-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_rnn.m
180 lines (154 loc) · 5.57 KB
/
test_rnn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
clear all
close all
clc
load('Shanghai_Gold_Fix_PM.mat');
input_data = data';
E = mean(input_data);
sd = std(input_data);
input_data = (input_data-E)/sd;
data_size = length(input_data); % total data size
div = 0.8; % rate of amount of train data size
train_size = floor(data_size*div); % train data size
m = 30; % input unit size (# of xt)
H = 256; % hidden unit size (# of ht)
n = 30; % output unit size (# of yt)
pred = 5; % prediction step size
% preparing data for training and test
train_size = train_size - mod(train_size-n, pred);
data_size = data_size - mod(data_size-n, pred);
input_data = input_data(1:data_size);
train_data = input_data(1:train_size); % training data
test_data = input_data(train_size+1:end);
% weights and biases, and momentum
Wxh = randn(H,n)*0.01; mWxh = zeros(size(Wxh));
Whh = randn(H,H)*0.01; mWhh = zeros(size(Whh));
Why = randn(m,H)*0.01; mWhy = zeros(size(Why));
bh = randn(H,1)*0.01; mbh = zeros(size(bh));
by = randn(m,1)*0.01; mby = zeros(size(by));
h0 = zeros(H, 1); % h0 initialization
learning_rate = 0.001;
m_rate = 0.9; % momentum rate
epoch_num = 300;
bsize = 20; % mini-batch size
blist = 1:bsize*pred:train_size; % mini-batch first index list
loss = 0;
% figure(1);
% ge = animatedline;
% ge.Color = [0 0.4470 0.7410];
% addpoints(ge,0,loss);
% drawnow;
% xlim([0 epoch_num]);
% ylim([0 200]);
% xlabel('epoch'); ylabel('total loss');
h_train = figure(2);
h_train.Position = [800 260 560 420];
xx = 1:train_size;
train_data_original = train_data * sd + E;
g_train = plot(xx, train_data_original,xx,zeros(size(train_data)));
axis([1, train_size, min(train_data_original)-5, max(train_data_original)+5]);
title('Training procedure');
for epoch = 1:epoch_num
loss = 0; % total loss
for p = blist
% check if full mini-batch possible
if (p + pred*bsize +n - 1<= train_size)
ibsize = bsize;
else
ibsize = floor((train_size - p - n + 1)/pred);
end
% prepare input-target data for forward pass
x = zeros(n, ibsize);
d = zeros(m, ibsize);
for i = 1:ibsize
pp = p+(i-1)*pred;
x(:,i) = train_data(pp:pp+n-1)';
d(:,i) = train_data(pp+pred:pp+n+pred-1)';
end
[L, h, y] = rnn_forward(x, h0, d, Wxh, Whh, Why, bh, by);
[dWxh,dWhh,dWhy,dbh,dby] = rnn_backward(x,h,y,d,Wxh,Whh,Why,bh,by);
mWxh = learning_rate*dWxh + m_rate*mWxh;
mWhh = learning_rate*dWhh + m_rate*mWhh;
mWhy = learning_rate*dWhy + m_rate*mWhy;
mbh = learning_rate*dbh + m_rate*mbh;
mby = learning_rate*dby + m_rate*mby;
Wxh = Wxh - mWxh;
Whh = Whh - mWhh;
Why = Why - mWhy;
bh = bh - mbh;
by = by - mby;
loss = loss + L;
end
if ~mod(epoch, 10)
y_hat = zeros(size(train_data));
for p = blist
% check if full mini-batch possible
if (p + pred*bsize + n - 1<= train_size)
ibsize = bsize;
else
ibsize = floor((train_size - p - n + 1)/pred);
end
% prepare input-target data for forward pass
x = zeros(n, ibsize);
d = zeros(m, ibsize);
for i = 1:ibsize
pp = p+(i-1)*pred;
x(:,i) = train_data(pp:pp+n-1)';
d(:,i) = train_data(pp+pred:pp+n+pred-1)';
end
[L, h, y] = rnn_forward(x, h0, d, Wxh, Whh, Why, bh, by);
for i = 1:ibsize
yy = y(:,i);
y_hat(p+(i-1)*pred+n:p+i*pred+n-1) = yy(end-pred+1:end);
end
end
y_hat(1:n) = train_data(1:n);
y_hat_original = y_hat*sd+E;
g_train(2).YData = y_hat_original;
drawnow;
if (mod(epoch, 20)==0)
[MAE, MAPE] = eval_error(train_data_original, y_hat_original);
txt = strcat('epoch: ',num2str(epoch),' loss_func: ',num2str(loss));
txt = strcat(txt, ' MAE: ', num2str(MAE), ' MAPE: ', num2str(MAPE),'%');
disp(txt);
end
end
end
h_test = figure(3);
h_test.Position = [800 40 560 420];
xx = 1:data_size;
input_data_original = input_data * sd + E;
g_test = plot(xx, input_data_original ,xx, zeros(size(input_data)));
axis([train_size+1, data_size, min(input_data_original)-5, max(input_data_original)+5]);
title('Predicted Result');
loss = 0;
blist = 1:bsize*pred:data_size; % mini-batch first index list
y_hat = zeros(data_size, 1);
for p = blist
if (p + pred*bsize + n - 1<= data_size)
ibsize = bsize;
else
ibsize = floor((data_size - p - n + 1)/pred);
end
% prepare input-target data for forward pass
x = zeros(n, ibsize);
d = zeros(m, ibsize);
for i = 1:ibsize
pp = p+(i-1)*pred;
x(:,i) = input_data(pp:pp+n-1)';
d(:,i) = input_data(pp+pred:pp+n+pred-1)';
end
[L, h, y] = rnn_forward(x, h0, d, Wxh, Whh, Why, bh, by);
loss = loss + L;
for i = 1:ibsize
yy = y(:,i);
y_hat(p+(i-1)*pred+n:p+i*pred+n-1) = yy(end-pred+1:end);
end
end
y_hat(1:n) = input_data(1:n);
y_hat_original = y_hat * sd + E;
g_test(2).YData = y_hat_original;
[MAE, MAPE] = eval_error(input_data_original(train_size+1:end), y_hat_original(train_size+1:end));
txt = strcat('loss_func: ', num2str(loss), ' MAE: ', num2str(MAE), ' MAPE: ', num2str(MAPE),'%');
disp('********************************************');
disp(txt);
disp('==========================================================');