diff --git a/src/being.py b/src/being.py index 21732ad..d34347a 100644 --- a/src/being.py +++ b/src/being.py @@ -1,5 +1,5 @@ import numpy as np -from math import cos, sin +from math import cos, sin, degrees, atan2, hypot import random # Hyper-parameters @@ -10,7 +10,8 @@ WATER_TO_ENERGY = 0.001 # Rotation vectors for movement -theta = np.deg2rad(45) +rotation_angle = 45 +theta = np.deg2rad(rotation_angle) rot_right = np.array([[cos(theta), -sin(theta)], [sin(theta), cos(theta)]]) rot_left = np.array([[cos(-theta), -sin(-theta)], [sin(-theta), cos(-theta)]]) @@ -32,14 +33,31 @@ def __init__(self, sprite_index): self.water = 1. self.energy = 1. + # State self.angle = 0. self.direction = [1, 0] # vector from (0,0) (the being) to the direction its facing self.speed = 0. self.action_space = ['NOOP', 'TURN_LEFT', 'TURN_RIGHT', 'MOVE', 'STOP', 'EAT', 'DRINK'] + # Vision + self.vision_angle = 45 # degrees of vision, it can see forward, and vision_angle/2 to each side + self.vision_pixels = 5 # resolution of vision, size of the 2-d array it can "see" + self.vision_distance = 10 # distance it can see objects at + + # Don't change these + self.vision_chunk_size = self.vision_angle // self.vision_pixels self.sprite_index = sprite_index - def choose_action(self): + def choose_action(self, vision): + """ + Choose an action based on the current state and the vision + :param vision: + :return: + """ + state = [self.happiness, self.hunger, self.thirst, self.energy, *vision] + + # TODO: Use the state to learn somehow + action = random.choice(self.action_space) if action == 'TURN_LEFT' or action == 'TURN_RIGHT': @@ -49,7 +67,7 @@ def choose_action(self): return action - def step(self): + def step(self, location, being_locations): self.energy = max(0, self.energy - ENERGY_LOSS_GENERAL) if self.energy < 1: @@ -64,5 +82,46 @@ def step(self): if self.speed > 0: self.energy = max(0, self.energy - ENERGY_LOSS_ACTIONS) + vision = self.vision(location, being_locations) + + return self.choose_action(vision) + + def vision(self, location, locations): + """ + Calculate the vision array + :param locations: + :return: + """ + direction_angle = degrees(atan2(self.direction[1], self.direction[0])) + + min_angle = direction_angle - self.vision_angle / 2 + max_angle = direction_angle + self.vision_angle / 2 + + min_angle %= 360 + max_angle %= 360 + + vision = [0] * self.vision_pixels + + # calculate beings in its field of view + for coords in locations: + if coords == location: + # skip itself + continue + + y = coords[1] - location[1] + x = coords[0] - location[0] + + angle = degrees(atan2(y, x)) + angle %= 360 + + if min_angle <= angle <= max_angle: + dist = hypot(x, y) + if dist <= self.vision_distance: + # visible + vision_chunk = int((angle - min_angle) // self.vision_chunk_size) + vision[vision_chunk] += 1 + + return vision + def is_alive(self): return self.energy > 0 \ No newline at end of file diff --git a/src/playground.ipynb b/src/playground.ipynb index 8ee04b3..45e764c 100644 --- a/src/playground.ipynb +++ b/src/playground.ipynb @@ -25,11 +25,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 70, "outputs": [], "source": [ "WORLD_SIZE = 250\n", - "INITIAL_POPULATION = 1000" + "INITIAL_POPULATION = 1" ], "metadata": { "collapsed": false, @@ -40,12 +40,709 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 73, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 1, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.991, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.99, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.986, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.982, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.978, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.974, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.97, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.966, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.962, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.958, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.95, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.946, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.942, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.938, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.939, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.94, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.941, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.942, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.943, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.946, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.947, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.948, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.949, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.95, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.951, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.952, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.949, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.95, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.951, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.952, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.955, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.956, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.952, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.948, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.949, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.95, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.951, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.952, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.955, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.956, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.957, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.958, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.959, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.96, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.961, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.962, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.963, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.964, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.965, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.966, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.967, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.968, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.969, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.965, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.961, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.957, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.949, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.941, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9369999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9329999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9289999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9249999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9209999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9169999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9179999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9189999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9199999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9209999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9219999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9229999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9239999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9249999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9259999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9269999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9279999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9289999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9299999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9309999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9319999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9329999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9339999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9349999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9309999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9269999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9229999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9189999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9149999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9159999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9169999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9179999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9189999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9199999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9209999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9219999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9179999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9139999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9149999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9159999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9169999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9179999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9189999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9199999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9209999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9219999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9229999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9239999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9249999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9259999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9269999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9279999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9239999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9199999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9159999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9119999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9079999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.9039999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8999999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8959999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8919999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8879999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8839999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8849999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8859999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8869999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8879999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8889999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8899999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8909999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8919999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8929999