Skip to content

Commit 2f032f8

Browse files
Daily Sync with Botocore v1.37.26 on 2025/04/03 (#277)
1 parent 67f9213 commit 2f032f8

File tree

4 files changed

+89
-2
lines changed

4 files changed

+89
-2
lines changed

sample/sagemaker/2017-07-24/service-2.json

Lines changed: 48 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -887,7 +887,7 @@
887887
{"shape":"ResourceLimitExceeded"},
888888
{"shape":"ResourceNotFound"}
889889
],
890-
"documentation":"<p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html\">CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances for the transform job.</p> </li> </ul> <p>For more information about how batch transformation works, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html\">Batch Transform</a>.</p>"
890+
"documentation":"<p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html\">CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances and AMI image versions for the transform job.</p> </li> </ul> <p>For more information about how batch transformation works, see <a href=\"https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html\">Batch Transform</a>.</p>"
891891
},
892892
"CreateTrial":{
893893
"name":"CreateTrial",
@@ -9161,6 +9161,10 @@
91619161
"ResourceSpec":{
91629162
"shape":"ResourceSpec",
91639163
"documentation":"<p>The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.</p> <note> <p>The value of <code>InstanceType</code> passed as part of the <code>ResourceSpec</code> in the <code>CreateApp</code> call overrides the value passed as part of the <code>ResourceSpec</code> configured for the user profile or the domain. If <code>InstanceType</code> is not specified in any of those three <code>ResourceSpec</code> values for a <code>KernelGateway</code> app, the <code>CreateApp</code> call fails with a request validation error.</p> </note>"
9164+
},
9165+
"RecoveryMode":{
9166+
"shape":"Boolean",
9167+
"documentation":"<p> Indicates whether the application is launched in recovery mode. </p>"
91649168
}
91659169
}
91669170
},
@@ -11193,6 +11197,10 @@
1119311197
"OnStart":{
1119411198
"shape":"NotebookInstanceLifecycleConfigList",
1119511199
"documentation":"<p>A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.</p>"
11200+
},
11201+
"Tags":{
11202+
"shape":"TagList",
11203+
"documentation":"<p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href=\"https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html\">Tagging Amazon Web Services Resources</a>.</p>"
1119611204
}
1119711205
}
1119811206
},
@@ -13888,6 +13896,10 @@
1388813896
"shape":"AppStatus",
1388913897
"documentation":"<p>The status.</p>"
1389013898
},
13899+
"RecoveryMode":{
13900+
"shape":"Boolean",
13901+
"documentation":"<p> Indicates whether the application is launched in recovery mode. </p>"
13902+
},
1389113903
"LastHealthCheckTimestamp":{
1389213904
"shape":"Timestamp",
1389313905
"documentation":"<p>The timestamp of the last health check.</p>"
@@ -35366,6 +35378,13 @@
3536635378
},
3536735379
"documentation":"<p>Metadata for a register model job step.</p>"
3536835380
},
35381+
"Relation":{
35382+
"type":"string",
35383+
"enum":[
35384+
"EqualTo",
35385+
"GreaterThanOrEqualTo"
35386+
]
35387+
},
3536935388
"ReleaseNotes":{
3537035389
"type":"string",
3537135390
"max":255,
@@ -36455,6 +36474,10 @@
3645536474
"NextToken":{
3645636475
"shape":"NextToken",
3645736476
"documentation":"<p>If the result of the previous <code>Search</code> request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.</p>"
36477+
},
36478+
"TotalHits":{
36479+
"shape":"TotalHits",
36480+
"documentation":"<p>The total number of matching results.</p>"
3645836481
}
3645936482
}
3646036483
},
@@ -38451,6 +38474,20 @@
3845138474
"max":256,
3845238475
"min":1
3845338476
},
38477+
"TotalHits":{
38478+
"type":"structure",
38479+
"members":{
38480+
"Value":{
38481+
"shape":"Long",
38482+
"documentation":"<p>The total number of matching results. This value may be exact or an estimate, depending on the <code>Relation</code> field.</p>"
38483+
},
38484+
"Relation":{
38485+
"shape":"Relation",
38486+
"documentation":"<p>Indicates the relationship between the returned <code>Value</code> and the actual total number of matching results. Possible values are:</p> <ul> <li> <p> <code>EqualTo</code>: The <code>Value</code> is the exact count of matching results.</p> </li> <li> <p> <code>GreaterThanOrEqualTo</code>: The <code>Value</code> is a lower bound of the actual count of matching results.</p> </li> </ul>"
38487+
}
38488+
},
38489+
"documentation":"<p>Represents the total number of matching results and indicates how accurate that count is.</p> <p>The <code>Value</code> field provides the count, which may be exact or estimated. The <code>Relation</code> field indicates whether it's an exact figure or a lower bound. This helps understand the full scope of search results, especially when dealing with large result sets.</p>"
38490+
},
3845438491
"TotalInstanceCount":{
3845538492
"type":"integer",
3845638493
"min":0
@@ -39388,6 +39425,12 @@
3938839425
"type":"integer",
3938939426
"min":1
3939039427
},
39428+
"TransformAmiVersion":{
39429+
"type":"string",
39430+
"max":63,
39431+
"min":1,
39432+
"pattern":"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$"
39433+
},
3939139434
"TransformDataSource":{
3939239435
"type":"structure",
3939339436
"required":["S3DataSource"],
@@ -39780,6 +39823,10 @@
3978039823
"VolumeKmsKeyId":{
3978139824
"shape":"KmsKeyId",
3978239825
"documentation":"<p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.</p> <note> <p>Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a <code>VolumeKmsKeyId</code> when using an instance type with local storage.</p> <p>For a list of instance types that support local instance storage, see <a href=\"https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes\">Instance Store Volumes</a>.</p> <p>For more information about local instance storage encryption, see <a href=\"https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html\">SSD Instance Store Volumes</a>.</p> </note> <p> The <code>VolumeKmsKeyId</code> can be any of the following formats:</p> <ul> <li> <p>Key ID: <code>1234abcd-12ab-34cd-56ef-1234567890ab</code> </p> </li> <li> <p>Key ARN: <code>arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab</code> </p> </li> <li> <p>Alias name: <code>alias/ExampleAlias</code> </p> </li> <li> <p>Alias name ARN: <code>arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias</code> </p> </li> </ul>"
39826+
},
39827+
"TransformAmiVersion":{
39828+
"shape":"TransformAmiVersion",
39829+
"documentation":"<p>Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions.</p> <dl> <dt>al2-ami-sagemaker-batch-gpu-470</dt> <dd> <ul> <li> <p>Accelerator: GPU</p> </li> <li> <p>NVIDIA driver version: 470</p> </li> </ul> </dd> <dt>al2-ami-sagemaker-batch-gpu-535</dt> <dd> <ul> <li> <p>Accelerator: GPU</p> </li> <li> <p>NVIDIA driver version: 535</p> </li> </ul> </dd> </dl>"
3978339830
}
3978439831
},
3978539832
"documentation":"<p>Describes the resources, including ML instance types and ML instance count, to use for transform job.</p>"

