-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgymhelpers.py
757 lines (651 loc) · 41.3 KB
/
gymhelpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
import math
import shutil
from scipy.misc import imresize, imsave
from .utils import *
from .agents import AgentEpsGreedy
from .valuefunctions import ValueFunctionDQN
from .datastructures import DoubleEndedQueue, SumTree
from plot_utils import shadow_plot
import sys
import psutil
import gym
from gym import wrappers
import copy
import time
from sys import platform
from textwrap import wrap
import matplotlib.pyplot as plt
if platform == "linux" or platform == "linux2":
plt.switch_backend('Agg') # This is to generate images without having a window appear.
class ExperimentsManager:
def __init__(self, env_name, agent_value_function_hidden_layers_size, results_dir_prefix=None, summaries_path=None,
figures_dir=None, discount=0.99, decay_eps=0.995, eps_min=0.0001, epsilon_reheat=False,
conditional_epsilon_reheat=False,
learning_rate=1E-4, decay_lr=False,
learning_rate_end=None, max_step=10000, replay_memory_max_size=100000, ep_verbose=False,
exp_verbose=True, batch_size=64, upload_last_exp=False, double_dqn=False,
target_params_update_period_steps=1, gym_api_key="", gym_algorithm_id=None, checkpoints_dir='ChkPts',
min_avg_rwd=-110, replay_period_steps=1, per_proportional_prioritization=False,
per_apply_importance_sampling=False, per_alpha=0.6, per_beta0=0.4, render_environment=False,
checkpoint_save_period_steps=None, restoration_checkpoint=None, kpis_dir=None,
use_long_dirnames=False):
self.env_name = env_name
self.results_dir_prefix = results_dir_prefix
self.render_environment = render_environment
self.gym_stats_dir = None
self.summaries_path = summaries_path
self.summaries_path_current = summaries_path
self.figures_dir = figures_dir
self.discount = discount
self.decay_eps = decay_eps
self.eps_min = eps_min
self.epsilon_reheat = epsilon_reheat
self.conditional_epsilon_reheat = conditional_epsilon_reheat
self.learning_rate = learning_rate
self.decay_lr = decay_lr
self.learning_rate_end = learning_rate_end
self.max_step = max_step
self.prob_sample_state = min([1, 2000 / (self.max_step * 1000)]) # Sample 2000 summaries of the current state
self.n_ep = None
self.replay_period_steps = replay_period_steps
self.replay_memory_max_size = replay_memory_max_size
self.ep_verbose = ep_verbose # Whether or not to print progress during episodes
self.exp_verbose = exp_verbose # Whether or not to print progress during experiments
self.upload_last_exp = upload_last_exp
assert target_params_update_period_steps > 0, "The period for updating the target parameters must be positive."
self.target_params_update_period_steps = target_params_update_period_steps
self.gym_api_key = gym_api_key
self.gym_algorithm_id = gym_algorithm_id
self.checkpoints_dir = checkpoints_dir
self.checkpoints_dir_current = checkpoints_dir
self.checkpoint_save_period_steps = checkpoint_save_period_steps # type: int
self.restoration_checkpoint = restoration_checkpoint
self.use_long_dirnames = use_long_dirnames
self.kpis_dir = kpis_dir
self.embeddings_metadata_file = None
self.sprite_path = None
self.performance_evaluation_mode = False
# Prioritized Experience Replay parameters. See https://arxiv.org/pdf/1511.05952.pdf
self.per_proportional_prioritization = per_proportional_prioritization # Flavour of Prioritized Experience Rep.
self.per_apply_importance_sampling = per_apply_importance_sampling
self.per_alpha = per_alpha
self.per_beta0 = per_beta0
self.per_beta = self.per_beta0
self.agent = None
self.batch_size = batch_size
self.agent_value_function_hidden_layers_size = agent_value_function_hidden_layers_size
self.double_dqn = double_dqn
self.global_step = 0 # Current step over all episodes
self.step = 0 # Current step per episode
self.ep = 0
self.exp = 0
self.min_avg_rwd = min_avg_rwd # Minimum average reward to consider the problem as solved
self.n_avg_ep = 100 # Number of consecutive episodes to calculate the average reward
self.conf_msg = "\nEXECUTING EXPERIMENT {} OF {} IN ENVIRONMENT {}."
self.episode_progress_msg = "Step {:5d}/{:5d}. Loss = {:3.2e}."
self.exp_progress_msg = "Exp {:2d}. Ep {:5d}, Rwd={:1.4f} ({:1.4f}/{:1.4f}/\033[1m{:1.4f}\033[0m/{:1.4f} " + \
"over {:3d} episodes). {} exceeded in {:4d} eps. Loss={:1.2e} (avg={:1.2e}). " + \
"Agent epsilon={:3.2f} %. Avg episode: {:2.6f} ms."