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8889999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8849999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8809999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8769999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8729999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8689999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8649999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8609999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8569999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8529999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8489999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8449999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8409999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8369999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8329999999999999, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8289999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8249999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8209999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8169999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8129999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8089999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8049999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.8009999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7969999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7979999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7939999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7949999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7959999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7969999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7979999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7989999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7949999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7909999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7869999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7829999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7789999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7749999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7709999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7669999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7629999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7589999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7549999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7559999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7569999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7579999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7589999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7599999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7609999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7619999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7629999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7639999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7649999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7659999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7619999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7579999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7539999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7499999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7459999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7419999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7379999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7339999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7349999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7359999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7369999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7379999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7389999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7399999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7409999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7369999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7329999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7289999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7249999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7209999999999998, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7169999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7129999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7089999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7049999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7009999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.7019999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6979999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6989999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6999999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6959999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6969999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6979999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6939999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6899999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6859999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6819999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6779999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6739999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6699999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6709999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6669999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6629999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6589999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6549999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6509999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6519999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6529999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6489999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6449999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6409999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6369999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6329999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6289999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6249999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6259999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6269999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6279999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6289999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6299999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6309999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6319999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6279999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6239999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6199999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6159999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6169999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6179999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6189999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6199999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6209999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6219999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6229999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6239999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6249999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6259999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6269999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6279999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6289999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6299999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6259999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6219999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6179999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6189999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6199999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6209999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6219999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6229999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6239999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6249999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6259999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6269999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6279999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6289999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6249999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6209999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6219999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6229999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6239999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6249999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6259999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6269999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6279999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6289999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6249999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6209999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6169999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6129999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6089999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6099999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6109999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6119999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6129999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6139999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6149999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6159999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6169999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6179999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6189999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6149999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6109999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6069999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6029999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5989999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5949999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5959999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5969999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5979999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5989999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5999999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6009999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6019999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6029999