-
Notifications
You must be signed in to change notification settings - Fork 540
/
Copy pathimage-handler.ts
717 lines (647 loc) · 26.1 KB
/
image-handler.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import Rekognition from "aws-sdk/clients/rekognition";
import S3 from "aws-sdk/clients/s3";
import sharp, { FormatEnum, OverlayOptions, ResizeOptions } from "sharp";
import {
BoundingBox,
BoxSize,
ContentTypes,
ImageEdits,
ImageFitTypes,
ImageFormatTypes,
ImageHandlerError,
ImageRequestInfo,
RekognitionCompatibleImage,
StatusCodes,
} from "./lib";
import { getAllowedSourceBuckets } from "./image-request";
import { SHARP_EDIT_ALLOWLIST_ARRAY } from "./lib/constants";
export class ImageHandler {
private readonly LAMBDA_PAYLOAD_LIMIT = 6 * 1024 * 1024;
constructor(private readonly s3Client: S3, private readonly rekognitionClient: Rekognition) {}
/**
* Creates a Sharp object from Buffer
* @param originalImage An image buffer.
* @param edits The edits to be applied to an image
* @param options Additional sharp options to be applied
* @returns A Sharp image object
*/
// eslint-disable-next-line @typescript-eslint/ban-types
private async instantiateSharpImage(originalImage: Buffer, edits: ImageEdits, options: Object): Promise<sharp.Sharp> {
let image: sharp.Sharp = null;
if (edits.rotate !== undefined && edits.rotate === null) {
image = sharp(originalImage, options);
} else {
const metadata = await sharp(originalImage, options).metadata();
image = metadata.orientation
? sharp(originalImage, options).withMetadata({ orientation: metadata.orientation })
: sharp(originalImage, options).withMetadata();
}
return image;
}
/**
* Modify an image's output format if specified
* @param modifiedImage the image object.
* @param imageRequestInfo the image request
* @returns A Sharp image object
*/
private modifyImageOutput(modifiedImage: sharp.Sharp, imageRequestInfo: ImageRequestInfo): sharp.Sharp {
const modifiedOutputImage = modifiedImage;
// modify if specified
if (imageRequestInfo.outputFormat !== undefined) {
// Include reduction effort for webp images if included
if (imageRequestInfo.outputFormat === ImageFormatTypes.WEBP && typeof imageRequestInfo.effort !== "undefined") {
modifiedOutputImage.webp({ effort: imageRequestInfo.effort });
} else {
modifiedOutputImage.toFormat(ImageHandler.convertImageFormatType(imageRequestInfo.outputFormat));
}
}
return modifiedOutputImage;
}
/**
* Main method for processing image requests and outputting modified images.
* @param imageRequestInfo An image request.
* @returns Processed and modified image encoded as base64 string.
*/
async process(imageRequestInfo: ImageRequestInfo): Promise<string> {
const { originalImage, edits } = imageRequestInfo;
const options = { failOnError: false, animated: imageRequestInfo.contentType === ContentTypes.GIF };
let base64EncodedImage = "";
// Apply edits if specified
if (edits && Object.keys(edits).length) {
// convert image to Sharp object
options.animated = (typeof edits.animated !== 'undefined') ? edits.animated : (imageRequestInfo.contentType === ContentTypes.GIF)
let image = await this.instantiateSharpImage(originalImage, edits, options);
// default to non animated if image does not have multiple pages
if (options.animated) {
const metadata = await image.metadata();
if (!metadata.pages || metadata.pages <= 1) {
options.animated = false;
image = await this.instantiateSharpImage(originalImage, edits, options);
}
}
// apply image edits
let modifiedImage = await this.applyEdits(image, edits, options.animated);
// modify image output if requested
modifiedImage = this.modifyImageOutput(modifiedImage, imageRequestInfo);
// convert to base64 encoded string
const imageBuffer = await modifiedImage.toBuffer();
base64EncodedImage = imageBuffer.toString("base64");
} else {
if (imageRequestInfo.outputFormat !== undefined) {
// convert image to Sharp and change output format if specified
const modifiedImage = this.modifyImageOutput(sharp(originalImage, options), imageRequestInfo);
// convert to base64 encoded string
const imageBuffer = await modifiedImage.toBuffer();
base64EncodedImage = imageBuffer.toString("base64");
} else {
// no edits or output format changes, convert to base64 encoded image
base64EncodedImage = originalImage.toString("base64");
}
}
// binary data need to be base64 encoded to pass to the API Gateway proxy https://docs.aws.amazon.com/apigateway/latest/developerguide/lambda-proxy-binary-media.html.