self.exps_conf_str = ""
self.dpi = 400 # Plotting option
# Memory pre-allocation
self.Rwd_per_ep_v = np.zeros((1, 5000))
self.Loss_per_ep_v = np.zeros((1, 5000))
self.Avg_Rwd_per_ep = np.zeros((1, 5000))
self.Avg_Loss_per_ep = np.zeros((1, 5000))
self.n_eps_to_reach_min_avg_rwd = np.zeros(1, dtype=float)
self.Agent_Epsilon_per_ep = np.zeros((1, 5000))
self.agent_value_function = np.zeros((1, 1, self.max_step))
self.rwd_exps_avg = np.mean(self.Rwd_per_ep_v, axis=0) # Rwd averaged over all experiments
self.rwd_exps_avg_ma = np.zeros(self.rwd_exps_avg.shape[0])
self.rwd_exps_avg_movstd = np.zeros(self.rwd_exps_avg.shape[0])
self.rwd_exps_avg_percentile5 = np.zeros(self.rwd_exps_avg.shape[0])
self.rwd_exps_avg_percentile95 = np.zeros(self.rwd_exps_avg.shape[0])
self.episode_duration_s = np.zeros(shape=(1, 1000), dtype=float)
def __print_episode_progress(self, loss_v):
if self.ep_verbose:
if self.step > 0 and (self.step+1) % 20 == 0:
print(self.episode_progress_msg.format(self.step, self.max_step, loss_v))
def __print_experiment_progress(self):
if self.exp_verbose:
if self.ep % 8 == 0:
rwd = self.Rwd_per_ep_v[self.exp, self.ep]
ep0 = max(0, self.ep - 99)
rwd_min = np.amin(self.Rwd_per_ep_v[self.exp, ep0:self.ep + 1])
rwd_max = np.amax(self.Rwd_per_ep_v[self.exp, ep0:self.ep + 1])
rwd_std = np.std(self.Rwd_per_ep_v[self.exp, ep0:self.ep + 1])
avg_rwd = self.Avg_Rwd_per_ep[self.exp, self.ep]
loss = self.Loss_per_ep_v[self.exp, self.ep]
avg_loss = self.Avg_Loss_per_ep[self.exp, self.ep]
avg_rwds = self.Avg_Rwd_per_ep[self.exp, 0:self.ep+1]
idx_unsolved_eps = np.where(avg_rwds < self.min_avg_rwd)
i_last_low_rwd = self.ep
if idx_unsolved_eps[0].size > 0:
i_last_low_rwd = np.amax(idx_unsolved_eps)
n_solved_eps = self.ep - i_last_low_rwd
avg_episode_duration_ms = 0
if self.ep > 0:
avg_episode_duration_ms = np.mean(self.episode_duration_s[self.exp, ep0:self.ep + 1]) * 1000
print(
self.exp_progress_msg.format(self.exp, self.ep, rwd, rwd_min, rwd_max, avg_rwd, rwd_std,
self.n_avg_ep, self.min_avg_rwd, n_solved_eps, loss, avg_loss,
self.agent.eps*100, avg_episode_duration_ms))
def __maybe_update_target_estimator(self):
if self.global_step % self.target_params_update_period_steps == 0:
self.agent.value_func.update_old_params()
if self.ep_verbose:
print("Copied model parameters to target network.")
def run_episode(self, env, train=True):
t = time.time()
self.agent.state = env.reset()
done = False
self.agent.total_reward = 0
loss_v = np.nan
for self.step in range(self.max_step):
if self.render_environment and self.step % 10 == 0:
env.render() # Render environment for human consumption
self.__maybe_update_target_estimator()
self.agent.anneal_per_importance_sampling(self.step, self.max_step)
self.__print_episode_progress(loss_v)
if done:
break
summaries_to_save = []
if (self.global_step + 1) % 200*self.max_step == 0:
summaries_to_save.append("progress")
if np.random.uniform() <= self.prob_sample_state:
summaries_to_save.append("state")
save_embedding = self.global_step in self.embeddings_global_steps
self.__maybe_collect_embedding_thumbnail(env, save_embedding)
action = self.agent.act(self.global_step, state=self.agent.state, saveembedding=save_embedding,
summaries_to_save=summaries_to_save)
self.agent_value_function[self.exp, self.ep, self.step] = self.agent.current_value
state_next, reward, done, info = env.step(action)
self.agent.total_reward += reward
self.agent.save_experience(self.agent.state, action, reward, state_next, done)
if train and self.global_step % self.replay_period_steps == 0:
summaries_to_save = []
if self.global_step % 10000 == 0:
summaries_to_save.append("train")
loss_v = self.agent.train_on_experience(self.batch_size, self.discount,
double_dqn=self.double_dqn, summaries_to_save=summaries_to_save)
self.agent.state = copy.copy(state_next)
if save_embedding:
self.embeddings_metadata_file.write("{:2.6f}\n".format(self.agent.current_value))
self.global_step += 1