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6039999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6049999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6059999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6069999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6079999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6089999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6099999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6109999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6119999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6129999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6089999999999997, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6049999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.6009999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5969999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5929999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5939999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5949999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5909999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5919999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5929999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5889999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5849999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5809999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5769999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5779999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5739999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5699999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5659999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5619999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5579999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5539999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5499999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5459999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5419999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5379999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5339999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5299999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5259999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5219999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5179999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5139999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5099999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5109999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5119999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5129999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5139999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5149999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5109999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5069999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.5029999999999996, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.49899999999999956, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.49499999999999955, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.49099999999999955, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.48699999999999954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.48799999999999955, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.48899999999999955, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.48499999999999954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.48099999999999954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.47699999999999954, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.47299999999999953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.47399999999999953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.47499999999999953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.47599999999999953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.47199999999999953, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4679999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4639999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4599999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4559999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4519999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4479999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4439999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4399999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4359999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4319999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4279999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4239999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4199999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4159999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4119999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.4079999999999995, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.40399999999999947, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.39999999999999947, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.40099999999999947, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.40199999999999947, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.39799999999999947, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.39399999999999946, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38999999999999946, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38599999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38199999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37799999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37899999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37999999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38099999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38199999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38299999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38399999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38499999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38099999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.38199999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37799999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37399999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36999999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36599999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36699999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36799999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36899999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36999999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37099999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37199999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37299999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37399999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37499999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37599999999999945, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.37199999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36799999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.36399999999999944, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.35999999999999943, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.35599999999999943, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3519999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3479999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3439999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3399999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3359999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3369999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3379999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3339999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3349999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3359999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3369999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3379999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3339999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3299999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3259999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3219999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3179999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3139999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3099999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3059999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.3019999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2979999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2939999999999994, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.28999999999999937, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.28599999999999937, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.28199999999999936, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.27799999999999936, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.27399999999999936, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.26999999999999935, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.26599999999999935, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.26699999999999935, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.26299999999999935, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.25899999999999934, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.25499999999999934, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.25099999999999933, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.24699999999999933, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.24299999999999933, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.23899999999999932, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.23499999999999932, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.23099999999999932, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2269999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2229999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2189999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2149999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2109999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2069999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.2029999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.1989999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19499999999999929, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19099999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18699999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18299999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18399999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18499999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18599999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18699999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18799999