src/sagemaker_core/main/code_injection/shape_dag.py

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1817,6 +1817,7 @@
18171817
{"name": "AppName", "shape": "AppName", "type": "string"},
18181818
{"name": "Tags", "shape": "TagList", "type": "list"},
18191819
{"name": "ResourceSpec", "shape": "ResourceSpec", "type": "structure"},
1820+
{"name": "RecoveryMode", "shape": "Boolean", "type": "boolean"},
18201821
],
18211822
"type": "structure",
18221823
},
@@ -2743,6 +2744,7 @@
27432744
},
27442745
{"name": "OnCreate", "shape": "NotebookInstanceLifecycleConfigList", "type": "list"},
27452746
{"name": "OnStart", "shape": "NotebookInstanceLifecycleConfigList", "type": "list"},
2747+
{"name": "Tags", "shape": "TagList", "type": "list"},
27462748
],
27472749
"type": "structure",
27482750
},
@@ -4053,6 +4055,7 @@
40534055
{"name": "UserProfileName", "shape": "UserProfileName", "type": "string"},
40544056
{"name": "SpaceName", "shape": "SpaceName", "type": "string"},
40554057
{"name": "Status", "shape": "AppStatus", "type": "string"},
4058+
{"name": "RecoveryMode", "shape": "Boolean", "type": "boolean"},
40564059
{"name": "LastHealthCheckTimestamp", "shape": "Timestamp", "type": "timestamp"},
40574060
{"name": "LastUserActivityTimestamp", "shape": "Timestamp", "type": "timestamp"},
40584061
{"name": "CreationTime", "shape": "Timestamp", "type": "timestamp"},
@@ -13337,6 +13340,7 @@
1333713340
"members": [
1333813341
{"name": "Results", "shape": "SearchResultsList", "type": "list"},
1333913342
{"name": "NextToken", "shape": "NextToken", "type": "string"},
13343+
{"name": "TotalHits", "shape": "TotalHits", "type": "structure"},
1334013344
],
1334113345
"type": "structure",
1334213346
},
@@ -14088,6 +14092,13 @@
1408814092
],
1408914093
"type": "structure",
1409014094
},
14095+
"TotalHits": {
14096+
"members": [
14097+
{"name": "Value", "shape": "Long", "type": "long"},
14098+
{"name": "Relation", "shape": "Relation", "type": "string"},
14099+
],
14100+
"type": "structure",
14101+
},
1409114102
"TrackingServerSummary": {
1409214103
"members": [
1409314104
{"name": "TrackingServerArn", "shape": "TrackingServerArn", "type": "string"},
@@ -14488,6 +14499,7 @@
1448814499
{"name": "InstanceType", "shape": "TransformInstanceType", "type": "string"},
1448914500
{"name": "InstanceCount", "shape": "TransformInstanceCount", "type": "integer"},
1449014501
{"name": "VolumeKmsKeyId", "shape": "KmsKeyId", "type": "string"},
14502+
{"name": "TransformAmiVersion", "shape": "TransformAmiVersion", "type": "string"},
1449114503
],
1449214504
"type": "structure",
1449314505
},