self.agent.value_func.update_summarizables(self.agent.total_reward, self.agent.eps, self.agent.current_value)
self.episode_duration_s[self.exp, self.ep] = time.time() - t # Time elapsed during this episode
return loss_v, self.agent.total_reward
def __maybe_collect_embedding_thumbnail(self, env, saveembedding=False):
if saveembedding:
env_img = env.render(mode="rgb_array")
env_img = imresize(env_img, (self.embedding_thumbnail_h, self.embedding_thumbnail_w))
(r, c) = self.nxt_thumb
self.sprite_image[r:r + self.embedding_thumbnail_h, c:c + self.embedding_thumbnail_w] = env_img
if self.nxt_thumb[1] == self.sprite_image.shape[1] - self.embedding_thumbnail_w:
self.nxt_thumb[0] += self.embedding_thumbnail_h
self.nxt_thumb[1] = (self.nxt_thumb[1] + self.embedding_thumbnail_w) % self.sprite_image.shape[1]
self.n_saved_embeddings += 1
def __maybe_stop_training(self, stop_training_min_avg_rwd, n_min_training_episodes, train):
if stop_training_min_avg_rwd is not None:
if train and self.ep >= n_min_training_episodes and \
self.Avg_Rwd_per_ep[self.exp, self.ep] >= stop_training_min_avg_rwd:
train = False
self.agent.explore = False
print("Minimum average reward reached. Stop training and exploration.")
return train
def run_experiment(self, env, n_ep, stop_training_min_avg_rwd=None, n_min_training_episodes=100,
print_mean_episode_reward=False):
self.n_ep = n_ep
self.global_step = 0
self.prob_sample_state = min([1, 2000 / (self.max_step * n_ep)]) # Sample 2000 summaries of the current state
train = True
# One experiment is composed of n_ep sequential episodes
for self.ep in range(n_ep):
loss_v, total_reward = self.run_episode(env, train)
# Collect episode results
self.Rwd_per_ep_v[self.exp, self.ep] = total_reward
self.Loss_per_ep_v[self.exp, self.ep] = loss_v
# Calculate episode statistics
last_rwds = self.Rwd_per_ep_v[self.exp, np.maximum(self.ep - (self.n_avg_ep - 1), 0):self.ep+1]
last_losses = self.Loss_per_ep_v[self.exp, np.maximum(self.ep - (self.n_avg_ep - 1), 0):self.ep+1]
self.Avg_Rwd_per_ep[self.exp, self.ep] = np.mean(last_rwds)
self.Avg_Loss_per_ep[self.exp, self.ep] = np.nanmean(last_losses)
self.Agent_Epsilon_per_ep[self.exp, self.ep] = self.agent.eps
if self.Avg_Rwd_per_ep[self.exp, self.ep] >= self.min_avg_rwd:
self.n_eps_to_reach_min_avg_rwd[self.exp] = np.minimum(self.ep,
self.n_eps_to_reach_min_avg_rwd[self.exp])
train = self.__maybe_evaluate_performance_and_reheat(stop_training_min_avg_rwd, n_min_training_episodes,
train)
if self.agent.eps > self.eps_min:
self.agent.eps *= self.decay_eps
if self.ep > 0 and self.ep % (n_ep//4) == 0: # Save KPIs progress four times during each experiment
self.save_kpis("_{}".format(self.ep))
self.__print_experiment_progress()
self.agent.value_func.save() # Save one final checkpoint at the end of training
self.__maybe_save_sprite_image("_{}".format(self.agent.value_func.scope))
if self.embeddings_metadata_file is not None:
self.agent.value_func.save_embeddings(self.summaries_path_current+"_{}".format(self.agent.value_func.scope),
os.path.basename(self.embeddings_metadata_file.name),
self.sprite_path, self.embedding_thumbnail_w,
self.embedding_thumbnail_h)
if print_mean_episode_reward:
mean_reward = np.mean(self.Rwd_per_ep_v[self.exp, :])
print("Average reward over all episodes: {}.".format(mean_reward))
def __maybe_evaluate_performance_and_reheat(self, stop_training_min_avg_rwd, n_min_training_episodes, train):
if not self.performance_evaluation_mode:
if self.epsilon_reheat:
if self.agent.eps <= self.eps_min:
if self.conditional_epsilon_reheat:
if self.Avg_Rwd_per_ep[self.exp, self.ep] < self.min_avg_rwd:
ep0 = np.maximum(self.ep - (self.n_avg_ep - 1), 0)
last_avg_losses = self.Avg_Loss_per_ep[self.exp, ep0:self.ep + 1]
if np.all(last_avg_losses < pow(self.min_avg_rwd * 0.2, 2)): # If loss < 20% of target Rwd
train = False
self.__enable_performance_evaluation_mode()
print("Loss is low enough. Stopping training and exploration to evaluate performance.")