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18899999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18999999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19099999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19199999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19299999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19399999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19499999999999929, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19599999999999929, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.1969999999999993, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.19299999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18899999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18499999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.18099999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.17699999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.17299999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.16899999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.16499999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.16099999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.15699999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.15299999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.14899999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.14499999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.14099999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.13699999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.13299999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12899999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12999999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12599999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12199999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11799999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11899999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11499999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11599999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11699999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11799999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11899999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11999999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12099999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12199999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12299999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12399999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12499999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.12099999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11699999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.11299999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.10899999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.1049999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.1009999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0969999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0929999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.08899999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.08499999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.08099999999999918, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.07699999999999918, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.07299999999999918, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06899999999999917, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06499999999999917, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06099999999999917, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.056999999999999176, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05299999999999918, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04899999999999918, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.049999999999999184, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.050999999999999185, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.051999999999999186, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05299999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05399999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05499999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05599999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05699999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05799999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05899999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05999999999999919, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.060999999999999194, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.061999999999999195, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0629999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0639999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0649999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0659999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0619999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0579999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0539999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0549999999999992, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.050999999999999206, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05199999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05299999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04899999999999921, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.044999999999999214, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04099999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03699999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03799999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03899999999999922, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.039999999999999224, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.040999999999999225, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.041999999999999225, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.042999999999999226, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04399999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04499999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04599999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04699999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04799999999999923, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.043999999999999234, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03999999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04099999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04199999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04299999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04399999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04499999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04599999999999924, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.046999999999999244, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.047999999999999245, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.048999999999999246, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.049999999999999246, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05099999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05199999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05299999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05399999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05499999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05599999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05699999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.057999999999999254, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.058999999999999254, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.059999999999999255, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.060999999999999256, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06199999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06299999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06399999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06499999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06599999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06699999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06799999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06899999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06999999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06599999999999925, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.06199999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.057999999999999254, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.05399999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04999999999999926, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.045999999999999264, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04199999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03799999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03899999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03999999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.04099999999999927, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.041999999999999274, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.042999999999999275, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03899999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03499999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.03099999999999928, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.026999999999999278, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.022999999999999278, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.018999999999999278, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.014999999999999278, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.010999999999999278, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.0069999999999992785, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.007999999999999279, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0.003999999999999279, 0, 0, 0, 0, 0]\n", + "[1.