src/sagemaker_core/main/resources.py

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -974,6 +974,7 @@ class App(Base):
974974
user_profile_name: The user profile name.
975975
space_name: The name of the space. If this value is not set, then UserProfileName must be set.
976976
status: The status.
977+
recovery_mode: Indicates whether the application is launched in recovery mode.
977978
last_health_check_timestamp: The timestamp of the last health check.
978979
last_user_activity_timestamp: The timestamp of the last user's activity. LastUserActivityTimestamp is also updated when SageMaker AI performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.
979980
creation_time: The creation time of the application. After an application has been shut down for 24 hours, SageMaker AI deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
@@ -990,6 +991,7 @@ class App(Base):
990991
user_profile_name: Optional[str] = Unassigned()
991992
space_name: Optional[str] = Unassigned()
992993
status: Optional[str] = Unassigned()
994+
recovery_mode: Optional[bool] = Unassigned()
993995
last_health_check_timestamp: Optional[datetime.datetime] = Unassigned()
994996
last_user_activity_timestamp: Optional[datetime.datetime] = Unassigned()
995997
creation_time: Optional[datetime.datetime] = Unassigned()
@@ -1024,6 +1026,7 @@ def create(
10241026
space_name: Optional[Union[str, object]] = Unassigned(),
10251027
tags: Optional[List[Tag]] = Unassigned(),
10261028
resource_spec: Optional[ResourceSpec] = Unassigned(),
1029+
recovery_mode: Optional[bool] = Unassigned(),
10271030
session: Optional[Session] = None,
10281031
region: Optional[str] = None,
10291032
) -> Optional["App"]:
@@ -1038,6 +1041,7 @@ def create(
10381041
space_name: The name of the space. If this value is not set, then UserProfileName must be set.
10391042
tags: Each tag consists of a key and an optional value. Tag keys must be unique per resource.
10401043
resource_spec: The instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
1044+
recovery_mode: Indicates whether the application is launched in recovery mode.
10411045
session: Boto3 session.
10421046
region: Region name.
10431047

@@ -1074,6 +1078,7 @@ def create(
10741078
"AppName": app_name,
10751079
"Tags": tags,
10761080
"ResourceSpec": resource_spec,
1081+
"RecoveryMode": recovery_mode,
10771082
}
10781083

10791084
operation_input_args = Base.populate_chained_attributes(
@@ -22868,6 +22873,7 @@ def create(
2286822873
notebook_instance_lifecycle_config_name: str,
2286922874
on_create: Optional[List[NotebookInstanceLifecycleHook]] = Unassigned(),
2287022875
on_start: Optional[List[NotebookInstanceLifecycleHook]] = Unassigned(),
22876+
tags: Optional[List[Tag]] = Unassigned(),
2287122877
session: Optional[Session] = None,
2287222878
region: Optional[str] = None,
2287322879
) -> Optional["NotebookInstanceLifecycleConfig"]:
@@ -22878,6 +22884,7 @@ def create(
2287822884
notebook_instance_lifecycle_config_name: The name of the lifecycle configuration.
2287922885
on_create: A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.
2288022886
on_start: A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.
22887+
tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
2288122888
session: Boto3 session.
2288222889
region: Region name.
2288322890

@@ -22909,6 +22916,7 @@ def create(
2290922916
"NotebookInstanceLifecycleConfigName": notebook_instance_lifecycle_config_name,
2291022917
"OnCreate": on_create,
2291122918
"OnStart": on_start,
22919+
"Tags": tags,
2291222920
}
2291322921

2291422922
operation_input_args = Base.populate_chained_attributes(
@@ -23690,7 +23698,10 @@ def get_name(self) -> str:
2369023698
def populate_inputs_decorator(create_func):
2369123699
@functools.wraps(create_func)
2369223700
def wrapper(*args, **kwargs):
23693-
config_schema_for_resource = {"execution_role_arn": {"type": "string"}}
23701+
config_schema_for_resource = {
23702+
"execution_role_arn": {"type": "string"},
23703+
"kms_key_id": {"type": "string"},
23704+
}
2369423705
return create_func(
2369523706
*args,
2369623707
**Base.get_updated_kwargs_with_configured_attributes(

0 commit comments

Comments
 (0)