else: # Unconditional epsilon reheat
self.__reheat_exploration()
else:
train = self.__maybe_stop_training(stop_training_min_avg_rwd, n_min_training_episodes, train)
else: # If in performance evaluation mode
train = self.__evaluate_performance(train)
return train
def __enable_performance_evaluation_mode(self):
self.agent.explore = False
self.performance_evaluation_mode = True
self.performance_evaluation_ep0 = self.ep
def __evaluate_performance(self, train):
last_perf_rwds = self.Rwd_per_ep_v[self.exp, self.performance_evaluation_ep0:self.ep + 1]
self.Avg_Rwd_per_ep[self.exp, self.ep] = np.mean(last_perf_rwds) # Overwrite Avg Rwd with perf Rwd
n_perf_eps = self.ep - self.performance_evaluation_ep0
if n_perf_eps > 500:
last_perf_avg_rwds = self.Avg_Rwd_per_ep[self.exp, self.ep - (n_perf_eps // 4):self.ep + 1]
reward_max = np.max(last_perf_avg_rwds)
reward_min = np.min(last_perf_avg_rwds)
if reward_max - reward_min < self.Avg_Rwd_per_ep[self.exp, self.ep] / 20: # Perf. eval. complete
print("The average reward is {}.".format(self.Avg_Rwd_per_ep[self.exp, self.ep]))
if self.epsilon_reheat and self.Avg_Rwd_per_ep[self.exp, self.ep] < self.min_avg_rwd:
self.__reheat_exploration()
print("Resuming training and exploration.")
train = True
self.agent.explore = True
self.performance_evaluation_mode = False
return train
def __reheat_exploration(self):
self.agent.eps = 1.0
print("Reheating exploration.")
def __create_gym_stats_directory(self, env):
if self.results_dir_prefix is None:
raise ValueError("A prefix for the Gym results directory must be provided.")
if not os.path.exists(self.results_dir_prefix):
os.makedirs(self.results_dir_prefix)
t = get_last_folder_id(self.results_dir_prefix) + 1 # Calculate next test id
self.gym_stats_dir = os.path.join(self.results_dir_prefix, str(t).zfill(4))
if not os.path.exists(self.gym_stats_dir):
os.makedirs(self.gym_stats_dir)
else:
raise FileExistsError(self.gym_stats_dir)
return wrappers.Monitor(env, self.gym_stats_dir)
def __build_layers_size_str(self, state_dim, n_actions):
layers_size = str(state_dim)
for s in self.agent_value_function_hidden_layers_size:
layers_size += "-" + str(s)
layers_size += "-" + str(n_actions)
return layers_size
def __build_experiments_conf_str(self, n_ep, n_actions, state_dim):
layers_size = self.__build_layers_size_str(state_dim, n_actions)
if self.use_long_dirnames:
exp_conf_str = "{}_{}_{:1.2f}_{:1.4f}_{:1.2e}_{:1.0e}_DL{}_" +\
"DDQN{}_{}_p{}_C{}_K{}_PER{}_IS{}_a{:1.1f}_b0{:1.1f}"
self.exps_conf_str = exp_conf_str.format(time.strftime("%Y%m%d%H%M%S"), layers_size, self.discount,
self.decay_eps, self.eps_min, self.learning_rate,
1 if self.decay_lr else 0, 1 if self.double_dqn else 0,
self.batch_size, n_ep,
self.target_params_update_period_steps, self.replay_period_steps,
1 if self.per_proportional_prioritization else 0,
1 if self.per_apply_importance_sampling else 0,
self.per_alpha, self.per_beta0)
else:
self.exps_conf_str = "{}".format(time.strftime("%Y%m%d%H%M%S"))
def __save_config_file(self, n_exps, n_ep, state_dim, n_actions, stop_training_min_avg_rwd):
config_file_dir = os.path.join("Logs", self.exps_conf_str)
if not os.path.exists(config_file_dir):
os.makedirs(config_file_dir)
config_file = open(os.path.join(config_file_dir, "config.txt"), "w")
rest_chkpt_folder = "N.K."
rest_chkpt_file = "N.K."