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0]\n" + ] + }, { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+SElEQVR4nO3dd3hUVfrA8e87k94bhEACofdQBZXeFFBERBEUBBvrru66lnVx1RVdUdz157p2EREQBFlRQBQVgSisFAGRjnQIvfeEhJzfH/eCYwwt7U55P89zn5m59T2TyTt3zj33HDHGoJRSKjC4nA5AKaVU2dGkr5RSAUSTvlJKBRBN+kopFUA06SulVADRpK+UUgFEk75Sl0BEhorIuMvcZoKI3FhKIfkMEWkvIllF2C5DRL4vjZgCmSZ9PyIirUXkexE5IiIHReR/InKFvWyQiMy7jH2li4gRkaDSi9h/iUgG0AiYar9OEZFpIrLTfl/TC6wfKiKjROSoiOwWkYcLLHeLyHP29sdE5EcRibOXNRCRr0Rkv4j4zY03xpjlwGER6eF0LP5Ek76fEJEYYDrwGpAAVAKeAXKcjKu4fPhL53fAePPL3Y/5wJdA7/OsPxSoCVQBOgCPiUhXj+XPAFcDVwExwAAg216WC0wC7i7B+L3FeKz3UpUUY4xOfjABzYHD51lWFytBnAGOn10PuA74ETgKbAeGemyzDTD2+sexkk0N4FvgCLAf+Og8x0u3tx0M7AR2AY94LHcBQ4CNwAGshJVQYNu77Ri+O88xrgeWAYeB74EMj2VbgMeB1cAh4H0gzGP5vcAG4CAwDajosaw+MNNetgf4mz1/qB3nWOAYsApofoG/xyagdSHzg+zypReYvwO4xuP1P4CJ9vN4+29Q/SKfgRrWv/RFPyt1PMq4DujjsWw08La9/Jj9967isfxq4Af7M/ADcLXHsgT7vd5pv+9T7PntgSzgEWCv/Xm402O77vbf6pj9PjzqsawScAoIdfp/zF8mxwPQqYT+kNbZ3wFgDNANiC+wfBAwr8C89kBDOwln2EnuRnvZ2eQb5LH+BOAJe/2wwpJagW0nAJH2MfYBne3lfwYWAKlAKPAOMKHAtmPtbcML2X9TO3m0BNzAQKxEH2ov3wKsBNLsRPQ/4Dl7WUesL6ym9rFfw/5iAaLthPSIXb5ooKW9bCjWF2d3+5gvAAvOU/5IuwzlCln2m6SPldQNkOwx72Zghf28LdaX21+B3cDPwP2F7PuiSd+ObTtwpx1LU/v9qG8vH42VfNva789/zn5u7PfyENavjCCgn/060V7+OfCRXZ5goJ3H5ywPeNae3x04if0Ztd/zNh7vRdMCMR/F40tdp2LmCqcD0KkE/5jWGf1orLOqPKyz2GR72SAKJP1Ctn8F+Lf9PJ3fJv2xwAgg9SL7ObttHY95/wTes5+vATp5LEvBqqII8ti22gX2/xbwjwLz1nkkmS3AfR7LugMb7efvAf/0WBZlHzvdTmI/nueYQ4FvPF7XA06dZ91KdhnCCllWWNJPK7g+0AXYYj+/zV7+HhCO9QW9D+hSYN+XkvRvBeYWmPcO8LT9fDT2LwyP9+eMHeMAYFGBbefbn60UrCqs+EKO2R7rbN3zs7QXuNJ+vg2rCifmPDHvANo6/f/lL5PW6fsRY8waY8wgY0wq0ACoiJXICyUiLUVkjojsE5EjwH1A0gUO8RggwCIRWSUid10kpO0ez7fa8YBVb/2piBwWkcNYXwJngOTzbFtQFeCRs9vb+0jz2P+Fjl3Rfg2AMeY41i+kSvY+Nl7guLs9np8Ews5zzeGw/Rh9gX15Om4/xnjMi8E64wYrYQI8a4w5ZawLnBOxvswuVxWgZYH37naggsc65947+/05iPW+/eq9s23ll/fuoDHm0HmOe8AYk+fx+iTWFwpY1zm6A1tF5FsRuarAttH88p6qYtKk76eMMWuxztoanJ1VyGofYv0aSDPGxGLV5cr51jfG7DbG3GuMqYh1ZvamiNS4QBhpHs8rY9X1gpVUuhlj4jymMGPMDs/DXWC/24FhBbaPMMZMuIRj78RKfACISCSQiHU2uR2ofoHjXhJjzAmsL49al7j+IawqjkYesxthXTcAWH521eLGhlXGbwu8d1HGmN97rHPuvRORKKxqnZ0UeO9slfnlvUs426LochhjfjDG9ATKA1Owrp2cPX5FIATrl5wqAZr0/YSI1BGRR0Qk1X6dhlVdscBeZQ+QKiIhHptFY52dZYtIC6xqhLP2Yf1cr+ZxjFvO7h+rLtdgnaGfz1MiEiEi9bHqkD+y578NDBORKvZ+y4lIz8so7rvAffYvFRGRSBG5TkQ8z6zvF5FUEUkA/uZx7A+BO0WksYiEAs8DC40xW7BaP1UQkT/bTSijRaTlZcTl6QugnecMEQnDqicHCLVfnzUWeFJE4kWkDtbF5tEAxpiNwFzgCTuuuljVNNPt/Yq9r5Czx7HLVpjpQC0RGSAiwfZ0hb3Ps7rbzX9DsC4oLzTGbLfLVEtEbhORIBG5Fauaa7oxZhcwA+tEIN7eb9uLvUkiEiIit4tIrDEmF6v+3vMz1R6YbYzx6VZoXsXp+iWdSmbC+ok9Ceus64T9+A52PSlWQvgc66f6fnvezVg/z49hJYPXgXEe+3wWK/kfBq7EqpffgVUdsREYfJ5Y0vl1653dwGMey13Aw1hnb8fsfT1fYNugi5S3K1brkcNYZ8n/BaLtZVv4pfXOYayL2xEe295nH/OgXe5Uj2UNgFlYX2q7gSH2/KEF3psLxmnvZxUgHvNMwcljWSgwCivp7QEeLuTv+6X93m8CfldILJ7Tlgu8d7Xtz8I+rKqt2UBje9lofmm9cxz4DqjqsW1rYAlW650leFzMx/pFMMaO/xDwiT2/PZBVIIYtQGesz+WX9vpH7b+p5z4/B25w+v/Lnyax31ilSox949FmINj8uh63rI6/BbjHGPNNWR+7QBwfApOMMVOcjONyiMhorAT9pBfE0hAYYYwpWMevisFXb3xRyusZY267+FrqfIwxK7DuD1ElSOv0lVIqgGj1jlJKBRA901dKqQDi9XX6SUlJJj09vUjbnjhxgsjIyJINyMsEQhkhMMoZCGWEwCinN5RxyZIl+40x5QrO9/qkn56ezuLFi4u0bWZmJu3bty/ZgLxMIJQRAqOcgVBGCIxyekMZRaTg3dOAVu8opVRA0aSvlFIBRJO+UkoFEK+v01dK+bbc3FyysrLIzrYG+oqNjWXNmjUOR1W6yrKMYWFhpKamEhwcfEnra9JXSpWqrKwsoqOjSU9PR0Q4duwY0dGX2uu0byqrMhpjOHDgAFlZWVStWvWStrlo9Y49WPNeEVnpMS9BRGaKyHr7Md5j2eMiskFE1onItR7zm4nICnvZqyIiBY+llPI/2dnZJCYmov/yJU9ESExMPPcr6lJcSp3+aKweDT0NAWYZY2pi9Ug4xA6gHtAXa5zRrljdrLrtbd7C6nWxpj0V3KdSyk9pwi89l/veXrR6xxjznd1roqeeWN2lgtWVaibW+J09sYZaywE2i8gGoIXd62GMMWa+HeRY4Eas/rdLxYIJL7B2v7D0dEppHcIrbNl6mqWn/X98icspZ2xECOmJEVQvF0WF2DDCgt0X30ipAFHUOv1kYw2agDFml4iUt+dX4pdBO8Aaq7US1hikWYXML5SIDMb6VUBycjKZmZmXFZzkn6Hiug+5j23889tNvHXmcsbn8DUGNm5wOogycGnlLNiTVJALOqQFkZHkpkKki5gQITTIO886jx8/ftmfdV8QGxvLsWPHzr0+c+bMr16Xhbi4OOrXr09eXh61a9fm7bffJiIiosT23717d5577jmaNm0KFF7GN954gzvvvPPccXv37s17771HXFxcsY+fnZ19yZ+dkr6QW9h/k7nA/EIZY0ZgDcBN8+bNTZHubGu7hD0jbuaxvR/xWO/W0PSOy9+HD/CGO//KwuWUc/P+E2w/eJKtB0/yf1+vY+bWXGZutbr1jwxx07hyHG6Xi5ZVE7i7dVWv+SXgr3/LNWvW/OqiphMXcsPDw1m+3Bp18vbbb2f8+PE8/PDDJbZ/t9tNZGTkuXIVVsa3336be+6559z8r7/+usSOHxYWRpMmTS5p3aIm/T0ikmKf5adgjWwP1hm859ikqVgjJ2XZzwvOLz1BIayt8yDJ0W6Y/hDEVYFq7S6+nfJ5VZMiqZpk9XtyY+OKZB06xbaDJzl44jSZ6/ay71gOh09m893P+5iwaBuVE6wzr7BgN3e2SqdF1QRCg7zji0CVvDZt2rB8+XIOHjzIXXfdxaZNm4iIiGDEiBFkZGQwdOhQNm7cyI4dO9i+fTuPPfYY9957L5mZmbz00ktMnz4dgAceeIDmzZszaNCgX+3/97//PQsXLiQnJ4ebb76ZZ555hldffZWdO3fSoUMHkpKSmDNnzrkuZpKSknj55ZcZNWoUAPfccw9//vOf2bJlC926daN169Z8//33VKpUialTpxIeHl6s8hc16U8DBgLD7cepHvM/FJGXgYpYF2wXGWPOiMgxEbkSWAjcAbxWrMgvgXG54ZbR8N61MGkA3P0NlLuksaqVn4gOC6ZuSjB1U2IA6Nei8rllc9fv451vN5GTZw3JumjzQWav3Uu9lBimPtCKYLfeu1jSnvlsFSu2H8LtLrkv1XoVY3i6R/1LWjcvL48ZM2bQtWtXnn76aZo0acKUKVOYPXs2d9xxB8uWLQNg+fLlLFiwgBMnTtCkSROuu+66S45n2LBhBAcHExERQadOnVi+fDl/+tOfePnll5kzZw5JSUm/Wn/JkiW8//77LFy4EGMMLVu2pF27dsTHx7N+/XomTJjAu+++S58+fZg8eTL9+/e/5FgKcylNNicA84HaIpIlIndjJfsuIrIe6GK/xhizCmuc1tVY417eb4w5O8jx74GRwAas8UlL7SLur4TFwm0fgTsEPrwFTuwvk8Mq79emZjnG3dOS/953Nf+972q+H9KRu1pVZfWuo/R4bR7zNx5wOkRVQk6dOkXjxo1p3rw5lStX5u6772bevHkMGDAAgI4dO3LgwAGOHDkCQM+ePQkPDycpKYkOHTqwaNGiSz7WpEmTaNOmDU2aNGHVqlWsXr36guvPmzePXr16ERkZSVRUFDfddBNz584FoGrVqjRu3BiAZs2asWXLlssvfAGX0nqn33kWdTrP+sOAYYXMX4w1WHTZi68C/SbC6Otg/C1wx1QIi3EkFOW9yseE8dT1dYkJD+K12Ru4beQCBretxsNdaml1Twl5ukd9x+r0z57Fn1XYAFJnmz8WbAYpIgQFBZGfn39uXmFt4zdv3sxLL73E7NmzqVy5MoMGDbpoG/oLDWQVGhp67rnb7ebUqVMX3NelCJzfr6nNraqe3cthQl84fdLpiJQXEhH+3LkWi5/oTN8rKvPOt5sYOGoRJ3LKfHx3Vcratm3L+PHjAesielJSEjEx1sng1KlTyc7O5sCBA2RmZnLFFVdQpUoVVq9eTU5ODkeOHGHWrFm/2efRo0eJjIwkNjaWPXv2MGPGLxUa0dHRhbZaatu2LVOmTOHkyZOcOHGCTz/9lDZt2pRSqQOtG4ba3aDXOzD5HvioP/SbAEGhF99OBZz4yBBeuKkh6YkRvDBjLbeOmM/0P5beP6Iqe0OHDuXOO+8kIyODiIgIxowZc25ZixYtuO6669i2bRtPPfUUFStWBKBPnz5kZGRQs2bNQlvLNGrUiCZNmtCiRQtq1KhBq1atzi0bPHgw3bp1IyUlhTlz5pyb37RpUwYNGkSLFi0A60JukyZNSqQqp1DGGK+emjVrZopqzpw5hS9YMsaYp2OMmXCbMXm5Rd6/NzhvGf2Mk+W87d35pspfp5vXZ683p/POlNpx/PVvuXr16l+9Pnr0qEORXJqnn37a/Otf/yrWPsq6jAXfY2OMARabQnJq4FTveGp6B3QdDmunw9T7waOeTqmCXuydQfnoUP711To6/l8mc9fvczokpYossKp3PF35e8g5DnOeg6AQuP4/4ArM70B1YanxESx4vBOTl2bx7GerGfDeIn7XrhqPd6vrdGiqFAwdOtTpEEpV4CZ9gLaPQl42zH0JjIEer2riV4VyuYRbmqdxXUYKz0xbzTvfbsIY+Ft3TfzKtwR20heBjk+CuOC7f1qJ/4bXNPGr84oICeIfNzbg0MnTjPhuE0dP5TKsV0PcLu/sz0epgjS7iUDHJ6DdEFg2Dqb9Uev41QWFBLl4qU8jejauyMQftjNz9R6nQ1LqkmnSP6vD49Dur1bin/mUddav1HnEhAXz0i2NiIsI5u1vN3LwxGmnQ1LqkmjS99T+cWjxO5j/Osz7t9PRKC8X7HYxtEd9lm0/TKvhs1m544jTIanzcLvdNG7c+Nw0fPhwp0NyTGDX6RckYjXlPHUQZj0DEQnQbJDTUSkvdmOTSpSLDuXO93/g1nfmM+PBtlROLLl+2lXJKKwbhuLKy8sjKMj3Uqie6RfkckHPN6FGF6tL5lVTnI5IeblWNZIYf29LTpw+wxtzAmFAG/+Rnp7O008/TdOmTWnYsCFr164F4MSJE9x1111cccUVNGnShKlTrY6ER48ezS233EKPHj245pprOHny5Lm7dG+99VZatmzJ4sWLGTt2LA899NC547z77rsl2n9/cfje11RZCAqBPmPhg15Wlw2hUVCjs9NRKS92RXoC/VpUtvrnT4zwqsFZvMqMIYTv+BHcJZh6KjSEbheurjnby+ZZjz/+OLfeeisASUlJLF26lDfffJOXXnqJkSNHMmzYMDp27MioUaM4fPgwLVq0oHNnKwfMnz+f5cuXk5CQwEsvvUR8fDzLly9n5cqV547Ru3dvWrVqxT//+U+Cg4N5//33eeedd0quzMWgZ/rnExJhdclcrg58NAC2LXQ6IuXlHr2mFklR1p27g95fxJl8bQzgLc5W75ydziZ8gJtuugn4ddfFX3/9NcOHD6dx48a0b9+e7Oxstm3bBkCXLl1ISEgArG6R+/btC0CDBg3IyMgAIDIyko4dOzJ9+nTWrl1Lbm4uDRs2LKviXpCe6V9IeBwM+ARGdbW6ZL7zc+usQqlCJEaFMvOhtoyct4k35mzk25/30rFOstNheZduwznlQNfKF3K2+2K3201entWbqjGGyZMnU7t27V+tu3DhQiIjI8+9Nhdo5XfPPffw/PPPU6dOHe68885SiLxo9Ez/YqLKwx1TrCqeD3rBgY1OR6S8WHxkCH/uXIvy0aG88s36c6NyKd9y7bXX8tprr51L6j/++GOh67Vu3ZpJkyYBsHr1alasWHFuWcuWLdm+fTsffvgh/fqdb1iSsqdJ/1LEVYYBU8Dkw5gb4NBWpyNSXizY7eKxrnVYnnWE+8cXnixU2Tpbp392GjJkyAXXf+qpp8jNzSUjI4MGDRrw1FNPFbreH/7wB/bt20dGRgYvvvgiGRkZxMbGnlvep08fWrVqRXx8fImWpzi0eudSlatlJf4xPazpzi8gNvWim6nA1LtpJf63YT+f/riDj37Yxq1XVL74RqrUnDlT+C8uzz7rmzdvTmZmJmBdAyjswuugQYN+NRB6WFgY48aNIywsjI0bN9KpUyeqVKlCTk4OYNX5e7bi8QZ6pn85UjJgwKdw6pB1xn9st9MRKS8lIrzYO4MmleN46eufyc7Vah5/dPLkSVq3bk2jRo3o1asXb731FiEhIRw+fJhatWoRHh5Op06FjizrGD3Tv1yVmkL/yVb9/pgb4M4ZEJnodFTKC4UEuXj0mtrcPnIhU37cQd8Werbvb6Kjo1m8ePFv5sfFxfHzzz87ENHF6Zl+UaS1sJpzHt4K426CbL39XhXu6uqJNKgUw4i5m8gP4CacF2rloornct9bTfpFld4a+nwAe1bChzrQuiqciDC4bXU27TvBtz8H5ohbYWFhHDhwQBN/KTDGcODAAcLCwi55G63eKY5a18BNI+Dju2HSAOg7wbqbVykPXetXICYsiOnLd9GhTnmnwylzqampZGVlsW+f9aWXnZ19WUnKF5VlGcPCwkhNvfRGJZr0i6tBb2vYxc/+BJ/cA71Hlewt5srnhQS56FwvmW/W7CH3TD7B7sD6gR0cHEzVqlXPvc7MzKRJkyYORlT6vLmMgfXpKy3NBsI1w2D1VB1oXRWqa/0KHDmVy5jvtzgdigpwmvRLytUPWEMvLp8I0x/UxK9+pW2tcgCMW6A39ilnadIvSW3/Yk1Lx8KMx3T0LXVOWLCbJ6+ry5YDJ1meddjpcFQA06Rf0jo8AVf/EX54F75+UhO/OufsRdx7xiwO6Oabylma9EuaCHT5B7QYbA27OPs5pyNSXqJ6uSie6F6XvcdyWL3rqNPhqAClSb80iEDXF6HpQJj7Esx5wemIlJfo1bQSIvD5il1Oh6IClCb90uJywfWvQOPb4dvhkPmi0xEpL5AUFUqnOuV5K3MjB47nOB2OCkDFSvoi8pCIrBKRlSIyQUTCRCRBRGaKyHr7Md5j/cdFZIOIrBORa4sfvpdzueCG16DRbZD5PHz7T6cjUl7gbI+bT01d6XAkKhAVOemLSCXgT0BzY0wDwA30BYYAs4wxNYFZ9mtEpJ69vD7QFXhTRPx/EFGXG3q+Do36wZxhsHCE0xEph3Wpl8wfO9bgixW7+XnPMafDUQGmuNU7QUC4iAQBEcBOoCcwxl4+BrjRft4TmGiMyTHGbAY2AC2KeXzf4HJDzzegdnerKeea6U5HpBx2V6uqRIS4eStTR2JTZUuK0wmSiDwIDANOAV8bY24XkcPGmDiPdQ4ZY+JF5HVggTFmnD3/PWCGMebjQvY7GBgMkJyc3GzixIlFiu/48eNERUUVadvS4DqTQ+NlTxJ5Ygs/NfoHR2PrFHuf3lbG0uKP5Ry9KofM7Xn8/aowqsW6/bKMhQmEcnpDGTt06LDEGNP8NwuMMUWagHhgNlAOCAamAP2BwwXWO2Q/vgH095j/HtD7Ysdp1qyZKao5c+YUedtSc3yfMa80MmZ4FWP2ri327ryyjKXAH8u5ZtcRU/epGabHa3ONMf5ZxsIEQjm9oYzAYlNITi1O9U5nYLMxZp8xJhf4BLga2CMiKQD24157/SwgzWP7VKzqoMASmQQDPgFXMIy9UcfbDWB1KsTwYKeaLM86wq4jp5wORwWI4iT9bcCVIhIhIgJ0AtYA04CB9joDgan282lAXxEJFZGqQE1gUTGO77sSqlmJP/cEjO2pwy4GsE51kwlyidbtqzJT5KRvjFkIfAwsBVbY+xoBDAe6iMh6oIv9GmPMKmASsBr4ErjfGBO4A4dWaAi3T4bje60z/hMHnI5IOaBG+Siuz0hh7PytbD0auP8OquwUq/WOMeZpY0wdY0wDY8wAY7XMOWCM6WSMqWk/HvRYf5gxproxprYxZkbxw/dxaVdAvwlwcJM97KLemh+I+rWoTESImzeX5ZB7RntnVaVL78h1WrV20GeMPezirTrsYgBqWS2RV/s2Yc9JwxtzNjgdjvJzmvS9Qe1u0Osd2DYfPuoPeXp7fqDpVLc8DZLcjJy7mZw8reZRpUeTvrdoeDP0+A9snAWT74EzeU5HpMqQiNC5chDHc/JYuOngxTdQqog06XuTZgPh2hdgzTSY9kcdfSvA1Et0Ex7sZubqPU6HovyYJn1vc9UfoP3f4KcP4cu/6iAsASTELbSpmcTM1XvI0wu6qpRo0vdG7R6Dqx6ARSNg9j+cjkaVoZubpbL7aLb2t69KjSZ9byQC1zxnD8LyfzD3ZacjUmWkc91kkmNCmbVm78VXVqoIgpwOQJ2HCFz/bzh9AmY9A6HR0OJep6NSpczlEhqlxung6arU6Jm+N3O5odfbUKsbfPEoLJvgdESqDDRKi2PLgZMcOZnrdCjKD2nS93buYLhlNFRtB1P/ACs/cToiVcpqJUcDsHH/cYcjUf5Ik74vCA6zumtIa2m14ddBWPxa1aRIAJZuPeRwJMofadL3FSGRcNskqNgE/jsIfv7K6YhUKaleLpL6FWP4eEnW2bEnlCoxmvR9SVgM9J8MyfWt7ho2zHI6IlUKRIR+LSqzdvcxvVFLlThN+r4mPA4GfApJtWHibcQdWu50RKoU9L0ijSqJETzz2WoOnjjtdDjKj2jS90URCXDHFIivSsMVz8HW752OSJWwILeLF3tnsOPwKT5ZmuV0OMqPaNL3VZFJcMdUckITYfwtsP0HpyNSJezKaomUjw5lxY4jToei/IgmfV8Wncyyxs9BZDkY1xt2/uh0RKqEtatVjq9W7dbBVVSJ0aTv406HJsLAzyA81hp2cecyp0NSJejqGolk5+azcZ+22VclQ5O+P4hLsxJ/aDSMvQGyljgdkSohV6Qn4BL4cOE2p0NRfkKTvr+IT4c7v4DweBjbE7YtcDoiVQJS4yPo0zyNsfO3MkN73lQlQJO+P4mrDIO+gOhk+OAm2DzX6YhUCXi2ZwPqVIjmjUwdP1cVnyZ9fxNbCQZ9blX5fNgHtsxzOiJVTCFBLno0qsjKHUfZezTb6XCUj9Ok74+iK1h1/LFpVnPOLf9zOiJVTNfWTwZgzPwtzgaifJ4mfX8VVd5O/KlW4tc6fp9Wo3w0PRtX5L15m9l24KTT4Sgfpknfn0UnW4k/ugKMu1lb9fi4v3atg0uEv05erh2xqSLTpO/vzlb1RCbCB720Hb8PqxgXzn3tqjN/0wFW7jjqdDjKR2nSDwSxlazEHxZrNefcoWf8vqr/lVWIDQ/mlW9+djoU5aM06QeKuMowyE78Y26ATd86HZEqgoTIEPo0T2Xu+v1k555xOhzlgzTpB5L4dLjrK+sLYPzNOgKXj+pQuzynz+QzY6XerKUunyb9QBOTYrXjT2kEkwbomLs+6KrqicSGB7Nw00GnQ1E+qFhJX0TiRORjEVkrImtE5CoRSRCRmSKy3n6M91j/cRHZICLrROTa4oeviiQiAQZMgbQr4ZN74eevnY5IXQYR4Yr0BOas28up01rFoy5Pcc/0/wN8aYypAzQC1gBDgFnGmJrALPs1IlIP6AvUB7oCb4qIu5jHV0UVGgW3TbSGXpw0QG/g8jF3tU5nz9EcXpmlF3TV5Sly0heRGKAt8B6AMea0MeYw0BMYY682BrjRft4TmGiMyTHGbAY2AC2KenxVAsJiof8nVh3/hL7ajt+HXF09iZ6NKzJu/laOnMp1OhzlQ6SoN3mISGNgBLAa6yx/CfAgsMMYE+ex3iFjTLyIvA4sMMaMs+e/B8wwxnxcyL4HA4MBkpOTm02cOLFIMR4/fpyoqKgibesrSqKModn7abzsCYJzj/FTo6Eci6lVQtGVHP1b/tbWo2d4+vts+tQKpnu1kFKMrGTp37JsdOjQYYkxpvlvFhhjijQBzYE8oKX9+j/AP4DDBdY7ZD++AfT3mP8e0Ptix2nWrJkpqjlz5hR5W19RYmU8tM2YVzKMeT7NmKzFJbPPEqR/y8Ld9u5802LYTJObd6bkAyol+rcsG8BiU0hOLU6dfhaQZYxZaL/+GGgK7BGRFAD7ca/H+mke26cCO4txfFWS4tJg4HQIj4OxvfQGLh9xx1VW3f7c9fudDkX5iCInfWPMbmC7iNS2Z3XCquqZBgy05w0EptrPpwF9RSRURKoCNYFFRT2+KgVxaVZzTk38PqND7fLERQTzyY87nA5F+Yjitt75IzBeRJYDjYHngeFAFxFZD3SxX2OMWQVMwvpi+BK43xij7c28zW8S/1KnI1IXEBLk4vqMFL5etZtj2XpBV11csZK+MWaZMaa5MSbDGHOjMeaQMeaAMaaTMaam/XjQY/1hxpjqxpjaxpgZxQ9flYq4NBg03Rps/YMbYeePTkekLqBXk1Ry8vJ5d+5mp0NRPkDvyFWFi6tsnfGHxsLYG2HXcqcjUufRtHIcHeuUZ8R3G/VmLXVRmvTV+Z3tpC002uqdc/dKpyNShRARBlxVhezcfBZt0a4Z1IVp0lcXFp8OA6dBcDiMvQH2rHY6IlWIq6olEhcRzIcLtzodivJymvTVxSVUs/rjd4fAmB6wd63TEakCwoLd3NaiMjNX72HH4VNOh6O8mCZ9dWkSq1uJ3+W2Ev8+7fPF2/S9ojL5Bj5frre/qPPTpK8uXVJNK/FjrMS/f