// checks whether base64 encoded image fits in 6M limit, see https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html.
if (base64EncodedImage.length > this.LAMBDA_PAYLOAD_LIMIT) {
throw new ImageHandlerError(
StatusCodes.REQUEST_TOO_LONG,
"TooLargeImageException",
"The converted image is too large to return."
);
}
return base64EncodedImage;
}
/**
* Applies image modifications to the original image based on edits.
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
* @param isAnimation a flag whether the edit applies to animated files or not.
* @returns A modifications to the original image.
*/
public async applyEdits(originalImage: sharp.Sharp, edits: ImageEdits, isAnimation: boolean): Promise<sharp.Sharp> {
await this.applyResize(originalImage, edits);
// Apply the image edits
for (const edit in edits) {
if (this.skipEdit(edit, isAnimation)) continue;
switch (edit) {
case "overlayWith": {
await this.applyOverlayWith(originalImage, edits);
break;
}
case "smartCrop": {
await this.applySmartCrop(originalImage, edits);
break;
}
case "roundCrop": {
originalImage = await this.applyRoundCrop(originalImage, edits);
break;
}
case "contentModeration": {
await this.applyContentModeration(originalImage, edits);
break;
}
case "crop": {
this.applyCrop(originalImage, edits);
break;
}
case "animated": {
break;
}
default: {
if (SHARP_EDIT_ALLOWLIST_ARRAY.includes(edit as any)) {
originalImage[edit](edits[edit]);
}
}
}
}
// Return the modified image
return originalImage;
}
/**
* Applies resize edit.
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
*/
private async applyResize(originalImage: sharp.Sharp, edits: ImageEdits): Promise<void> {
if (edits.resize === undefined) {
edits.resize = {};
edits.resize.fit = ImageFitTypes.INSIDE;
return;
}
const resize = this.validateResizeInputs(edits.resize);
if (resize.ratio) {
const ratio = resize.ratio;
const { width, height } = resize.width && resize.height ? resize : await originalImage.metadata();
resize.width = Math.round(width * ratio);
resize.height = Math.round(height * ratio);
// Sharp doesn't have such parameter for resize(), we got it from Thumbor mapper. We don't need to keep this field in the `resize` object
delete resize.ratio;
if (!resize.fit) resize.fit = ImageFitTypes.INSIDE;
}
}
/**
* Validates resize edit parameters.
* @param resize The resize parameters.
*/
private validateResizeInputs(resize: any) {
if (resize.width) resize.width = Math.round(Number(resize.width));
if (resize.height) resize.height = Math.round(Number(resize.height));
if ((resize.width != null && resize.width <= 0) || (resize.height != null && resize.height <= 0)) {
throw new ImageHandlerError(StatusCodes.BAD_REQUEST, "InvalidResizeException", "The image size is invalid.");
}
return resize;
}
/**
*
* @param editSize the specified size
* @param imageSize the size of the image
* @param overlaySize the size of the overlay
* @returns the calculated size
*/
private calcOverlaySizeOption = (
editSize: string | number | undefined,
imageSize: number,
overlaySize: number
): number => {
let resultSize = NaN;
if (editSize !== undefined) {
editSize = `${editSize}`;
// if ends with p, it is a percentage
if (editSize.endsWith("p")) {
resultSize = parseInt(editSize.replace("p", ""));
resultSize = Math.floor(
resultSize < 0 ? imageSize + (imageSize * resultSize) / 100 - overlaySize : (imageSize * resultSize) / 100
);
} else {
resultSize = parseInt(editSize);
if (resultSize < 0) {
resultSize = imageSize + resultSize - overlaySize;
}
}
}
return resultSize;
};
/**
* Applies overlay edit.