if self.restoration_checkpoint is not None:
head, rest_chkpt_file = os.path.split(self.restoration_checkpoint)
rest_chkpt_folder = os.path.basename(head)
layers_size = self.__build_layers_size_str(state_dim, n_actions)
exp_conf_str = "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n"
config_file.write(exp_conf_str.format(self.env_name, self.exps_conf_str[:14], layers_size,
self.target_params_update_period_steps,
self.discount, self.decay_eps, self.eps_min, self.learning_rate,
"TRUE" if self.decay_lr else "FALSE",
str(self.learning_rate_end) if self.decay_lr else "N.A.",
"TRUE" if self.epsilon_reheat else "FALSE",
self.max_step,
"TRUE" if self.double_dqn else "FALSE", self.replay_memory_max_size,
self.batch_size, n_exps, n_ep, self.replay_period_steps,
stop_training_min_avg_rwd, self.min_avg_rwd,
self.per_proportional_prioritization, self.per_apply_importance_sampling,
self.per_alpha, self.per_beta0,
rest_chkpt_folder, rest_chkpt_file))
config_file.close()
def __create_figures_directory(self):
if self.figures_dir is not None:
self.figures_dir = os.path.join(self.figures_dir, self.env_name, self.exps_conf_str)
if not os.path.exists(self.figures_dir):
os.makedirs(self.figures_dir)
else:
for dirpath, dirnames, files in os.walk(self.figures_dir):
if files:
raise FileExistsError("The figures directory exists and has files: {}".format(self.figures_dir))
else:
break
def __create_kpis_directory(self):
if self.kpis_dir is not None:
self.kpis_dir = os.path.join(self.kpis_dir, self.env_name, self.exps_conf_str)
if not os.path.exists(self.kpis_dir):
os.makedirs(self.kpis_dir)
else:
for dirpath, dirnames, files in os.walk(self.kpis_dir):
if files:
raise FileExistsError("The kpis directory exists and has files: {}".format(self.kpis_dir))
else:
break
def __create_embeddings_metadata_file(self, collect_embeddings, suffix=""):
if collect_embeddings:
self.embeddings_metadata_file = open(os.path.join(self.summaries_path_current+suffix, "metadata.tsv"), "w")
self.nxt_thumb = np.array([0, 0]) # Next pixels in the sprite image onto which to store the next thumbnail.
self.n_saved_embeddings = 0
def __close_embeddings_metadata_file(self):
if self.embeddings_metadata_file is not None:
self.embeddings_metadata_file.close()
def __maybe_save_sprite_image(self, suffix=""):
if self.embeddings_metadata_file is not None:
self.sprite_path = os.path.join(self.summaries_path_current+suffix, "embeddings_sprite.jpg")
imsave(self.sprite_path, self.sprite_image)
def get_environment_actions(self, env):
if isinstance(env.action_space, gym.spaces.Box):
raise NotImplementedError("Continuous action spaces are not supported yet.")
elif isinstance(env.action_space, gym.spaces.Discrete):
n_actions = env.action_space.n
else:
raise NotImplementedError("{} action spaces are not supported yet.".format(type(env.action_space)))
return n_actions
def __update_summaries_path_current(self):
if self.summaries_path is not None:
self.summaries_path_current = os.path.join(self.summaries_path, self.env_name,
self.exps_conf_str + "_Exp" + str(self.exp))
def __update_checkpoints_dir_current(self):
if self.checkpoints_dir is not None:
self.checkpoints_dir_current = os.path.join(self.checkpoints_dir, self.env_name,
self.exps_conf_str + "_Exp" + str(self.exp))
if not os.path.exists(self.checkpoints_dir_current):
os.makedirs(self.checkpoints_dir_current)
def __get_problem_dimensionality(self):
env = gym.make(self.env_name)
n_actions = self.get_environment_actions(env)
state_dim = env.observation_space.high.shape[0]
self.memory_check(env)
env.close()
return n_actions, state_dim
def __update_embeddings_configuration(self, n_ep, n_embeddings=0):
self.embeddings_global_steps = np.random.choice(n_ep * self.max_step, size=n_embeddings, replace=False)
assert n_embeddings <= 10000, "Cannot collect more than 10000 embeddings."
self.embeddings_sprite_n_rows = math.ceil(math.sqrt(n_embeddings)) if n_embeddings > 0 else 0
self.embedding_thumbnail_h = 8192 // self.embeddings_sprite_n_rows if n_embeddings > 0 else 0
self.embedding_thumbnail_w = 8192 // self.embeddings_sprite_n_rows if n_embeddings > 0 else 0
self.sprite_image = np.zeros((self.embeddings_sprite_n_rows * self.embedding_thumbnail_h,
self.embeddings_sprite_n_rows * self.embedding_thumbnail_w, 3), dtype=np.uint8)
def run_experiments(self, n_exps, n_ep, stop_training_min_avg_rwd=None, plot_results=True, figures_format=None,
agent=None, n_embeddings=0, n_min_training_episodes=100, print_mean_episode_reward=False):
self.Rwd_per_ep_v = np.zeros((n_exps, n_ep))
self.Loss_per_ep_v = np.zeros((n_exps, n_ep))
self.Avg_Rwd_per_ep = np.zeros((n_exps, n_ep))
self.n_eps_to_reach_min_avg_rwd = np.zeros(n_exps, dtype=float)
self.n_eps_to_reach_min_avg_rwd.fill(n_ep)
self.Avg_Loss_per_ep = np.zeros((n_exps, n_ep))
self.Agent_Epsilon_per_ep = np.zeros((n_exps, n_ep))
self.agent_value_function = np.zeros((n_exps, n_ep, self.max_step))
self.episode_duration_s = np.zeros(shape=(n_exps, n_ep), dtype=float)
self.__update_embeddings_configuration(n_ep, n_embeddings)
n_actions, state_dim = self.__get_problem_dimensionality()
self.__build_experiments_conf_str(n_ep, n_actions, state_dim)
self.__create_figures_directory()
self.__create_kpis_directory()
self.__save_config_file(n_exps, n_ep, state_dim, n_actions, stop_training_min_avg_rwd)
if self.checkpoint_save_period_steps is None:
self.checkpoint_save_period_steps = n_ep*self.max_step//4 # By default, save 4 checkpoints
ckpt_sv_period_epochs = self.checkpoint_save_period_steps // self.replay_period_steps
for self.exp in range(n_exps):
print(self.conf_msg.format(self.exp, n_exps, self.env_name))
if self.use_long_dirnames:
print(self.exps_conf_str)
env = gym.make(self.env_name) # Create new environment
env.seed(self.exp)
assert state_dim == env.observation_space.high.shape[0]
if self.upload_last_exp and self.exp == n_exps-1:
env = self.__create_gym_stats_directory(env)
self.__update_summaries_path_current()
self.__update_checkpoints_dir_current()
# Create agent
if agent is None:
value_function = ValueFunctionDQN(scope="q", state_dim=state_dim, n_actions=n_actions,
train_batch_size=self.batch_size, learning_rate=self.learning_rate,
hidden_layers_size=self.agent_value_function_hidden_layers_size,
decay_lr=self.decay_lr, learning_rate_end=self.learning_rate_end,
n_lr_decay_epochs=n_ep*self.max_step/self.replay_period_steps,
huber_loss=False, summaries_path=self.summaries_path_current,
reset_default_graph=True,
checkpoints_dir=self.checkpoints_dir_current,
checkpoint_save_period_epochs=ckpt_sv_period_epochs,
apply_wis=self.per_apply_importance_sampling,
restoration_checkpoint=self.restoration_checkpoint,
n_embeddings=n_embeddings, epsilon0=1.0)
self.__create_embeddings_metadata_file(n_embeddings > 0, "_{}".format(value_function.scope))
self.agent = AgentEpsGreedy(n_actions=n_actions, value_function_model=value_function, eps=1.0,
per_proportional_prioritization=self.per_proportional_prioritization,
per_apply_importance_sampling=self.per_apply_importance_sampling,
per_alpha=self.per_alpha, per_beta0=self.per_beta0)
if self.per_proportional_prioritization:
self.agent.memory = SumTree(self.replay_memory_max_size)
else:
self.agent.memory = DoubleEndedQueue(max_size=self.replay_memory_max_size)
else:
self.agent = agent
self.run_experiment(env, n_ep, stop_training_min_avg_rwd, n_min_training_episodes,
print_mean_episode_reward) # Action happens here
if agent is None:
value_function.close_summary_file()
self.__close_embeddings_metadata_file()
env.close()
if self.upload_last_exp and self.exp == n_exps - 1:
print("Trying to upload results to the scoreboard.")
gym.upload(self.gym_stats_dir, api_key=self.gym_api_key, algorithm_id=self.gym_algorithm_id)
# Plot results
self.plot_rwd_loss(figures_format=figures_format)
self.plot_value_function(figures_format=figures_format)
self.print_experiment_summary()
self.save_kpis()
self.calculate_avg_rwd()
self.plot_rwd_averages(n_exps, figures_format=figures_format)
self.print_summary()
if plot_results:
plt.show()
# Return the final Rwd averaged over all experiments AND the mean number of episodes needed to reach the min Rwd
return self.rwd_exps_avg_ma[-1], np.mean(self.n_eps_to_reach_min_avg_rwd)
def memory_check(self, env):
state_next, reward, done, info = env.step(0)
exp_size = sys.getsizeof(state_next) * 2 + sys.getsizeof(reward) + sys.getsizeof(done) + sys.getsizeof(int)
needed_mem_bytes = exp_size * self.replay_memory_max_size
mem = psutil.virtual_memory()
if mem.available < needed_mem_bytes:
max_mem_size_av = mem.available//exp_size
max_mem_size_tot = mem.total // exp_size
explanation = "The replay memory size exceeds the available memory." +\
" Each (s, a, r, s', done) tuple occupies {:2.1f} KB.\n" +\
" A replay memory of size {} would require " +\
"{:2.1f} GB, which exceeds the available (total) {:2.1f} ({:2.1f}) GB.\n" +\
" Given the available memory, a replay memory size of {} (max: {}) may do the job."
