-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe107.py
70 lines (59 loc) · 2.26 KB
/
e107.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#
# https://en.wikipedia.org/wiki/Minimum_spanning_tree
# https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
# https://en.wikipedia.org/wiki/Prim%27s_algorithm
#
from heapq import heappop, heappush
class Network:
def __init__(self, graph_table) -> None:
self.nodes = set(range(len(graph_table)))
self.edges = set()
for i, node in enumerate(graph_table):
for j, cost in enumerate(node):
edge = (cost, (i, j) if i < j else (j, i))
if cost: self.edges.add(edge)
def connected_edges(self, n) -> set:
return set(e for e in self.edges if n in e[1])
def minimal_spanning_tree(self) -> dict[str, set]:
heapq = list()
tree = {
'nodes': set(),
'edges': set()
}
first_edge = min(self.edges)
(_, (a, b)) = first_edge
tree['nodes'].add(a)
tree['nodes'].add(b)
tree['edges'].add(first_edge)
for e in self.connected_edges(a).union(self.connected_edges(b)):
if e not in tree['edges']:
heappush(heapq, e)
while tree['nodes'] != self.nodes:
next_edge = heappop(heapq)
try:
next_node = set(next_edge[1]).difference(tree['nodes']).pop()
except:
# we popped from an empty set
# the edge connected nodes already in the tree, skip
continue
tree['nodes'].add(next_node)
tree['edges'].add(next_edge)
for e in self.connected_edges(next_node):
if e not in tree['edges'] and e not in heapq:
heappush(heapq, e)
return tree
with open('network.txt') as file:
network = [[int(n) if n.isdigit() else None for n in line.split(',')] for line in file]
# network = [
# [None, 16, 12, 21, None, None, None],
# [16, None, None, 17, 20, None, None],
# [12, None, None, 28, None, 31, None],
# [21, 17, 28, None, 18, 19, 23],
# [None, 20, None, 18, None, None, 11],
# [None, None, 31, 19, None, None, 27],
# [None, None, None, 23, 11, 27, None]
# ]
def answer():
n = Network(network)
mst = n.minimal_spanning_tree()
return sum(cost for cost, _ in n.edges) - sum(cost for cost, _ in mst['edges'])