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
*/
private async applyOverlayWith(originalImage: sharp.Sharp, edits: ImageEdits): Promise<void> {
let imageMetadata: sharp.Metadata = await originalImage.metadata();
if (edits.resize) {
const imageBuffer = await originalImage.toBuffer();
const resizeOptions: ResizeOptions = edits.resize;
imageMetadata = await sharp(imageBuffer).resize(resizeOptions).metadata();
}
const { bucket, key, wRatio, hRatio, alpha, options } = edits.overlayWith;
const overlay = await this.getOverlayImage(bucket, key, wRatio, hRatio, alpha, imageMetadata);
const overlayMetadata = await sharp(overlay).metadata();
const overlayOption: OverlayOptions = { ...options, input: overlay };
if (options) {
const { left: leftOption, top: topOption } = options;
const left = this.calcOverlaySizeOption(leftOption, imageMetadata.width, overlayMetadata.width);
if (!isNaN(left)) overlayOption.left = left;
const top = this.calcOverlaySizeOption(topOption, imageMetadata.height, overlayMetadata.height);
if (!isNaN(top)) overlayOption.top = top;
}
originalImage.composite([overlayOption]);
}
/**
* Applies smart crop edit.
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
*/
private async applySmartCrop(originalImage: sharp.Sharp, edits: ImageEdits): Promise<void> {
// smart crop can be boolean or object
if (edits.smartCrop === true || typeof edits.smartCrop === "object") {
const { faceIndex, padding } =
typeof edits.smartCrop === "object"
? edits.smartCrop
: {
faceIndex: undefined,
padding: undefined,
};
const { imageBuffer, format } = await this.getRekognitionCompatibleImage(originalImage);
const boundingBox = await this.getBoundingBox(imageBuffer.data, faceIndex ?? 0);
const cropArea = this.getCropArea(boundingBox, padding ?? 0, imageBuffer.info);
try {
originalImage.extract(cropArea);
// convert image back to previous format
if (format !== imageBuffer.info.format) {
originalImage.toFormat(format);
}
} catch (error) {
throw new ImageHandlerError(
StatusCodes.BAD_REQUEST,
"SmartCrop::PaddingOutOfBounds",
"The padding value you provided exceeds the boundaries of the original image. Please try choosing a smaller value or applying padding via Sharp for greater specificity."
);
}
}
}
/**
* Determines if the edits specified contain a valid roundCrop item
* @param edits The edits speficed
* @returns boolean
*/
private hasRoundCrop(edits: ImageEdits): boolean {
return edits.roundCrop === true || typeof edits.roundCrop === "object";
}
/**
* @param param Value of corner to check
* @returns Boolean identifying whether roundCrop parameters are valid
*/
private validRoundCropParam(param: number) {
return param && param >= 0;
}
/**
* Applies round crop edit.
