, num=self.context_length - 1
)
observed_values = torch.cat(
(context_observed, future_observed_reshaped), dim=1
)
loss_values = self.distr_output.loss(
target=target, distr_args=params, scale=scale
)
loss_values = loss_values * observed_values
loss_values = loss_values.reshape(*batch_shape, *loss_values.shape[1:])
return aggregate_by(
loss_values,
dim=tuple(range(extra_dims + 1, len(future_target.shape))),
)