-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_model.py
62 lines (54 loc) · 2.33 KB
/
dqn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
import torch.optim as optim
class DQN(nn.Module):
def __init__(self, inp_size: int, hidden_size, out_size: int, lr, gamma, device):
super(DQN, self).__init__()
self.rls = nn.Sequential(
nn.Linear(inp_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, out_size)
)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
self.loss = nn.MSELoss()
self.gamma = gamma
self.flatten = nn.Flatten()
self.run_device = device
def forward(self, x):
if len(x.shape) == 1:
x = x.unsqueeze(0)
x = self.flatten(x)
return self.rls(x)
def save(self, name):
torch.save(self.state_dict(), name)
def train_step(self, old_state, new_state, action, reward):
# Da wir uns nicht sicher waren, ob unsere ursprüngliche Implementierung funktioniert hat, haben wir uns
# an diesem Code von dem Spiel Snake orientiert und ihn für uns angepasst:
# https://github.com/patrickloeber/snake-ai-pytorch/blob/main/model.py
old_state = torch.from_numpy(old_state).to(self.run_device)
new_state = torch.from_numpy(new_state).to(self.run_device)
action = torch.tensor(action, dtype=torch.float).to(self.run_device)
reward = torch.tensor(reward, dtype=torch.float).to(self.run_device)
if len(old_state.shape) == 1:
old_state = torch.unsqueeze(old_state, 0)
new_state = torch.unsqueeze(new_state, 0)
action = torch.unsqueeze(action, 0)
reward = torch.unsqueeze(reward, 0)
prediction = self(old_state)
target_prediction = prediction.clone()
for i in range(len(old_state)):
Q_new = reward[i]
Q_new = reward[i] + self.gamma * torch.max(self(new_state[i]))
target_prediction[i][torch.argmax(action[i]).item()] = Q_new
self.optimizer.zero_grad()
loss = self.loss(prediction, target_prediction)
loss.backward()
self.optimizer.step()