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
*/
private async applyRoundCrop(originalImage: sharp.Sharp, edits: ImageEdits): Promise<sharp.Sharp> {
// round crop can be boolean or object
if (this.hasRoundCrop(edits)) {
const { top, left, rx, ry } =
typeof edits.roundCrop === "object"
? edits.roundCrop
: {
top: undefined,
left: undefined,
rx: undefined,
ry: undefined,
};
const imageBuffer = await originalImage.toBuffer({ resolveWithObject: true });
const width = imageBuffer.info.width;
const height = imageBuffer.info.height;
// check for parameters, if not provided, set to defaults
const radiusX = this.validRoundCropParam(rx) ? rx : Math.min(width, height) / 2;
const radiusY = this.validRoundCropParam(ry) ? ry : Math.min(width, height) / 2;
const topOffset = this.validRoundCropParam(top) ? top : height / 2;
const leftOffset = this.validRoundCropParam(left) ? left : width / 2;
const ellipse = Buffer.from(
`<svg viewBox="0 0 ${width} ${height}"> <ellipse cx="${leftOffset}" cy="${topOffset}" rx="${radiusX}" ry="${radiusY}" /></svg>`
);
const overlayOptions: OverlayOptions[] = [{ input: ellipse, blend: "dest-in" }];
// Need to break out into another sharp pipeline to allow for resize after composite
const data = await originalImage.composite(overlayOptions).toBuffer();
return sharp(data).withMetadata().trim();
}
return originalImage;
}
/**
* Blurs the image provided if there is inappropriate content
* @param originalImage the original image
* @param blur the amount to blur
* @param moderationLabels the labels identifying specific content to blur
* @param foundContentLabels the labels identifying inappropriate content found
*/
private blurImage(
originalImage: sharp.Sharp,
blur: number | undefined,
moderationLabels: string[],
foundContentLabels: Rekognition.DetectModerationLabelsResponse
): void {
const blurValue = blur !== undefined ? Math.ceil(blur) : 50;
if (blurValue >= 0.3 && blurValue <= 1000) {
if (moderationLabels) {
for (const moderationLabel of foundContentLabels.ModerationLabels) {
if (moderationLabels.includes(moderationLabel.Name)) {
originalImage.blur(blurValue);
break;
}
}
} else if (foundContentLabels.ModerationLabels.length) {
originalImage.blur(blurValue);
}
}
}
/**
*
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
*/
private async applyContentModeration(originalImage: sharp.Sharp, edits: ImageEdits): Promise<void> {
// content moderation can be boolean or object
if (edits.contentModeration === true || typeof edits.contentModeration === "object") {
const { minConfidence, blur, moderationLabels } =
typeof edits.contentModeration === "object"
? edits.contentModeration
: {
minConfidence: undefined,
blur: undefined,
moderationLabels: undefined,
};
const { imageBuffer, format } = await this.getRekognitionCompatibleImage(originalImage);
const inappropriateContent = await this.detectInappropriateContent(imageBuffer.data, minConfidence);
this.blurImage(originalImage, blur, moderationLabels, inappropriateContent);
// convert image back to previous format
if (format !== imageBuffer.info.format) {
originalImage.toFormat(format);
}
}
}
/**
* Applies crop edit.
* @param originalImage The original sharp image.
* @param edits The edits to be made to the original image.
*/
private applyCrop(originalImage: sharp.Sharp, edits: ImageEdits): void {
try {
originalImage.extract(edits.crop);
} catch (error) {
throw new ImageHandlerError(
StatusCodes.BAD_REQUEST,
"Crop::AreaOutOfBounds",
"The cropping area you provided exceeds the boundaries of the original image. Please try choosing a correct cropping value."
);
}
}
/**
* Checks whether an edit needs to be skipped or not.
* @param edit the current edit.
* @param isAnimation a flag whether the edit applies to `gif` file or not.
* @returns whether the edit needs to be skipped or not.
*/
private skipEdit(edit: string, isAnimation: boolean): boolean {
return isAnimation && ["rotate", "smartCrop", "roundCrop", "contentModeration"].includes(edit);
}
/**
* Gets an image to be used as an overlay to the primary image from an Amazon S3 bucket.
* @param bucket The name of the bucket containing the overlay.
* @param key The object keyname corresponding to the overlay.
* @param wRatio The width rate of the overlay image.
* @param hRatio The height rate of the overlay image.
* @param alpha The transparency alpha to the overlay.
* @param sourceImageMetadata The metadata of the source image.
* @returns An image to be used as an overlay.
*/
public async getOverlayImage(
bucket: string,
key: string,
wRatio: string,
hRatio: string,
alpha: string,
sourceImageMetadata: sharp.Metadata
): Promise<Buffer> {
if (!getAllowedSourceBuckets().includes(bucket)) {
throw new ImageHandlerError(
StatusCodes.FORBIDDEN,
"ImageBucket::CannotAccessBucket",
"The overlay image bucket you specified could not be accessed. Please check that the bucket is specified in your SOURCE_BUCKETS."