raise ValueError(explanation.format(exp_size/1024, self.replay_memory_max_size,
needed_mem_bytes/(1024 ** 3), mem.available/(1024 ** 3),
mem.total/(1024 ** 3), max_mem_size_av, max_mem_size_tot))
def print_experiment_summary(self):
duration_ms = np.mean(self.episode_duration_s[self.exp, :]) * 1000
print("Average episode duration: {:2.6f} ms".format(duration_ms))
def calculate_avg_rwd(self):
self.rwd_exps_avg = np.mean(self.Rwd_per_ep_v, axis=0) # Rwd averaged over all experiments
self.rwd_exps_avg_ma = np.zeros(self.rwd_exps_avg.shape[0])
self.rwd_exps_avg_movstd = np.zeros(self.rwd_exps_avg.shape[0])
self.rwd_exps_avg_percentile5 = np.zeros(self.rwd_exps_avg.shape[0])
self.rwd_exps_avg_percentile95 = np.zeros(self.rwd_exps_avg.shape[0])
for s in range(self.rwd_exps_avg.shape[0]):
self.rwd_exps_avg_ma[s] = np.mean(self.rwd_exps_avg[max(0, s - 99):s + 1])
self.rwd_exps_avg_movstd[s] = np.std(self.rwd_exps_avg[max(0, s - 99):s + 1])
self.rwd_exps_avg_percentile5[s] = np.percentile(self.rwd_exps_avg[max(0, s - 99):s + 1], 5)
self.rwd_exps_avg_percentile95[s] = np.percentile(self.rwd_exps_avg[max(0, s - 99):s + 1], 95)
def plot_rwd_averages(self, n_exps, figures_format=None):
n_ep = self.Rwd_per_ep_v.shape[1]
eps = range(n_ep)
if self.figures_dir is not None:
# PLOT ALL EXPERIMENTS
fig = plt.figure()
for i in range(n_exps):
shadow_plot(eps, self.Rwd_per_ep_v[i, :], label="Exp {}".format(i), smooth=0.1)
plt.xlabel("Episode number")
plt.ylabel("Reward")
plt.grid(True)
plt.legend(loc='upper left')
ttl = "Average reward. " + self.exps_conf_str
plt.title("\n".join(wrap(ttl, 60)))
if self.figures_dir is not None:
fig_savepath = os.path.join(self.figures_dir, "RwdsExpsComp.png")
plt.savefig(fig_savepath, dpi=self.dpi)
if figures_format is not None:
try:
fig_savepath = os.path.join(self.figures_dir,
"RwdsComparisonsAcrossExps.{}".format(figures_format))
plt.savefig(fig_savepath, format=figures_format, dpi=self.dpi)
except:
print("Error while saving figure in {} format.".format(figures_format))
plt.close(fig)
# PLOT AVERAGE OVER ALL EXPERIMENTS
fig = plt.figure()
plt.subplot(211)
plt.plot(eps, self.rwd_exps_avg, label="Average over {:3d} experiments".format(n_exps))
plt.ylabel("Reward per episode")
plt.grid(True)
plt.plot(eps, self.rwd_exps_avg_percentile95, label="95th percentile over 100 episodes")
plt.plot(eps, self.rwd_exps_avg_ma, label="100-episode moving average")
plt.plot(eps, self.rwd_exps_avg_percentile5, label="5th percentile over 100 episodes")
plt.legend(loc='lower right')
plt.title("Final average reward: {:3.2f} (std={:3.2f})".format(self.rwd_exps_avg_ma[-1],
self.rwd_exps_avg_movstd[-1]))
loss_exps_avg = np.mean(self.Loss_per_ep_v, axis=0)
plt.subplot(212)
plt.semilogy(eps, loss_exps_avg, label="Average over {:3d} experiments".format(n_exps))
plt.xlabel("Episode number")
plt.ylabel("Loss per episode")
plt.grid(True)
loss_exps_avg_ma = np.zeros(loss_exps_avg.shape[0])
for s in range(loss_exps_avg.shape[0]):
loss_exps_avg_ma[s] = np.mean(loss_exps_avg[max(0, s - 100):s + 1])
plt.plot(eps, loss_exps_avg_ma, label="100-episode moving average")
plt.legend(loc='lower right')
plt.suptitle("\n".join(wrap(self.exps_conf_str, 60)))
plt.tight_layout()
plt.subplots_adjust(top=0.85)
if self.figures_dir is not None:
fig_savepath = os.path.join(self.figures_dir, "ExpsAverage.png")
plt.savefig(fig_savepath, dpi=self.dpi)
if figures_format is not None:
try:
fig_savepath = os.path.join(self.figures_dir, "ExpsAverage.{}".format(figures_format))
plt.savefig(fig_savepath, format=figures_format, dpi=self.dpi)
except:
print("Error while saving figure in {} format.".format(figures_format))
plt.close(fig)
def print_summary(self):
n_eps = np.argmax(self.rwd_exps_avg_ma >= self.min_avg_rwd)
print("Average final reward: {:3.2f} (std={:3.2f}).\n".format(self.rwd_exps_avg_ma[-1],
self.rwd_exps_avg_movstd[-1]))
if n_eps is None:
print("The 100-episode moving average never reached {}.".format(self.min_avg_rwd))
else:
print("The 100-episode moving average reached {} after {} episodes.".format(self.min_avg_rwd, n_eps))
def plot_value_function(self, figures_format=None):
if self.figures_dir is not None:
n_ep = self.Rwd_per_ep_v.shape[1]
fig = plt.figure()
for ep in draw_equispaced_items_from_sequence(7, n_ep):
plt.plot(self.agent_value_function[self.exp, ep, :], label="Episode {:4d}".format(ep))
plt.xlabel("Steps")
plt.ylabel("Value")
plt.grid(True)
plt.legend(loc='lower right')
plt.title("Value functions for experiment {:2d}".format(self.exp))
if self.figures_dir is not None:
fig_savepath = os.path.join(self.figures_dir, "Exp{}_ValueFuncs.png".format(self.exp))
plt.savefig(fig_savepath, dpi=self.dpi)
if figures_format is not None:
try:
fig_savepath = os.path.join(self.figures_dir,
"Exp{}_ValueFuncs.{}".format(self.exp, figures_format))
plt.savefig(fig_savepath, format=figures_format, dpi=self.dpi)
except:
print("Error while saving figure in {} format.".format(figures_format))
plt.close(fig)
def plot_rwd_loss(self, figures_format=None):
if self.figures_dir is not None:
n_ep = self.Rwd_per_ep_v.shape[1]
eps = range(n_ep)
fig = plt.figure()
ax1 = plt.subplot(211)
shadow_plot(eps, self.Rwd_per_ep_v[self.exp, :], smooth=0.1)
plt.xlabel("Episode number")
plt.ylabel("Reward per episode")
ax2 = ax1.twinx()
plt.plot(eps, self.Agent_Epsilon_per_ep[self.exp, :], label="Agent epsilon", color='r')
ax2.set_ylabel(r'Agent $\varepsilon$', color='r')
ax2.tick_params('y', colors='r')
plt.grid(True)
ttl = "Final average reward: {:3.2f} (SD={:3.2f})"
plt.title(ttl.format(self.Avg_Rwd_per_ep[self.exp, -1],
np.std(self.Rwd_per_ep_v[self.exp, n_ep-100:n_ep-1])))
plt.legend(loc='lower right')
rwd_per_ep_exp_avg = np.mean(self.Rwd_per_ep_v[0:self.exp+1, n_ep-100:n_ep-1], axis=1)
print("Final mean reward, averaged over {} experiment{}: {} (std = {}).".format(self.exp+1,
's' if self.exp > 0 else '',
np.mean(rwd_per_ep_exp_avg),
np.std(rwd_per_ep_exp_avg)))
plt.subplot(212)
shadow_plot(eps, self.Loss_per_ep_v[self.exp, :], semilogy=True, smooth=0.1)
plt.xlabel("Episode number")
plt.ylabel("Loss per episode")
plt.grid(True)
plt.title("Value function loss")
sttl = self.exps_conf_str + ". Experiment {}".format(self.exp)
plt.suptitle("\n".join(wrap(sttl, 60)))
plt.tight_layout()
plt.subplots_adjust(top=0.85)
if self.figures_dir is not None:
fig_savepath = os.path.join(self.figures_dir, "Experiment{}_Rwd_Loss.png".format(self.exp))
plt.savefig(fig_savepath, dpi=self.dpi)
if figures_format is not None:
try:
fig_savepath = os.path.join(self.figures_dir, "Experiment{}_Rwd_Loss.{}".format(self.exp,
figures_format))
plt.savefig(fig_savepath, format=figures_format, dpi=self.dpi)
except:
print("Error while saving figure in {} format.".format(figures_format))
plt.close(fig)
def save_kpis(self, suffix=""):
if self.kpis_dir is not None:
shutil.rmtree(self.kpis_dir) # To prevent lack of space issues, first delete all previous kpis.
os.makedirs(self.kpis_dir)
np.save(os.path.join(self.kpis_dir, "rwd_per_ep"+suffix), self.Rwd_per_ep_v)
np.save(os.path.join(self.kpis_dir, "loss_per_ep"+suffix), self.Loss_per_ep_v)
np.save(os.path.join(self.kpis_dir, "agent_value_function"+suffix), self.agent_value_function[:, ::100, :])