);
}
const params = { Bucket: bucket, Key: key };
try {
const { width, height } = sourceImageMetadata;
const overlayImage: S3.GetObjectOutput = await this.s3Client.getObject(params).promise();
const resizeOptions: ResizeOptions = {
fit: ImageFitTypes.INSIDE,
};
// Set width and height of the watermark image based on the ratio
const zeroToHundred = /^(100|[1-9]?\d)$/;
if (zeroToHundred.test(wRatio)) {
resizeOptions.width = Math.floor((width * parseInt(wRatio)) / 100);
}
if (zeroToHundred.test(hRatio)) {
resizeOptions.height = Math.floor((height * parseInt(hRatio)) / 100);
}
// If alpha is not within 0-100, the default alpha is 0 (fully opaque).
const alphaValue = zeroToHundred.test(alpha) ? parseInt(alpha) : 0;
const imageBuffer = Buffer.isBuffer(overlayImage.Body)
? overlayImage.Body
: Buffer.from(overlayImage.Body as Uint8Array);
return await sharp(imageBuffer)
.resize(resizeOptions)
.composite([
{
input: Buffer.from([255, 255, 255, 255 * (1 - alphaValue / 100)]),
raw: { width: 1, height: 1, channels: 4 },
tile: true,
blend: "dest-in",
},
])
.toBuffer();
} catch (error) {
throw new ImageHandlerError(
error.statusCode ? error.statusCode : StatusCodes.INTERNAL_SERVER_ERROR,
error.code,
error.message
);
}
}
/**
* Calculates the crop area for a smart-cropped image based on the bounding box data returned by Amazon Rekognition, as well as padding options and the image metadata.
* @param boundingBox The bounding box of the detected face.
* @param padding Set of options for smart cropping.
* @param boxSize Sharp image metadata.
* @returns Calculated crop area for a smart-cropped image.
*/
public getCropArea(boundingBox: BoundingBox, padding: number, boxSize: BoxSize): BoundingBox {
// calculate needed options dimensions
let left = Math.floor(boundingBox.left * boxSize.width - padding);
let top = Math.floor(boundingBox.top * boxSize.height - padding);
let extractWidth = Math.floor(boundingBox.width * boxSize.width + padding * 2);
let extractHeight = Math.floor(boundingBox.height * boxSize.height + padding * 2);
// check if dimensions fit within image dimensions and re-adjust if necessary
left = left < 0 ? 0 : left;
top = top < 0 ? 0 : top;
const maxWidth = boxSize.width - left;
const maxHeight = boxSize.height - top;
extractWidth = extractWidth > maxWidth ? maxWidth : extractWidth;
extractHeight = extractHeight > maxHeight ? maxHeight : extractHeight;
// Calculate the smart crop area
return {
left,
top,
width: extractWidth,
height: extractHeight,
};
}
/**
*
* @param response the response from a Rekognition detectFaces API call
* @param faceIndex the index number of the face detected
* @param boundingBox the box bounds
* @param boundingBox.Height height of bounding box
* @param boundingBox.Left left side of bounding box
* @param boundingBox.Top top of bounding box
* @param boundingBox.Width width of bounding box
*/
private handleBounds(
response: Rekognition.DetectFacesResponse,
faceIndex: number,
boundingBox: { Height?: number; Left?: number; Top?: number; Width?: number }
): void {
// handle bounds > 1 and < 0
for (const bound in response.FaceDetails[faceIndex].BoundingBox) {
if (response.FaceDetails[faceIndex].BoundingBox[bound] < 0) boundingBox[bound] = 0;
else if (response.FaceDetails[faceIndex].BoundingBox[bound] > 1) boundingBox[bound] = 1;
else boundingBox[bound] = response.FaceDetails[faceIndex].BoundingBox[bound];
}
// handle bounds greater than the size of the image
if (boundingBox.Left + boundingBox.Width > 1) {
boundingBox.Width = 1 - boundingBox.Left;
}
if (boundingBox.Top + boundingBox.Height > 1) {
boundingBox.Height = 1 - boundingBox.Top;
}
}
/**
* Gets the bounding box of the specified face index within an image, if specified.
* @param imageBuffer The original image.
* @param faceIndex The zero-based face index value, moving from 0 and up as confidence decreases for detected faces within the image.
* @returns The bounding box of the specified face index within an image.
*/
public async getBoundingBox(imageBuffer: Buffer, faceIndex: number): Promise<BoundingBox> {
const params = { Image: { Bytes: imageBuffer } };
try {
const response = await this.rekognitionClient.detectFaces(params).promise();
if (response.FaceDetails.length <= 0) {
return { height: 1, left: 0, top: 0, width: 1 };
}
const boundingBox: { Height?: number; Left?: number; Top?: number; Width?: number } = {};
this.handleBounds(response, faceIndex, boundingBox);
return {
height: boundingBox.Height,
left: boundingBox.Left,
top: boundingBox.Top,
width: boundingBox.Width,
};
} catch (error) {
console.error(error);
if (
error.message === "Cannot read property 'BoundingBox' of undefined" ||
error.message === "Cannot read properties of undefined (reading 'BoundingBox')"
) {
throw new ImageHandlerError(
StatusCodes.BAD_REQUEST,
"SmartCrop::FaceIndexOutOfRange",
"You have provided a FaceIndex value that exceeds the length of the zero-based detectedFaces array. Please specify a value that is in-range."
);
} else {
throw new ImageHandlerError(
error.statusCode ? error.statusCode : StatusCodes.INTERNAL_SERVER_ERROR,
error.code,
error.message
);
}
}
}
/**
* Detects inappropriate content in an image.
* @param imageBuffer The original image.
* @param minConfidence The options to pass to the detectModerationLabels Rekognition function.
* @returns Detected inappropriate content in an image.
*/
private async detectInappropriateContent(
imageBuffer: Buffer,
minConfidence: number | undefined
): Promise<Rekognition.DetectModerationLabelsResponse> {
try {
const params = {
Image: { Bytes: imageBuffer },
MinConfidence: minConfidence ?? 75,
};
return await this.rekognitionClient.detectModerationLabels(params).promise();
} catch (error) {
console.error(error);
throw new ImageHandlerError(
error.statusCode ? error.statusCode : StatusCodes.INTERNAL_SERVER_ERROR,
error.code,
error.message
);
}
}
/**
* Converts serverless image handler image format type to 'sharp' format.
* @param imageFormatType Result output file type.
* @returns Converted 'sharp' format.
*/
private static convertImageFormatType(imageFormatType: ImageFormatTypes): keyof FormatEnum {
switch (imageFormatType) {
case ImageFormatTypes.JPG:
return "jpg";
case ImageFormatTypes.JPEG:
return "jpeg";
case ImageFormatTypes.PNG:
return "png";
case ImageFormatTypes.WEBP:
return "webp";
case ImageFormatTypes.TIFF:
return "tiff";
case ImageFormatTypes.HEIF:
return "heif";
case ImageFormatTypes.RAW:
return "raw";
case ImageFormatTypes.GIF:
return "gif";
case ImageFormatTypes.AVIF:
return "avif";
default:
throw new ImageHandlerError(
StatusCodes.INTERNAL_SERVER_ERROR,
"UnsupportedOutputImageFormatException",
`Format to ${imageFormatType} not supported`
);
}
}
/**
* Converts the image to a rekognition compatible format if current format is not compatible.
* @param image the image to be modified by rekognition.
* @returns object containing image buffer data and original image format.
*/
private async getRekognitionCompatibleImage(image: sharp.Sharp): Promise<RekognitionCompatibleImage> {
const sharp_image = sharp(await image.toBuffer()); // Reload sharp image to ensure current metadata
const metadata = await sharp_image.metadata();
const format = metadata.format;
let imageBuffer: { data: Buffer; info: sharp.OutputInfo };
// convert image to png if not jpeg or png
if (!["jpeg", "png"].includes(format)) {
imageBuffer = await image.png().toBuffer({ resolveWithObject: true });
} else {
imageBuffer = await image.toBuffer({ resolveWithObject: true });
}
return { imageBuffer, format };
}
}