4PTESkPlRMjaFgpls9X7HY6FOXFNOmry1OutpX48/NgzPVwYKPTESkPPRql8NP2w6zZpWPoqsJp0leXr3xd6+JuXo51xn9Q24d7iz7N03C7hE+WZjkdivJSmvRV0STXtxJ/7kkr8R/e5nRECoiLCKFTnfJMXLSd/Pyi9aCr/JsmfVV0FRpaI3DlHLUGWz+qY7Z6gy71kjmWk8firYecDkV5IU36qngqNobbJ8OJfVY7/uP7nI4o4F3boALxEcF8sEDb7Kvf0qSvii/tCrhtEhzebvXVc1LvCnVSTFgwneomk7lur1bxqN/QpK9KRnor6Pch7P8Zxt0E2UecjiigdaxTnmPZeTw5VbvOUL+mSV+VnOodoc9Y2L0CxveBnONORxSwutavQN2UGD5duoO9x7KdDkd5EU36qmTV7ga934OsRTCxH+RqlwBOcLmE4Tc15FTuGRZs0uo29QtN+qrk1b8RbnwbNs+FjwZY7flVmatXMYbQIBcLNx1wOhTlRTTpq9LR6Fbo8QpsmAkf3wVndFSnshbsdlG/YgzjF27j4InTToejvIQmfVV6mg2Cri/C2unw6e8gXwf4KGv3tqkGwDdr9jgcifIWmvRV6bryPug8FFZOhml/hPx8pyMKKF0bVCAhMoRFm7VeX1mCnA5ABYDWD0FuNnw73BqMpftLIOJ0VAFBRLgiPZ7vN+znTL7B7dL3PdDpmb4qG+2HwNV/gh9GwtdPgtGbhsrK9RkV2Xkkm+837nc6FOUF9ExflQ0R6PIs5GXD/NchOAI6PuF0VAGhS71kwoJdfLN6D21qlnM6HOUwPdNXZUfEurDb9A747p8w9/+cjigghAW7aVOzHDNX78HoL6yAp0lflS2XC65/BRr2gVnPwvw3nY4oIHSpm8zOI9l6QVdp0lcOcLnhxreg7g3w1eOweJTTEfm9LvWSiQ4L4rXZOsRloNOkr5zhDrK6a6h5LUx/CJZ96HREfi0+MoSBV6Xz/cb9HDiud0gHMk36yjlBIVYHbdXaw9T7rbb8qtR0b5hCvoEpy3Y6HYpykCZ95azgMOj7IaRdCZ8MhrWfOx2R36qbEk3zKvGMnLtJ+9kPYJr0lfNCIuG2jyClMfx3EGz4xumI/JKI0P/KKuw6ks2P23UoxUClSV95h7AY6P8xlKsNE2+3euhUJa5T3fKEBLmYvlzHMw5UmvSV9wiPtwZaj0+HD2+FbQudjsjvRIcF07ZmOb5cuVvb7AeoYid9EXGLyI8iMt1+nSAiM0Vkvf0Y77Hu4yKyQUTWici1xT228kORSXDHVIiuAONvhh1LnY7I73RrUIFdR7KZqhd0A1JJnOk/CKzxeD0EmGWMqQnMsl8jIvWAvkB9oCvwpoi4S+D4yt9EV4CB0yA8zhpoPWuJ0xH5lRsaV6RcdCjTl2vSD0TFSvoikgpcB4z0mN0TGGM/HwPc6DF/ojEmxxizGdgAtCjO8ZUfi02FQZ9bVT5jexJ7eJXTEfmNYLeLHhkVyVy3j6xDJ50OR5Wx4na49grwGBDtMS/ZGLMLwBizS0TK2/MrAQs81suy5/2GiAwGBgMkJyeTmZlZpOCOHz9e5G19hb+XMaTO32n009/JWD6Un/JzOZTQ2OmQSk1Z/i3rB+VjjOHZiXO5rW5omRzzLH//zIJ3l7HISV9Ergf2GmOWiEj7S9mkkHmFXkkyxowARgA0b97ctG9/Kbv/rczMTIq6ra8IhDLSqi3H3+pMo9UvWG36a3RyOqJSUdZ/y093LGT7idO0b9+mzI4JgfGZ9eYyFqd6pxVwg4hsASYCHUVkHLBHRFIA7Me99vpZQJrH9qmAViqqi4sqx0+N/gGJNWHibbBhltMR+YXGaXGs2XWUVTuPOB2KKkNFTvrGmMeNManGmHSsC7SzjTH9gWnAQHu1gcBU+/k0oK+IhIpIVaAmsKjIkauAkhsSY7Xq0cRfYvq1rAzA/I0HHI5ElaXSaKc/HOgiIuuBLvZrjDGrgEnAauBL4H5jjI6UrS5dZOIviX9CP038xVQpLpzq5SKZsmyHdssQQEok6RtjMo0x19vPDxhjOhljatqPBz3WG2aMqW6MqW2MmVESx1YBJjLRas6ZVEsTfwm4s1VVVu44ykqt4gkYekeu8j0RCZr4S8g19ZMBreIJJJr0lW/SxF8iykeHUaN8FN9r0g8YmvSV7yqY+Ndr75xF0ap6Ios2H+Tk6TynQ1FlQJO+8m1nE3+52jCxH6z70umIfE63himcyj3DzNV7nA5FlQFN+sr3nU38yfXho/6w5jOnI/IpLdITqBQXzuSlO5wORZUBTfrKP4THW805KzaGSQN16MXL4HIJNzapyLz1+9h7NNvpcFQp06Sv/EdYLAz4FNJawuR7YNkEpyPyGTc1TSXfwKj/bXE6FFXKNOkr/xIabY3Ald4GptwHi951OiKfUL1cFO1rl+PLlbt0cBU/p0lf+Z+QSLhtEtTqBl88CnNfdjoin9ClXjJbDpxkeZbeqOXPNOkr/xQcBrd+AA1uhlnPwDfPgJ7BXlC7WuUAWLXzqMORqNKkSV/5L3cw3DQCmg2CeS/Dl0M08V9AxdhwokODWLrtkNOhqFKkSV/5N5cbrn8FrvwDLHwbPnsQ8vOdjsoruVxCj8YV+fTHHWw/qCNq+StN+sr/icC1z0ObR2DpGOsC7xm9+7Qw93eoQb4xfLwky+lQVCnRpK8Cgwh0+jt0eBKWfwRTfg/52rN3QZXiwmldI4mPl2Rpd8t+SpO+Cizt/gIdn4IVk2DKHzTxF6JP8zR2HD7Fd+v3OR2KKgXFHRhdKd/T9lHrgu6c50Bc0PN1q+5fAVbTzaSoEJ77fA3tapVDpLDhrZWv0jN9FZja/QXa/w1++hCm/Ukv7noIC3bzyDW12bD3OD9uP+x0OKqEadJXgav9X6HdEFg2Dj7TxO/p+owUQoNcTPlRO2HzN5r0VWBrPwTaPgY/fgDTtTnnWdFhwbSpmcS0n3Zy8MRpp8NRJUiTvgpsItDhb9DmUVg6Fj5/SBO/rVeTVA6fzOXesYu1Px4/oklfKRHo+CS0fhiWjIYvHtE7d4HrMlJ4tmd9lmw9xH+13b7f0KSvFPzSjr/Vn2HxKKujNk38DLiyCg0rxfJ25kbOaLt9v6BJX6mzRKDzULj6T/DDSJjx14BP/CLC79pVY9P+Ezqcop/QdvpKeRKBLs+CyYf5r1vt+Lu+YM0PUF3rV6ByQgRvf7uRa+sna7t9H6dn+koVJALXPAdX3g8L34Kv/hbQZ/xBbhf3tq3Gsu2HWbT5oNPhqGLSpK9UYUTg2mHQ8vew4E34+smATvy3NEslIsTNp9pu3+dp9Y5S5yNiVe2creoB6PIPcAXeuVJYsJsbGlVk4g/b6VinPNfUr+B0SKqIAu/Tq9TlEIFuL0LL+6zE/+lgyMtxOipHPNylFvERwTwxZaX2wOnDNOkrdTEi0HU4dHoaVvwXxvWGU4edjqrMlY8J45meDdh3LIcHJixl37HA/PLzdZr0lboUItDmYeg1ArYtgPe7wZHAu2HpuoYp9GuRxhcrdtPl39/qCFs+qMhJX0TSRGSOiKwRkVUi8qA9P0FEZorIevsx3mObx0Vkg4isE5FrS6IASpWpRrdC/4/h8HYY2QX2rHI6ojLldgkv3JTB5N9fxanTZ7j57e9ZtfOI02Gpy1CcM/084BFjTF3gSuB+EakHDAFmGWNqArPs19jL+gL1ga7AmyKinZgr31OtPdw1AzAwqits/d7piMpcsyoJfPS7q9h//DR3jf5B++bxIUVO+saYXcaYpfbzY8AaoBLQExhjrzYGuNF+3hOYaIzJMcZsBjYALYp6fKUcVaEh3D0TopLhg5vg56+djqjMNU6Lo3/Lyuw5mkPWoVNOh6MukZTEN7SIpAPfAQ2AbcaYOI9lh4wx8SLyOrDAGDPOnv8eMMMY83Eh+xsMDAZITk5uNnHixCLFdfz4caKiooq0ra8IhDKC95Yz+PRhMpY/Q+SJrayp+xD7yrcp8r68tYwXknUsnyf/d4r+dUPoXCX4krbxxXJeLm8oY4cOHZYYY5r/ZoExplgTEAUsAW6yXx8usPyQ/fgG0N9j/ntA74vtv1mzZqao5syZU+RtfUUglNEYLy/nqcPGjOpmzNOxxiwaWeTdeHUZz+PMmXxz/atzTc0nvjBZh05e0ja+WM7L5Q1lBBabQnJqsVrviEgwMBkYb4z5xJ69R0RS7OUpwF57fhaQ5rF5KrCzOMdXyiuExUL/yVDzGvj8Yfj2XwFz967LJbx5e1Py8w3vz9vsdDjqEhSn9Y5gna2vMca87LFoGjDQfj4QmOoxv6+IhIpIVaAmsKiox1fKqwSHQ9/xkHGrNeD6l48HzGAsaQkRtK1Vjo9+2M6Ow1q37+2Kc6bfChgAdBSRZfbUHRgOdBGR9UAX+zXGmFXAJGA18CVwvzHmTLGiV8qbuIPhxret/noWvgVT7oMzuU5HVSb+cm1tDDBk8nKnQ1EXUeS+d4wx84Dz9bHa6TzbDAOGFfWYSnk9l90Vc2QizH7OunP3ltEQEuF0ZKWqbkoMf+pUg+e/WMsXK3bRvWGK0yGp89A7cpUqaSLQ9i9w/b9h/dfwQS84dcjpqEpd/yur0KBSDEMmL+d4Tp7T4ajz0KSvVGlpfhfc8j7sWGLdxHV4u9MRlaqIkCD+0bMBR7PzmLhom9PhqPPQpK9Uaarfy2rZc3QnjOwMu/y7zrtJ5XhaVE1g1LzN5J4JjAvZvkaTvlKlrVo7uOsrcLmtjtrWfu50RKXqd22rsfNINtOXa4tsb6RJX6mykFwP7vkGkmrCxNvgqyf8tmVPh9rlqZYUycRF/l2d5as06StVVmIqWmf8LQZbA7KM6QHHdjsdVYlzuYTrM1JYuPkg89bvdzocVYAmfaXKUlAodP8X9H4Pdv0E77Sz+uf3M7c0T0MEnvt8tY6y5WU06SvlhIY3W9U9IREw+jpY+I5fdd2QlhDBK7c2Zu3uY3ymdfteRZO+Uk5Jrg/3zoEanWHGY9RZ+yrkZjsdVYnpkVGROhWieXDiMsYv3Kp97nsJTfpKOSk8DvpOgHZDqLBnNozubjXv9AMul/DSLY1oWCmWJz5dyVNTVzodkkKTvlLOc7mgw+OsrP847FvnV/X8DSrF8t/7rqJfi8qMW7CNkXM3OR1SwNOkr5SX2F/uSquePzQKRl8P89/wi546w4LdPNuzPp3rlue5z9cwY7N/NlX1FZr0lfIm5evCvbOtvvm/+ht80BMObXE6qmILdrt4u38zrq2fzKR1p5m1Zo/TIQUsTfpKeZvweKtv/h6vQtYSeKMlZA6HXN/uqz7I7eLlPo1JDBf+9dU6zmhTTkdo0lfKG4lAs4HwwA9QuztkvmAl/7Vf+HTTzsjQIG6oHsza3cd4bfZ6cvJ0SI2ypklfKW8WW8nqqfOOadboXBP7wYd94MBGpyMrsisqBFEpLpxXvllPvb9/xauz1mtzzjKkSV8pX1CtHdw3D64ZBlvnw5tXwqxnIfuI05FdtvAgIfMv7fnXzRlUjAvj5Zk/M+zzNazeedTp0AKCJn2lfIU7GK5+AP642Oqyee7/wX8awf/+A6dPOh3dZQl2u7ileRrf/aUD/VpUZuS8zXR/dS4vfrmWvcf85wY1b6RJXylfE10BbhoBg7+FSs1h5t/h1caw6F2f67lTRHjhpoZ88ac2dK6bzFuZG2k9fA6f/pjldGh+S5O+Ur6qYmPo/zHc+SUkVIcvHoU3r/LJi731Ksbwdv+mjLu7JdXKRfLof5fz38XaNXNp0KSvlK+rchXc+QX0m2i9ntgPRrSDlZPhjO+MVRvkdtG6ZhKT7ruKJmlx/OXj5dw/filLth50OjS/oklfKX8gArW7wR/mW+37T5+Aj++C15vBDyN9qo1/TFgwb97elJ6NK/L5il30fms+g95fxNz1+5wOzS9o0lfKn7iDrfb99y+CPh9ARCJ8/gi80hC++xecOuR0hJekfEwY/+nbhHl/7cB97aqzcNNB7hi1iNH/28yP23yjDN5Kk75S/sjlhno3wD2zYNDnkNIYZj8HL9eH6Q9Zd/r6QL1/anwEQ7rV4YcnO1OjXBRDP1tNrze/Z/zCrU6H5rOCnA5AKVWKRCC9tTXtXml14rZsAiweBeXqQpPbof5N1k1gXiwqNIjP/tiaDXuP8/wXa3hyykrS4iNoW6uc06H5HD3TVypQVGgAvd6CR9dBj/9AaDR8/ST8ux6M7GJ9IRzx3qaSYcFuGlSKZcQdzalRLoo7Ri3i7tE/6Di8l0mTvlKBJiwWmg2Ce2bCH5dCx6cg75TVq+e/63v9F0BUaBDvDbyCvlekMWvtXu4YtZDHP1nBgeM5TofmE7R6R6lAllgd2j5qTQc2wuopsGqK9QXw1d+gQgZUbQvpbaymoWGxTkcMQOXECIb3zuBv19Xl/vFLmbBoG1+u3EXD1Di61EsmISKEauUiqZoUSViw2+lwvYomfaWUJbE6tHnEmg5shNVTYeNs607f+a+DuKwLwumtrS+BSs0gMtHRkGPCgvng7pas232Mf8/8mcVbD/Hdz7807SwfHcqwXg1pXSOJ8BBN/qBJXylVmMTq0OZha8rNhqwfYMtc2DwXFrwF379qrRdX2Ur+FZtajymNrJG/yljtCtG8PaAZOXln2HMkh6zDJ9mw9zjPfb6Ge8cuJj4imG4NU3AJZKTG0bZmOSrEhpV5nN5Ak75S6sKCw6BqG2vqgNW5244lsHMp7FhqNf9c9am1rrggqTYk14PEGtYUmwYxFSE6BYJCSjXU0CA3lRMjqJwYwdXVk7iuYQpfrtrNyLmb+XrVbo7n5DFuwTYAqpeLpGJcOKnx4cRHhNCmZjkiQtykJ0YSGxFcqnE6qcyTvoh0Bf4DuIGRxpjhZR2DUqoYQiJ++RI46/i+X74Edi61vhRWfQrGc4xfgajyNJVo2F3H6jguIgkiEqybyM492lNweLFDTYwK5faWVbi9ZRUA8s7ks2jzQb5bv5+1u4+yad8J1uw6xv7jObyZ+csYBXVTYhAgNjyYtIRw6leMpWGqdT0jOSaM8tGh59Z1ieB2SbFjLStlmvRFxA28AXQBsoAfRGSaMWZ1WcahlCphUeWg1rXWdFZejjW+75EsOLoTju6AozvI27zCumawZR5kHz7/PoPCf/1lEBYDwZHWl0FIBAR7TCER1vxg+9EdAq4gELd1o5orCFxBBLmCuDrBxdVXRYAr5tz8nUdPs37fSfadyOe7jQc5lWvIN8LmAydZu/sokxafvyVTiNtFelIELhGiQoOonBjBnt05fLb3J4LdQvVyUQS7f/lSiI8MoVJcOAmRIVSMO/8XW2iQC5GS/zIp6zP9FsAGY8wmABGZCPQENOkr5W+CQqFcbWvysDwzk/bt21svzuRZif/kAXs66PH8gNVtxMkDcGK/9cWRewpyT9iPJTeGQEV7Ari5wDKDQLgLI1YL93xcGAQj1mO+EfKPCQYhzwj5eyAf4KCLfGM9Nwjm3KOVyI0R9nrMK7g8OMhN6APfk5xQsi2mpCyHKRORm4Guxph77NcDgJbGmAcKrDcYGAyQnJzcbOLEiUU63vHjx4mKKvuLSmUpEMoIgVHOQCgjlGA5TT6u/FzcZ7Jx5efgPpON+0wOrvwcxJyxp/wCj57zC5tnPXI2BdvPxXi+Bsi35+V7LPvldW5uLsHBQRhj7AHg7TxrDKfyDPn5hlN5+eeGifwl5QMYjDGcyjXkXPkorqCiXV/o0KHDEmNM84Lzy/pMv7DfKr/51jHGjABGADRv3tycOyu4TJmeZxR+KhDKCIFRzkAoIwRGOb25jGV9R24WkObxOhXYWcYxKKVUwCrrpP8DUFNEqopICNAXmFbGMSilVMAq0+odY0yeiDwAfIXVZHOUMWZVWcaglFKBrMzb6RtjvgC+KOvjKqWU0l42lVIqoGjSV0qpAKJJXymlAogmfaWUCiBlekduUYjIPqCooyAnAf4+lloglBECo5yBUEYIjHJ6QxmrGGN+M4iw1yf94hCRxYXdhuxPAqGMEBjlDIQyQmCU05vLqNU7SikVQDTpK6VUAPH3pD/C6QDKQCCUEQKjnIFQRgiMcnptGf26Tl8ppdSv+fuZvlJKKQ+a9JVSKoD4ZdIXka4isk5ENojIEKfjKQ4RSROROSKyRkRWiciD9vwEEZkpIuvtx3iPbR63y75ORK49/969i4i4ReRHEZluv/arMopInIh8LCJr7b/nVf5WRgARecj+rK4UkQkiEubr5RSRUSKyV0RWesy77DKJSDMRWWEve1VKYxDcizHG+NWE1WXzRqAaEAL8BNRzOq5ilCcFaGo/jwZ+BuoB/wSG2POHAC/az+vZZQ4FqtrvhdvpclxiWR8GPgSm26/9qozAGOAe+3kIEOeHZawEbAbC7deTgEG+Xk6gLdAUWOkx77LLBCwCrsIaRXAG0K2sy+KPZ/rnBl83xpwGzg6+7pOMMbuMMUvt58eANVj/WD2xkgj24432857ARGNMjjFmM7AB6z3xaiKSClwHjPSY7TdlFJEYrMTxHoAx5rQx5jB+VEYPQUC4iAQBEVij4/l0OY0x3wEHC8y+rDKJSAoQY4yZb6xvgLEe25QZf0z6lYDtHq+z7Hk+T0TSgSbAQiDZGLMLrC8GoLy9mq+W/xXgMSDfY54/lbEasA94367CGikikfhXGTHG7ABeArYBu4Ajxpiv8bNy2i63TJXs5wXnlyl/TPqXNPi6rxGRKGAy8GdjzNELrVrIPK8uv4hcD+w1xiy51E0KmefVZcQ6+20KvGWMaQKcwKoSOB9fLCN2vXZPrGqNikCkiPS/0CaFzPP6cl7E+crkFWX1x6Tvd4Ovi0gwVsIfb4z5xJ69x/65iP24157vi+VvBdwgIluwquM6isg4/KuMWUCWMWah/fpjrC8BfyojQGdgszFmnzEmF/gEuBr/Kydcfpmy7OcF55cpf0z6fjX4un11/z1gjTHmZY9F04CB9vOBwFSP+X1FJFREqgI1sS4eeS1jzOPGmFRjTDrW32u2MaY//lXG3cB2Ealtz+oErMaPymjbBlwpIhH2Z7cT1nUofysnXGaZ7CqgYyJypf3e3OGxTdlx+qp4aUxAd6xWLhuBJ5yOp5hlaY31E3A5sMyeugOJwCxgvf2Y4LHNE3bZ1+FA64Bilrc9v7Te8asyAo2BxfbfcgoQ729ltON+BlgLrAQ+wGrF4tPlBCZgXaPIxTpjv7soZQKa2+/LRuB17F4RynLSbhiUUiqA+GP1jlJKqfPQpK+UUgFEk75SSgUQTfpKKRVANOkrpVQA0aSvlFIBRJO+UkoFkP8HswYIFrzIoR4AAAAASUVORK5CYII=\n" + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAJOCAYAAACTCYKtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABXqklEQVR4nO3dd5hV1bn48e9i6EWqIgoKCNJkZlCCMTawY6/ITJrGEkt6bhJ/NzExyTU3xWvajRpiTLlW7KjEEgV7Q6UIWEBREFSQ3gdm/f7YBxlgYAam7H1mvp/nOc+cs/c+e79nzcC8s9a71woxRiRJkrRrmqQdgCRJUj4zmZIkSaoBkylJkqQaMJmSJEmqAZMpSZKkGjCZkiRJqgGTKUkNRgjhqhDCzTv5nttCCKfXUUiZEkKYE0I4Zhfe91IIYVBdxCQ1BCZTUj0LIRwWQnguhLAshLA4hPBsCOEzuX3nhRCe2Ylz9QwhxBBC07qLuOEKIRQCRcD9FbbtHkK4NYSwNISwJIRwS4V9e4cQ7s993+aFEC6psG//3L6Fuf2PhBD61e8nqjPXAD9LOwgpq0ympHoUQtgNeBD4I9AJ2Bv4KbAuzbhqKo+Tua8Ct8QtZy++B/gQ2BfYgySR2ORm4F2gK3AS8IsQwojcvg7AOKBfbv9LVEjS8tw4YEQIoVvagUhZZDIl1a/9AWKMt8UYN8YY18QYH40xTg0hDABuAA4JIawMISwFCCGcFEJ4LYSwPIQwN4RwVYXzPZX7ujT3nkNCCH1CCE/mer4WhRDuqCyQCr1aF4cQ5ocQFoQQvlthf5MQwhUhhNkhhE9CCGNDCJ22eu8FIYT3gSe2c42TQwiTc708z+V6gjbtmxNC+H8hhBm5HqC/hRBaVth/UQhhVq6XZ1wIYa8K+waFEB7L7fsohPCfFS7bPITwzxDCihDC9BDC0B18P0YCT1Y473FAD+B7McZlMcayGONruX1tgeHA1bntU4C7gK8AxBhfijH+Nca4OMZYBvwW6BdC6LydtmkRQrgmhPB+7jPcEEJolds3PNfz9Z+57+GcEMLnK7y3fe4zLgwhvBdC+FEIoUmF/ReFEGbm2mBGCOHACpcuDiFMzf183LGpzUMIXUIID+a+V4tDCE9vOmeMcS3wCnDcDtpSarRMpqT69RawMYTwjxDCyBBCx007YowzgUuA52OMbWOMHXK7VgFfIun5OAm4NGyu8Tki97VD7j3PAz8HHgU6At1JesF2ZATQl+QX5RVhc03NN4DTgSOBvYAlwJ+2eu+RwADg+K1PmvsFfhNJ709n4M/AuBBCiwqHfT733v1IEs0f5d57FPDfwCigG/AecHtuXzvg38DDubj6AI9XOOepuWM7kPSo/G9lHzqE0AboBbxZYfNnc6//kUsgXw4hHLnpLVt93fT8gMrOT/K9+TDG+Ml29v8q95mLc59hb+DHFfbvCXTJbf8yMKbCsOEfgfZAb5LvwZeA83Of6xzgqty23Ujao2IMo4ATcp+9EDgvt/27wDxgd5Ketf8EKvbYzSQZEpW0tRijDx8+6vFBknz8neQX1waSX/hdc/vOA56p4v2/A36be96T5Bde0wr7/wmMAbpXcZ5N7+1fYduvgb/mns8Ejq6wrxtQBjSt8N7eOzj/9cDPt9r2JnBk7vkc4JIK+04EZuee/xX4dYV9bXPX7gmUAK9t55pXAf+u8HogsGY7x+6d+wwtK2wbk9t2AdAMGA0sBbrk9j9Dksi0BA4EFgNvVnLu7sAHQMl2rh1IkuT9Kmw7BHg393x47mejTYX9Y4ErgQKSYeGBFfZ9FZiYe/4I8M3tXHcO8IWtvt835J7/jGRYss923ns1cFPa/358+Mjiw54pqZ7FGGfGGM+LMXYn6dXYiyRBqlQI4eAQwoTckM4ykt6rLju4xPdJflm/lBvm+koVIc2t8Py9XDyQ1Azdmxv2WUqSXG0k6bWo7L1b2xf47qb3587Ro8L5d3TtvXKvAYgxriTpXdk7d47ZO7juhxWerwZahsprupbmvrarsG0NMCcmw3VlMcbbczEemtv/eZIenbkkyeItJEnxp0IIu5P0DF4XY7xtOzHuDrQGXqnQNg/ntm+yJMa4qsLrTe3TBWhOhfbJPd8793xn26dt7vlvgFnAoyGEd0IIV2z1vnZsbjNJFZhMSSmKMb5B0ku1aagoVnLYrSS9Vz1ijO1J6qrC9o6PMX4YY7woxrgXSY/FdSGEPjsIo0eF5/sA83PP5wIjY4wdKjxaxhg/qHi5HZx3Lkl9UcX3t94qwdjeteeTJGPAp0NynUl6e+aSDAvWSC5RmU2uji1nKjv4TDHG92KMJ8cYd48xHpyL6aUKcXYkSaTGxRiv3sHlF5EkboMqtE37GGPbCsd0zH3uTTa1zyKSXrp9t9q36fuyS+0TY1wRY/xujLE3cArwnRDC0RUOGQBM2dnzSo2ByZRUj0II/UMI3w0hdM+97kEybPVC7pCPgO4hhOYV3tYOWBxjXBtCGAaUVti3ECgnqZ3ZdI1zNp2fpM4pkvQobc+VIYTWIZlH6HxgU8H6DcDVIYR9c+fdPYRw2k583L8Al+R61kIIoU1Iiukr9gRdHkLoHpLC9v+scO1bgfNDCMW5GqtfAC/GGOeQ3A25ZwjhW7ki7nYhhIN3Iq6KxpPUHG1yL0kS8+UQQkEI4WySHp9nAUIIA3LXax5C+AJJndm1uX27kQyxPRtj3LpXZwsxxvJc+/w2hLBH7v17hxC2rj37ae5ahwMnA3fGGDeSDPldnYtlX+A7JHcaAtwI/EcI4aBcu/fZ9D3ckZDcLNAnhBCA5SQ/Mxtz+1oABwGPVXUeqTEymZLq1wrgYODFEMIqkiTqdZLiX0juipsOfBhCWJTbdhnwsxDCCpIC5bGbThZjXE1Sy/Jsbrjos8BncudfSdKj9c0Y47s7iOlJkuGdx4FrYoyP5rb/Pvf+R3PXfiEXe7XEGCcBF5EUgC/JXeO8rQ67laQn553c479y732cpD7obmABSU/L6Ny+FcCxJL0nHwJvkxTR74oxwOdzCQQxxsUkBdv/ASwDrgBOizFu+l4cn4tzCclw6wkxxoW5fWeQtP35IbmzctNjn+1c+wckbfJCCGE5SVF9xXmpPsxdZz7JcOIluZ5MgK+T1Fy9Q1LHdStJsT8xxjtJfiZuJfl5u49kGo6q9M3FsBJ4nmSYcmJu36kkNVnzt/NeqVELMe6ol15SQxVC6EkyZ1KzGOOGFK4/B7gwxvjv+r72VnHcCoyNMd6XZhwVhRCGAzfn6upSF0J4Ebggxvh62rFIWZSvE+1JUq2IMZZWfVTjlqsPk7QdDvNJkiTVgMN8kiRJNWDPlCRJUg2kVjPVpUuX2LNnzzq/zqpVq2jTpk3VBzZitlHVbKPqsZ2qZhtVj+1UNduoarXZRq+88sqiGOPule1LLZnq2bMnkyZNqvPrTJw4keHDh9f5dfKZbVQ126h6bKeq2UbVYztVzTaqWm22UQjhve3tc5hPkiSpBkymJEmSasBkSpIkqQZMpiRJkmrAZEqSJKkGTKYkSZJqwGRKkiSpBkymJEmSasBkSpIkqQZMpiRJkmrAZEqSJKkGTKYkSZJqwGRKkiSpBkymJEmSasBkSpIkqQZMpiRJkmrAZEqSJKkGTKYkSZJqwGRKkiSpBkymJEmSaqDKZCqEcFMI4eMQwuvb2R9CCH8IIcwKIUwNIRxY+2FKkiRlU3V6pv4OnLCD/SOBvrnHxcD1NQ9LkiQpPzSt6oAY41MhhJ47OOQ04J8xxgi8EELoEELoFmNcUFtB7or33ngVxn6RnuXlvPdUzUYzZzXpzS9afbeWIsue1atX0/qViWmHkWm2UfXYTlWzjarHdqqabZQY3m8Prjx5YKoxVJlMVcPewNwKr+fltm2TTIUQLibpvaJr165MnDixFi5fuVVLPqRjQQ9ik3JC2PVkqnP5Jxy94Snu50w+LOhWixFmR/tW5TQtWJt2GJlmG1WP7VQ126h6bKeq2UYwa2k5D746h8Pbflzp/pUrV9ZprrFJbSRToZJtsbIDY4xjgDEAQ4cOjcOHD6+Fy+/AGaOZOHEiNbrO4nfhD8X84XNr4JATYOMGeO4P8N6zcO7N0KxVrYWblhq3USNgG1WP7VQ126h6bKeq2UbwjdteY9oHy7bbDvXVRrWRTM0DelR43R2YXwvnzYZOvWD3ATDjfuhzDNx3CXzwSrJv/H/Aorfh9Ouh837pxilJUiOUVBmlqzamRhgHfCl3V99ngWVp10vVusJRMPcFuOEwWPwOnPVXaL8PvHYzzH0RXv5r2hFKkqSUVNkzFUK4DRgOdAkhzAN+AjQDiDHeAIwHTgRmAauB8+sq2NQUjYZnfgs9D4OTfwftukLrTkliNesJmDYWjv0pFDRLO1JJkhqNUFmhUQqqczdfSRX7I3B5rUWURbvtBd+bDU2bb96231HJo91e8OZDMOtx6LejGSQkSVJtS3+QzxnQq69iIlVR32OhdReYcmv9xiNJUiOXkY4pk6kaK2gGg8+BN/8FqxenHY0kSY1KBurPTaZqRXEJbFwPr9+ddiSSJKmemUzVhj0LYY9BMOW2tCORJKnRCBmpQDeZqg0hJL1TH7wCC99KOxpJkhqNmIESdJOp2jJ4FIQCC9ElSWpkTKZqS7uu0OdomHIHlG9MOxpJkhq8bAzymUzVruJSWDEf3n0y7UgkSWoUvJuvodl/JLRsD5MzWoi+Zgm89BdYtzLtSCRJqrmMdE3VxkLH2qRZSzjgrCSZWrscWu6WdkSbvfUoPPANWLEA1q2Aw7+TdkSSJNWYPVMNUVEpbFgDM+5PO5LE2mVw/+Vw6znQsgPsMRAm35qNnz5JkhoAk6na1n0odO6TjTmnZj8B130uSZ4O+w589Uk4+BL45O1kGgdJkvJYyMg4n8lUbQsBikrgvWdhyZx0Yli3Ah74FvzfGdC8NVzwGBzzE2jaAgadDk1bJgmWJEmqMZOpulA0Gggw5fb6v/a7T8H1n4NX/g6f+zp89amkt2yTlu2h/8nJ0jcb1tV/fJIkNTAmU3WhfXfodUQy1FebtUkbN2x/3/pVMP578I9ToElT+MrDcNx/QbNW2x5bXAJrlyaLM0uSlKdCgJiBGmCTqbpSXJoM873/fM3PVb4Rnv09/Pfe8NrN2+5/7zm4/lB4aUxSE3XJs7DPZ7d/vt4joF23bNR1SZKU50ym6sqAU6B5W5h8y869b/1qeOa3MH9y8nrRLLjpBHjsx0kv10tjNh9btgYe/k/424kQy+G8h2Dkr5I6qR1pUgCF58Lbj8HKj3cuPkmSMiIb5efOM1V3mreBgafB9Pth5G+qTnAA3n8R7rsUFs+GfR9Lapse/2lSMH7mjbB6ETx8BXw0IxnWu+8S+GQWDL0Ajv0ZtGhb/fiKS+HZ38G0O4FBu/opJUlKVfqDfPZM1a2iEli/At54cMfHla2BR38ENx0P5WUw6IzkbsBH/h/0Hg6XvwiF58Dgc5J6qLsvgJuOSwrIv3gfnHztziVSALv3g70OzO5s7ZIk5Ql7purSvodC+32SaQgKR1V+zLxJSW/UorfgoPPhuJ8nvU6rFiW9R0UlSYUdQJsusP8JSXJ24JfguKtrNst6cSmM/w/a9HgXGL7r55EkKQUhI+N89kzVpSZNkmkS3pkIyz7Yct+GdfDvn8Jfj02Spy/cA6f8Dlq0g3Z7wnkPJsnO1j8pp/wBLn4STv1jzZerOeAsaNKMPT98ombnkSQpJRm4mc9kqs4VjQYiTL1j87b5k2HMcHjm2iRhuux56HN09c7XpjPsVVw7sbXuBP1OoOtHT8LGsto5pyRJ9cQZ0BuLzvvBPock0xBsWA8TfgF/OQrWLIHSO+G0PyUTaaalqJTmZctg1uPpxSBJ0i6KGShBN5mqD0UlSU3UdQfDk79KCskvex72Py7tyKDvsaxv1h6muLyMJEm7wmSqPgw6HZq1SdbMG30rnPlnaNUx7agSBc34eI8jktnQVy9OOxpJkqrNAvTGpGV7uPQZ+Nok6H9S2tFs48M9j4KN62H6Pbt+kpkPwPjvW3slSapXFqA3Jp16Q6sOaUdRqZVte8Eeg5IpHHbW6sVw94VwxxfgpT/DrH/XfoCSJGWYyZSSftLiEvjgFVj4VvXf9+a/4LrPwvR7Yfj/gza771pCJknSLnCYT9kyeBSEguoVoq9ZCvdeCreNThKoiybA8CuSwvrarL1aPj+pM5MkaTsyMMpnMqWcdl2Tua6m3AHlG7d/3Nv/husOSebNOuL7SSLVrTDZV1SSLIfz+t01i2VjGTz5a/jdYLj/8pqdS5LUgGWja8pkSpsVlcCK+fDuk9vuW7scxn0dbjkrKai/6HE46ofQtPnmY7oVQtcDajbU99EMuPEYmHA1tN0T3ngoWVpHkqRKWICubOl3YpIobb348ewJSW/UazfDYd+Grz4Jew2p/BxFJTD/VVj45rb7Vi+Gpe9X/r6NG+Dpa2HMkbBsLoz6J3x+LJRvgGl31exzSZJUh0ymtFmzlsl6fTMfSHqi1q2EB78D/3c6NGsFFzwGx1wFTVts/xyFudqrir1TMcLUO+EPQ2DMiGRdwooWvgU3HQ+P/zRZyPmyF2HgadB1EOxZ6ISikqRKWYCubCoqhQ1rksTm+s/BpJvgkK/BJU9D96FVv7/tHtD32KSmqnwjrFwIY78I91yYTFS6ehG89XBybPlGeO6PcMNhsHg2nPXXpEeq7e6bz1dcCgumJMN/kiRtI/1xPpMpban7UOjcB16+EZoUwFcehuOvTnqmqquoBFYsgMd+nCyh89ajcOzP4PKXoF23ZBjxk9nwtxPh0R8lhe+XvQiDz972z4zB50CTpvZOSZIyq2naAShjQoCRv4J5k+BzX4fmbXb+HP1GQssO8Pz/wl4HwunXwx79k32Fo+C5/4V3JibF62f8GQrP3X5fbZsu0Pd4mDoWjr4KCvyRlSQlMjLKZzKlSvQ5JnnsqqYt4ORrYeXH8JmLtkyAir8AL1wPvQ6HU34Pu+1V9fmKS+DNh+CdCckQoiRJOVm4m89kSnXjgLMq3777/vC9WdBit+pXDvY9Hlp1SoraTaYkSTkWoKvxatl+5/4FNG2e1FO98VAy+7okSTkZ6JgymVKeKCqBjeuSdQAlScoQkynlh72GwO79YcptVR8rSWoUQkZK0E2mlB9CSHqn5r6YTKsgSRIQM1CBbjKl/FF4LoQmNVv7T5LUYFiALu2s3bpB7xG52dXL045GkpQB6fdLmUwp3xSXJgshz3k67UgkSQJMppRv+p+UzFFlIbokNXoZGeUzmVKeadYKBp0OM8bBupXb7o8xWZz598XwwSv1HZ0kqZ5loP7cZEp5qKgUylbBzHFbbl86F/7vdHjw27DkXXjpL6mEJ0lqXEymlH/2+Sx07LX5rr4Y4dV/wnWHwNyX4aRr4cAvbb/3SpLUIISM3M5nMqX8s2nOqTlPw/svwi1nw7ivw17FcNlz8JkLoPjzSe/VjPvTjlaSVIecZ0raVUWjk683HQdznoWRv4YvjYOOPZPtPQ6GTr0tVJck1bmmaQcg7ZKO+8Lgc2DlR3Dy76Dzflvu39R7NeFqWPJecrwkqcFJv1/Kninls7NuhC8/sG0itUnhucnXqXfUX0ySpEbHZEoNV8d9oefhyVBfBsbUJUm1KyP15yZTauCKS2HxO8kCyZKkhicDfyubTKlhG3AqNGvj4siSpDpjMqWGrUVbGHgqTL8XytakHY0kqRaFjCwoYzKlhq+oBNYthzceSjsSSVIty8Aon8mUGoGeh0P7Hs45JUkNjAXoUn1p0iSZJmH2E7B8QdrRSJJqkTOgS/WlqARiOUwbm3YkkqQGxmRKjUOXPtB9GEx2zilJaigyMspnMqVGpLgEFs6EBZPTjkSSVEuy8OexyZQaj0FnQkGLpHdKkqRaYjKlxqNVB+h/Iky7EzasTzsaSVINhZCNyg2TKTUuRaWwZjG8/UjakUiSGgiTKTUu+x0Fbbs61CdJDUDIyERTJlNqXAqawuBzkp6pVYvSjkaSVEMxAyXoJlNqfIpLoXwDTLsr7UgkSQ2AyZQan66DoFsRTLk17UgkSTWQjUE+kyk1VkWlsGAKfDQj7UgkSTXg3XxSWgafDU2a2jslSfksI11TJlNqnNp0gb7Hw9SxsHFD2tFIknZRBjqmTKbUiBWXwMqP4J0JaUciScpjJlNqvPoeD606wWSH+iQpH4WMjPOZTKnxato8qZ164yFYszTtaCRJuyID43wmU2rcikpg4zqYfm/akUiS8pTJlBq3vYbA7v1hisvLSFK+ychqMiZTauRCSHqn5r4In8xOOxpJ0k5yORkpCwrPhdDEQnRJyjMZ6ZgymZLYrRv0HgFT74Dy8rSjkSTtBGdAl7KiuBSWzYU5T6cdiSQpz5hMSQD9T4IWu1mILkl5xAJ0KUuatYJBp8OMcbBuZdrRSJKqKQOjfCZT0qeKSqFsFcwcl3YkkqQ8YjIlbbLPZ6FjL+/qk6Q84XIyUtaEkBSiz3kalr6fdjSSpGqIGbidz2RKqqjw3OTrlDvSjUOSVCUL0KUs6rgv9Dw8uasvA3/tSJJ2LAv/U5tMSVsrKoHFs2HuS2lHIknKA9VKpkIIJ4QQ3gwhzAohXFHJ/vYhhAdCCFNCCNNDCOfXfqhSPRl4KjRrDVMsRJekLMvIKF/VyVQIoQD4EzASGAiUhBAGbnXY5cCMGGMRMBz4nxBC81qOVaofLdrBgFPh9XuhbE3a0UiSdiALFRnV6ZkaBsyKMb4TY1wP3A6cttUxEWgXQghAW2AxsKFWI5XqU3EJrFsGb47fcvuiWUlxehb+9UpSY5eRCvRQ1S2FIYSzgRNijBfmXn8RODjG+LUKx7QDxgH9gXbAuTHGhyo518XAxQBdu3Y96Pbbb6+tz7FdK1eupG3btnV+nXxmG1UilvO5586jedky5nY/lSldz6H/0gn0evdmCsrX8+qQX7O8fb+0o8wcf5aqZhtVj+1UNdsI7n17PffPLuPvJ7SpdH9tttGIESNeiTEOrWxf02q8v7K0b+sM7HhgMnAUsB/wWAjh6Rjj8i3eFOMYYAzA0KFD4/Dhw6tx+ZqZOHEi9XGdfGYbbUer/4SHf0CPeeNot2IWHZbNgL7Hw7tPcWDBGzD8q2lHmDn+LFXNNqoe26lqthG8WvYWzH57u+1QX21UnWG+eUCPCq+7A/O3OuZ84J6YmAW8S9JLJeWvz14CX3kEgLYr34PTb4DSO2DAKfD63VC2NuUAJalxy8YgX/WSqZeBviGEXrmi8tEkQ3oVvQ8cDRBC6Ar0A96pzUClVPQ4GM69mZeG/TGpowoh+bq2knoqSVIq0p4FvcpkKsa4Afga8AgwExgbY5weQrgkhHBJ7rCfA58LIUwDHgd+EGNcVFdBS/UmBBhwCutbdN68rdeR0G6vZGJPSVKjV52aKWKM44HxW227ocLz+cBxtRualFFNCqDoXHj2D7DiI2jXNe2IJKlRysjNfM6ALu2SolKIG2Ha2LQjkaRGL+3ZakympF2x+/6w90Ew2TX8JCktISMl6CZT0q4qKoGPp8OHU9OORJIatbT/pDWZknbVAWdBQfOkd0qS1GiZTEm7qnUn6DcSpt0JG8vSjkaSGh0L0KWGoKgUVi+Ctx9LOxJJarQyP8+UpB3oczS02R2m3Jp2JJKklJhMSTVR0AwGj4I3H4bVi9OORpIalYyM8plMSTVWXALlZcl6fZKkeufdfFK+23MwdB0Mk6sx1BcjrPiw7mOSpEbAAnSpISkugfmvwsdvbP+Y5Qvg1nPhf/rBe8/XX2yS1MClPXeyyZRUGwafA6Gg8kL0GGHKHXDdwfDuU9CsNbz6z/qPUZJUJ0ympNrQdg/oeyxMHQvlGzdvX/kx3P55uPdi2L0/XPIMDD4bZtwP61amF68kNQAhI+N8JlNSbSkqgRUL4J0JyevX74Y/HQyz/g3H/hzO/xd06ZPMTVW2CmaOSzdeSWogYsol6E1TvbrUkPQbCS07wItj4NX/gxn3JYshn3497N5v83H7fBY69koK1otL04pWklRL7JmSakvTFsl6fW8/Am+Oh6N/Al95dMtECpLbT4pKYM7TsPT9dGKVJNUakympNn3u60midPGTcPh3oGA7nb9Fo5OvU+6ov9gkqYHybj6pIenUC864AboO3PFxHfeFfQ+DKbel/7+AJOWpjNSfm0xJqSkuhcWzYe5LaUciSaoBkykpLQNPTeaccpFkScprJlNSWlq0gwGnwuv3QtmatKORpLwTMrLUscmUlKbiEli3LLn7T5K0S9IuPTWZktLU8wjYrfu2iyTHmEz6+Y9TYNkH6cQmSRlnAbokaNIEis6F2U8kCyEDrFoEd34Z7vpKspbfK39PNURJyrq0Z0A3mZLSVlQCsRymjU3W7PvTwfDmv+CYq6DXkTDldigvTztKSdJ2uJyMlLYufaH7Z2DCf8OGNdCtOJmrao8BsNvecM9F8N6z0OvwtCOVpEzJyCifPVNSJgy7GMo3wIgfwoX/ThIpgP4nQ/N2yeSekqRKpV2Abs+UlAWFo2Dg6dC0+Zbbm7eGQafD9HvhxN9A8zZpRCdJ2gF7pqSs2DqR2qS4FNavhJkP1G88kpRx3s0nqXr2OQQ69tx2+gRJEkDK9/KZTEnZF0Jyx9+7T8GyeWlHI0mZ4QzokqqvaDQQk2kSJElbiClXoJtMSfmgY0/Y99BkqC/t21YkSVswmZLyRVEJLJ4N815OOxJJygQL0CXtnIGnQdNWFqJL0lbS7q83mZLyRcvdYMApMP0eKFubdjSSpByTKSmfFJfC2mXw5vi0I5Ek5ZhMSfmk1xHJen0uLyNJn0r7vhyTKSmfNCmAwnNh1uOw4qO0o5GkVIWMVKCbTEn5prgU4kaYNjbtSCQpG+yZkrRTuvSFvYfC5NvS79uWJJlMSXmpuAQ+ng53nZ8UpEtSI5SNQT6TKSk/HXBW8nX6vfDs7+G5P8Kit9ONSZJSElMe52ua6tUl7ZpWHeGCx2Dsl+Dp/0m2zXkW+p8I7bvDfkelG58k1YOM1J+bTEl5q8cwOPWPMPGX0KYLvPWv5LHb3vCtacmdf5LUCKRdPmoyJeWzvscmj8XvwKpFsHt/mHwzvPsU7Dci7egkqVGwZkpqCDr1hoseh5P+B1q2d1JPSY1CRkb5TKakBqVZSxh0Jsx8ANatSDsaSaoXaU8SYzIlNTTFpVC2Gmbcn3YkktQomExJDU33z0Cn/ZJJPSWpAXM5GUl1I4RkUs/3noElc9KORpLqXEz5dj6TKakhKhwNBJhye9qRSFKdyUjHlMmU1CB16AG9Dk/u6kt7AhZJqmNp/y9nMiU1VEWlyTDf+8+nHYkkNWgmU1JDNeAUaNYGJt+adiSSVCcyMspnMiU1WC3awqDTYfp9sH512tFIUp1Ju5rBZEpqyIpKYP0KeGmMCZUk1RGTKakh2/dQaNUJ/v0TeOi7aUcjSbUrI7fzmUxJDVmTJnDK75LnU26DtctTDUeS6kJM+X4+kympoRt4GlzwbyC6xIykBiUb/VImU1Lj0H0odO6T9E5JUkNjAbqkOhdCUoz+3rMuMSNJtcxkSmosilxiRlLDkpH6c5MpqdFo3x16HeESM5IanLT/RzOZkhqTYpeYkdRwhIyUoJtMSY3JgFOgedtkiZmFb8LS99OOSJLynsmU1Jg0b5NMlTB1LFz3WbitNO2IJKnG0q5cMJmSGpuDzoPyDdB1EHw0DRZMTTsiSdolFqBLSkePYfCfH8CXxkFBc+eekpT3nAFdUv1r1gpad4L9T0iG/DaWpR2RJOUtkympMSsuhdWL4O3H0o5EknZaRkb5TKakRq3PMdC6C0y5Ne1IJGmXWYAuKT0FzaBwFLz5MKxenHY0krRTLECXlA3FpVBeBq/fnXYkkrRLnAFdUrr2HAxdBycTeUqSdprJlCQoLoH5ryazoktSnnA5GUnZMfgcCAXb9k6tWQL3Xgp/PgI2rEsnNkmqQky5At1kShK03QP6HgtT74Dyjcm2tx+D6w5J7vRbMAXeerh659qwHib8N1w7CBbN2vGxG8uSBG75/Mr3v/ccvPtU9T+HJKXAZEpSoqgEViyAmQ/A/V+DW86GVh3hoiegXTeYXPVM6W1WzoEbj4InfwnL58Grf9/+wR/NgBuPhvsuhcd+suW+dSvhwW/D30Ym6weuX12jjyapgcrGKJ/JlKScfiOhZQe488sw+RY47Dtw8UTY+6Bk+oS3H4WVH1f+3o0b4KnfcNAr34UVH8K5t0C/k2DKHcm+rY99+n9gzJGw7APY55AkgVu7PNn/7tNw/SEw6W/Q/2RYvwLeeKguP7mkPOc8U5KyoWkLOORy6FYMF/wbjvlJsg2gqBTiRph257bv+/gN+Osx8MR/sajLZ+GyF2HAyUlR+6qPYfYTm49d+CbcdBw8/rMkebv8RTj2Z7BhDUy5HcZ/H/5xMjRpCl95GEb9H7Tfx0lFJVUqIx1TNE07AEkZcuT3k8fW9ugPew1JhvoOuTzZVr4RnvsjTLgaWrSDc/7OjIUd2aNN52R/3+OhVackEepzNDz/J3jiv6B5azj7JjjgrOS41p2h037wr+8lrw++BI7+MTRvk7wuOjfpyVo+H3bbq24/vyTtAnumJFVPUSl8NA0+nAaL3oabjod//wT2Pz7pjRp0xpbHN20Og8+GN8bDTSfAY1cmy9dc9uLmRAqSKYwP+3Yy39V5D8HIX21OpCCp5YrlSXH8jrz9mMOBklJhMiWpegafDU2awbhvwA2HJQnVWX9NhuLa7l75e4pLYeM6WPQmnPkXGH0LtOu67XEHfhEueQZ6Hrbtvs77QY+Dk16xygojVi+Guy9KCubvumBz7ZWkBi9kZD0ZkylJ1dO6E/Q7IZncs/eIpN5p8Nk7XhxrryFQemfSG1U4atcX0iouTRKy+a9uuf2tR5LpG6bfk/ScbVgDM+7ftWtIylsWoEvKHydeA1+4B0pug3Z7Vu89+x8Hu3Wr2XUHnQFNW26enmHNUrjvcrh1VFJzdeHjcPp10LkPTKl6CoftWrscnr4WFr9bs3gl1Yts9EtZgC5pZ7Tbs/pJVG1q2R76nwSv35UUsz+Um4Lh8P9ICuY/veuwBJ74eZIMdeq1c9d4Z2Iyv9ayufDxDDjrxlr/GJIaJnumJOWHotJkeZvbRkPztnDhY3D0lZsTKYCi0UBIplmornUr4cHvwD9PS87V5xiY+aC1V1IeibicjCRVbb8RsP8JcOi34KtPJZOJbq19d+h1RDLUV15e9TnnPAPXfw4m3QSfvTwpgh/+/3K1V/fV9ieQVMsyUn9uMiUpTzQpgNI74NifQrOW2z+uuBSWvgfvP7/9Y9avhn/9AP5+EoQmcP54OOEX0KxVkqR17lut5XMkZUNeFKCHEE4IIbwZQpgVQrhiO8cMDyFMDiFMDyE8WbthSlI1DTglGQbc3qzp778ANxwKL94Awy6GS5+FfT+3eX8Iyezt7z9nIbqkaqkymQohFAB/AkYCA4GSEMLArY7pAFwHnBpjHAScU/uhSlI1NG8DA0+D6fdvuUBy2Rp45IfJBKLlG+DLD8CJv9lygtBNCneh9kpSvcunYb5hwKwY4zsxxvXA7cBpWx1TCtwTY3wfIMa4ndVQJakeFJfmFkh+MHk9bxL8+Qh4/n9h6Plw6XNJbdX2tN8beh9Z/dorSalKeZSPEKsYaAwhnA2cEGO8MPf6i8DBMcavVTjmd0AzYBDQDvh9jPGflZzrYuBigK5dux50++11/1ffypUradu2bZ1fJ5/ZRlWzjaonM+0Uyzn4xa+ytmVXlu+2P/u8fy/rWnTizX5fZ0mn4mqdouuHExnwxm95rfgXLOswqNZCy0wbZZztVDXbCJ6bv4ExU9fxy8NbsWebbfuHarONRowY8UqMcWhl+6ozz1RlnWhbZ2BNgYOAo4FWwPMhhBdijG9t8aYYxwBjAIYOHRqHDx9ejcvXzMSJE6mP6+Qz26hqtlH1ZKudzqfVk7+i49JpMOQLtDz+FxS1bF/9t6//DFzzF4aUvQxlHyc9VfsdVeOostVG2WU7Vc02gqWvfQBTJzNs2DB6775t0lRfbVSdZGoe0KPC6+7A/EqOWRRjXAWsCiE8BRQBbyFJaTjo/GRR5oPOT2Zh31nN28DA02Hyzcnrtx9N5rFq3gY+c2Gthiopv1UnmXoZ6BtC6AV8AIwmqZGq6H7gf0MITYHmwMHAb2szUEnaKbt1S5a9qYlDvwFrlyazvr98Izz2YyhoAQecDa061EaUkmogKwXoVSZTMcYNIYSvAY8ABcBNMcbpIYRLcvtviDHODCE8DEwFyoEbY4yv12XgklTndu8Ho29JZkNfswR27w8Trobp9yaF7JIyIe0C9GqtzRdjHA+M32rbDVu9/g3wm9oLTZIyouVucPZNycyAr98Nk281mZL0KWdAl6TqCiFZTHneS7BoVtrRSMoIkylJ2hmF5yZL0ExxuRkpK/JiORlJUs5u3aD3CJh6hxN6SikLGalAN5mSpJ1VXArL5sJLY2DDurSjkZRyCbrJlCTtrP4nJV8f/kFyd5+kRs1kSpJ2VrNWcHruhubXboGNG9KNR2qksjHIZzIlSbumuATOvQVWL4LZT6QdjdSoWYAuSfmq73HQqhNMviXtSKRGKSP15yZTkrTLmjaHwefAm+OTGdIlNUomU5JUE8UlsHE9vH5P2pFIjVbay8mYTElSTXQrht0HOImnlIKQkRJ0kylJqokQkt6peS/DorfTjkZqlCxAl6R85xIzUqNmMiVJNdVuT9jvKJjiEjNSffJuPklqSIpKYPk8mPNU2pFIjU50ORlJagD6nwQt2sNkh/qk+pKRjimTKUmqFc1awaDTYeY4WLci7Wgk1SOTKUmqLcWfh7LVMGNc2pFIjYp380lSQ9FjGHTaz7v6pHpiAbokNTQhJIXoc56GJe+lHY3UaNgzJUkNSdG5ydcpt6cbh6R6YzIlSbWpwz7Q8/BkqC/tP5elBi8b43wmU5JU24pLYcm78P4LaUciNQrOMyVJDc2AU6FZG5hya9qRSA2aBeiS1FC1aAsDT4Xp90HZmrSjkRq8tEfUTaYkqS4UlcC65fDGQ2lHIqmOmUxJUl3oeTi07wGTHeqT6kpGRvlMpiSpTjRpAoXnwjsTYPmCtKORVIdMpiSprhSVQCyHqXekHYnUIIWMVKCbTElSXenSB7oPc84pqYEzmZKkulRcCgvfgPmvpR2J1GCl/beKyZQk1aVBZ0BBCxc/lupANgb5TKYkqW616gD9T4Jpd8GG9WlHIzVIzoAuSQ1dcSmsWQxvP5J2JJLqgMmUJNW13iOgbddt55xav8reKqkGMnIzn8mUJNW5gqZQOArefpRm65cl1bKv/AOu6QcPfTvt6KS8ZwG6JDUGRaVQvoEec++Dm8+CB76R/Fk97S5Yuyzt6KS8ZM+UJDUmXQdCtyL2mXsPvP88nHgNfOEe2LA2WRBZUt4ymZKk+jLih3y8+6Fw6bMw7CLoPhQ693XaBKmG0p4S12RKkurL/sczY9D3oVPv5HUIUFyS9FQtfifd2KQ8FDIy05TJlCSlqXA0EGDK7WlHIuWtmHIFusmUJKWp/d7Qe3gy1FdennY0knaByZQkpa24FJa+D+8/l3YkUn7JxiifyZQkpa7/ydC8HUy2EF3aFRagS1Jj17w1DDoNZtyXzIouqVoy0jFlMiVJmVBUCutXwswH0o5E0k4ymZKkLNjnEOiw77br90mqksvJSJKgSRMoKoF3n4Ilc+CDV9P/DSFlXMjIejImU5KUFUWjgQh/PgL+MgLeejjtiKQ84TxTkiSATr1gv6OgSVNo2QFeuzntiCRVQ9O0A5AkVXDuLckyM0/8F7z4Z1j1CbTpnHZUUiZlY5DPnilJypbmraFZq6R+qrwMXr8r7YikzEu7vNBkSpKyaM8DYM/B3t0n7UBG6s9NpiQps4pKYcFk+Hhm2pFImZb2fa8mU5KUVYPPSYrRJ98Kbz0CfzkK5k1KOypJWzGZkqSsars79DkWXrwBbh0FH7wCz/0x7aikzAgZKUE3mZKkLBt2YVJde9h34KDz4c3xsGZJ2lFJmWIBuiRp+/ocAz/8EI75CRz0Zdi4Hl6/J+2opEywAF2SVD0FuSkBuxXD7gNgym2phiNpSyZTkpQvQoDiEpj3Mix6O+1opMyIKY/zmUxJUj4pPBdCE3unJJwBXZK0K9rtmazfN+UOKC9POxopE5xnSpK0c4pLYfk8mPNU2pFIwmRKkvJPv5OgRXuY7FCfGrmMjPOZTElSvmnWEg44A2aOg3Ur0o5GSp3zTEmSdl5RKZSthhnj0o5ESo0zoEuSdl2PYdBpv2TdPkmpMpmSpHwUAhSVwHvPwJI5aUcjpSqmfD+fyZQk5auic5OvU+5INw4pJS4nI0mqmQ77QM/Dkwk8067AldJkAbokaZcVl8KSd+H9F9KORGq0TKYkKZ8NOBWatYEpFqKr8cnIKJ/JlCTltRZtYeCpMP0+KFuTdjRSKtIe5DaZkqR8V1QC65bDGw+lHYlUr0JGKtBNpiQp3/U8HNr3cM4pNVpp339hMiVJ+a5JEygaDe9MgOUL0o5GanRMpiSpISgqgVgOU51zSo1HRkb5TKYkqUHovB/0ONg5p9QoOQO6JKl2FJXAwjdg/mtpRyLVi4x0TJlMSVKDMegMKGiR9E5JqjcmU5LUULTqAP1Pgml3woZ1aUcj1Zu0R7ZNpiSpISkuhTVL4K1H0o5EqnMWoEuSal/vEdC2q0N9alTSvuXCZEqSGpKCplA4Ct5+FFYtSjsaqVEwmZKkhqaoFMo3JLVTUoOWjXE+kylJami6DoRuRS4vo0YjplyBbjIlSQ1RUSl8OBU+mp52JFKdsQBdklR3Bp8DTZrZOyXVA5MpSWqI2nSG/Y+HqWNh44a0o5HqVF7czRdCOCGE8GYIYVYI4YodHPeZEMLGEMLZtReiJGmXFJXAqo9h9hNpRyLViYyM8lWdTIUQCoA/ASOBgUBJCGHgdo77FeBMcZKUBX2Pg1adYMqtsOwDWDo37YikupEHM6APA2bFGN+JMa4HbgdOq+S4rwN3Ax/XYnySpF3VtHlSOzXzQfjjgfCPU6C8PO2opAanaTWO2Ruo+OfMPODgigeEEPYGzgCOAj6zvROFEC4GLgbo2rUrEydO3Mlwd97KlSvr5Tr5zDaqmm1UPbZT1eq7jdqUD+CgWM6a5l1ps+RdXht3Pcs6DKq36+8qf5aqZhvBO0s3AjB12lTCh9umNPXVRtVJpiobkty6Q+13wA9ijBvDDu5TjDGOAcYADB06NA4fPrx6UdbAxIkTqY/r5DPbqGq2UfXYTlWr/zYaDkefTpuC5nDN/gwJM2D45fV4/V3jz1LVbCPoMHcpvPAsgwcPZnj/rtvsr682qs4w3zygR4XX3YH5Wx0zFLg9hDAHOBu4LoRwem0EKEmqoVYdoXkbGHgaTL8f1q9OOyKpVuRNATrwMtA3hNArhNAcGA2Mq3hAjLFXjLFnjLEncBdwWYzxvtoOVpJUA0UlsH4FvPFg2pFIDUqVyVSMcQPwNZK79GYCY2OM00MIl4QQLqnrACVJtWTfQ6H9Pk7kqQYn5dVkqlUzRYxxPDB+q203bOfY82oeliSp1jVpAkWj4anfJFMltN877YikGnE5GUlS/SsaDUSYekfakUi1Ju2eKZMpSWpMOu8HPT4LU27b8jdQjDDtLrj+UJj/WnrxSTshZKQE3WRKkhqb4hJY9BZ88GryeuVCGPsluPsC+Oh1uO8ymD851RClfGIyJUmNzaAzoGnLZJmZ6ffBdQfDWw/DMVfBkC/AxzPgr8fCxrK0I5WqJe2FjqtVgC5JakBatof+J8Gkv8HLN0K3YjjjBthjAKz4EBbPgfeegVmPQ78T0o5W2i4L0CVJ6fnMRdC8LYz4IVz47ySRAmi3J3zxXmjdOem52pGl78OM+9Ov/lWjF1P+GbRnSpIao30PgSveq/xP+00LJE+6CVYvhtadttwfI7z6D3jkh7B+JVz4OHQfWj9xSxlkz5QkNVY7GiMpKoGN62H6PVtuXzYPbj4LHvgm7DUkqb1yElA1ciZTkqRtdSuCPQbC5NuS1zHCa7fAdYfA+8/DidfAl8ZB/5Ph9bthw7p041WjlvZAs8mUJGlbISS9Ux9MgnefgttGw/2XQdcD4NJnYdhFyYzqxSWwdim8+a+0I1YjZAG6JCnbCkdBaAL/OAXeeRJO+CWc9xB06r35mN4joF23ZBJQqZGyAF2SVLl2e8KQL8KSd+Gk30KXPtse06QACs+F5/4IKz+GtnvUf5xq9NK+odSeKUnS9p36B/jyA5UnUpsUl0LcCNPurL+4JFxORpLUUOzeD/Y6cHOxulTv0u2aMpmSJNVccSl8NA0+nJZ2JFK9M5mSJNXcAWdBk2b2TqleeTefJKnhaN0pWcdv2lgXSFa9swBdktQwFJXCqoUw699pR6JGwp4pSVLD0vdYaN3F5WXU6JhMSZJqR0GzZIHktx5OFkiW6onLyUiSGo7i3ALJr9+ddiRqBJxnSpLU8OxZCHsMcnkZ1SsL0CVJDUcISe/UB6/AwrfSjkYNnAXokqSGafAoCAUwxUJ0NQ4mU5Kk2tWuK/Q5GqbcAZNuguf+N9m+ejE8+iN477l041ODE1MuQW+a6tUlSQ1TUQm8fT48+G0gQPM2MPG/YeVH8P4LcKFzUanmMjLKZ8+UJKkO9DsxmSbhqB8BER78VjIH1YFfgnkvw6K3045QDUjaBej2TEmSal+zlnDWjcnz9auhaUs47NuwZjG8dnNyt9/RP043RqmWmExJkurWMT/Z/LzdnrBfrp5qxI+giQMk2nXezSdJapyKS2D5PJjzVNqRqIFwBnRJUuPS7yRo0R4mO7GnaiobXVMmU5Kk+tWsJRxwBswcB+tWpB2NVGMmU5Kk+ldUCmWrYca4tCNRAxBTvp3PZEqSVP96DINO+7mGn2rEAnRJUuMVQjKx55ynYcl7aUcj1YjJlCQpHUXnJl+n3pFuHFINmUxJktLRYR/oeXgy1Jf2FNbKSxkZ5TOZkiSlqLgUFr8Dc19MOxLlsbRzcZMpSVJ6BpwKzdrA5FvTjkR5KGSkAt1kSpKUnhZtYeCpMP1eKFuTdjTSLjGZkiSlq6gE1i2HNx5KOxLlqZjygjImU5KkdPU8HNr3cKhPOy0bg3wmU5KktDVpAoXnwjsTYPmCtKNRHrIAXZKkohKI5c45pbxkMiVJSl+XPtB9mHNOaadk5GY+kylJUkYUl8DCN2D+a2lHojyTdv5tMiVJyoZBZ0JBCxc/VrWFjJSgm0xJkrKhVQfofxJMu4tQXpZ2NFK1mUxJkrKjuBTWLKbzJ5PSjkR5JO0qO5MpSVJ29B4Bbbuy54cT0o5EecACdEmStlbQFApH0WnxJFi1KO1olCdiyhXoJlOSpGwpKqVJ3AjT7ko7EqlaTKYkSdnSdSAr2u4HU1xeRvnBZEqSlDkf7jkCFkyBj2akHYrygAXokiRt5eM9joAmTe2d0g5ZgC5J0naUNW8PfY+HqWNh44a0w1HWOQO6JEmVKC6BlR/BO06ToGwzmZIkZVPf46FVJ5jsUJ8qFzIyzmcyJUnKpqbNYfDZ8MZDsGZp2tEow2LK43wmU5Kk7CoqgY3r4M9HwMI3045GGZONfimTKUlSlu01BDr1hqXvwaM/SjsaqVImU5Kk7AoBvnA37HcUzH7CJWZUqZRXkzGZkiRlXKfecNzVUL4Bpt2ZdjTKkIzUn5tMSZLyQNeB0K3IO/tUKWdAlySpOopK4cOp8NH0tCORtmAyJUnKD4PPTpaYsXdKOSEj9/OZTEmS8kObLi4xo0pZgC5JUnUVl8Kqj5M7+9ToWYAuSdLO6ntcssTMFIf6lB0mU5Kk/NG0OQw+B94YD2uWpB2NMsLlZCRJ2hnFuSVmpt+bdiRKWUZG+UymJEl5plsx7D7Au/r0KQvQJUnaGSEkvVPzXoZFb6cdjdKUka4pkylJUv4pPBdCE5hyW9qRSCZTkqQ81G7PZPHjKXdAeXna0ShlLicjSdKuKCqB5fNgzlNpR6KUOAO6JEk10f8kaNEeJjvUp3SZTEmS8lOzVjDodJg5DtatSDsapSnl2/lMpiRJ+au4FMpWw4xxaUeiFLicjCRJNdXjYOjU27v6GjkL0CVJ2lUhQFEpzHkalryXdjSqZxnpmDKZkiTluaJzk69T70g3DjVaJlOSpPzWYR/oeXiyvEza64ooFWl/202mJEn5r7gUlrwL77+QdiSqRyEjFegmU5Kk/DfgVGjWBqa4+HFjFJ0aQZKkGmrRFgaeCtPvg7I1aUejRsZkSpLUMBSVwLrl8MZDaUeiepKNQT6TKUlSQ9HzcGjfIylEV6OS9m0HJlOSpIahSRMoPBfemQDLF6QdjepBRurPTaYkSQ1IUQnEcuecUr2qVjIVQjghhPBmCGFWCOGKSvZ/PoQwNfd4LoRQVPuhSpJUhS59oPuwZHmZtCcfUr1J+1tdZTIVQigA/gSMBAYCJSGEgVsd9i5wZIyxEPg5MKa2A5UkqVqKS2DhGzD/tbQjUR0LGSlBr07P1DBgVozxnRjjeuB24LSKB8QYn4sxLsm9fAHoXrthSpJUTYPOhIIWLn7ciKTdBxmqmugqhHA2cEKM8cLc6y8CB8cYv7ad4/8D6L/p+K32XQxcDNC1a9eDbr/99hqGX7WVK1fStm3bOr9OPrONqmYbVY/tVDXbqHpq2k4Dp/+Gjkum8Nzn/kZs0qwWI8sOf5ZgVVnk8sdXU9K/Ocf33Pb7XJttNGLEiFdijEMr29e0Gu+vrA+t0gwshDACuAA4rLL9McYx5IYAhw4dGocPH16Ny9fMxIkTqY/r5DPbqGq2UfXYTlWzjaqnxu20dxnccjZHdlsLA46t+viytTDxv2HK7XD+eOi8365fu574swTL1pTB44/Sp08fhh/Wa5v99dVG1Rnmmwf0qPC6OzB/64NCCIXAjcBpMcZPaic8SZJ2Qe8R0LZr9eac+uBVGHMkPPs7WPkRvPqPOg9PtSsflpN5GegbQugVQmgOjAbGVTwghLAPcA/wxRjjW7UfpiRJO6GgKRSOgrcfhVWLKj9mw3p44r/gxmNg7TL4/F2w/wkwdSyUb6zfeLVL8maeqRjjBuBrwCPATGBsjHF6COGSEMIlucN+DHQGrgshTA4hTKqziCVJqo6iUijfANPu3HbfgqnwlxHw1G+SiT4vex76HpvcCbhiQTLxp1RN1amZIsY4Hhi/1bYbKjy/ENim4FySpNR0HQjdipKhvs9emmzbWAZPXwtP/Rpad4bRt0H/Eze/Z/8ToGUHmHwb9DkmlbCVf6qVTEmSlJeKSuHhH8BH04EA910CC6bA4HNg5K+hdactj2/aAgafDa/dnAz9tWyfStiqnoyM8rmcjCSpARt8NjRpCvddlhSZL/sARv0fnHXjtonUJkWlsGEtTL+3fmPVLsv8DOiSJOWtNl2SobsFk6HfSLj8RRh46o7fs/eB0GX/ZKhPmRYyUoFuMiVJathOuhbOewhG/TNJrqoSQrJg8twX4JPZdR+f8p7JlCSpYWvXFXpWOpf09hWNhtAkmcRTmRdTXlDGZEqSpK3tthf0Hp4kU+XlaUej7cjGIJ/JlCRJlSsqhWXvw3vPph2JqmABuiRJWdT/JGjeDqZYiK4dM5mSJKkyzVvDoNNhxv2wflXa0agSGbmZz2RKkqTtKi6F9Sth5gNpR6IdSHmUz2RKkqTt2ucQ6NgzWZJGmRMyUoJuMiVJ0vZsmnPq3adg2by0o1FGmUxJkrQjRaOB6JxTGebdfJIkZVnHnrDvoclQX9q/tbUFC9AlScoXRSWweDbMezntSFQJZ0CXJCnrBp4GTVtZiK5KmUxJklSVlrvBgFNg+j1QtjbtaJQxJlOSJFVHcQmsXQZvjk87Em0l7VI2kylJkqqj15Gw294uL5MhFqBLkpRPmhRA4bkw63FY8VHa0ShDTKYkSaqu4lKIG2Ha2LQjUYaYTEmSVF1d+sLeQ2HybekX6sjlZCRJykvFJfDxdPhwatqRKCemnNiaTEmStDMGnQkFzZPeKaXKAnRJkvJR607QbyRMuxM2lqUdjTLAZEqSpJ1VVAqrF8Hbj6UdiUi/fM1kSpKkndXnaGizO0xxeZk0ZWSUz2RKkqSdVtAMBo+CNx+G1YvTjkYpM5mSJGlXFJdAeRn8uhe8+1Ta0TRqaU9SYTIlSdKu2HMw7PO55Pmzv083lkYqZOR2PpMpSZJ21XkPwmHfgdlPwIoPd3zsxg0w8wFYt6J+YmtELECXJClfNSnILTFTDlN3sMTMwrfgpuPhji/AxF/WX3wNXDb6pUymJEmqmS59oftnYEolS8yUb4Tn/gg3HAaLZ8Meg5Kka+OGdGJVnTCZkiSppopK4OMZ8MgPYf3qZNsns+FvJ8KjP0qmUrjsRRjxn7Dq42RYULUmplyC3jTVq0uS1BAccCY89B144U/Qsn3y+PdV0LQ5nDEGCkcla5/0PQ5adUrmp9r/uLSjznsZqT83mZIkqcZadYTSsXBbCUz8byAmidMpf4Ddum0+rmlzGHwOvPJ3WLMkeZ9qzAJ0SZIagv2Ph3NvhrZd4dT/TZKrionUJsUlsHEdTL+3/mNUnbBnSpKk2tL/xOSxI92KYfcBMPk2GPqVegmroXKeKUmSGqMQkt6peS/BollpR9MgOAO6JEmNTeG5EJq4UHIDYTIlSVJ9a7cn7HcUTLkDysvTjkY1ZDIlSVIaikpg+TyY4yLJNZby7XwmU5IkpaH/SdCifVKIrl2WhRp0kylJktLQrBUccAbMHOfixzVkAbokSY1VUSmUrYYZ49KOJG9loGPKZEqSpNT0GAad9ksWSVbeMpmSJCktISSF6HOehiXvpR1N3nI5GUmSGrOic5OvU+9IN448lYVZ0E2mJElKU4d9oOfhyVBf2l0s2iUmU5Ikpa24FBa/A3NfTDuSvBRTvp/PZEqSpLQNOBWatYHJLi+zs9If5DOZkiQpfS3awsBTYfq9ULYm7WjyTtqjoyZTkiRlQVEJrFsObzyUdiR5JQP15yZTkiRlQs/DoX0Ph/rykMmUJElZ0KQJFJ4L70yA5QvSjiavpH0PpMmUJElZUVQCsdw5p3ZCyEAJusmUJElZ0aUP9DjYOad2UtpNZTIlSVKWFJXAwjdg/mtpR1J3lsyBDevTjqLWmExJkpQlg86AghYNc/Hj9atg/Pfh90Uw4eraOWf6o3wmU5IkZUqrDtD/JJh216733qxeDMvn12pYNfbe83DDYfDSn6Fdt+SuxY0bauXUzoAuSZK2VFwKaxbD24/s3PtihKl3wh+GwI3H1FqyUiNla+CRH8LfRkL5Bvjyg3DS/8Cqj2H24zU+fQY6pkymJEnKnN4joG1XmLwTQ30rF8IdX4B7LoQWu8HyD5JpFtI0bxLccDg8/78w9Hy49HnodTj0ORZad24wc2qZTEmSlDUFTaFwVNIztWpR1cdPvxeuOxjefgyO/Rl87SVo1Sm9ZKVsLTz2E/jrsUnP1BfvhZN/myybA9C0OQw+B94cD2uW1Px63s0nSZK2UVSaDItNu2v7x6z6BO48H+48DzrsC199Cg79JjRrBYPPTpamWbO0viJOfPAqjDkSnv0dDPkCXPY87HfUtscVlcDG9fD6PTW6nMvJSJKkynUdCN2KYPItle7usvCFpDdq5gNw1JVwwWOwR//NBxSVwMZ1ML1myUq1bVgPT/xXUqu1dhl8/i449Y/QcrfKj+9WBHsMrJW7FtOekctkSpKkrCoqhQ+nwkfTN29bvRjuvogDpv83tNsTLp4IR/xHMjRY0V5DoEs/ePDbSZJTlxZMhb+MgKd+kyyJc9nz0PfYHb8nhCThm/cyLHp7ly/tDOiSJGn7Bp8NTZpurn166xG47hCYfg9z9h0NF02APQ+o/L0hwGcuTJ4/9Rt47Mcw9ktQvrH24ttYBhN/lSRSqxbC6NvgjOuhVcfqvb9wFIQmeT+nVtOqD5EkSalo0wX6Hg9Txya1T5NvTobGSu9gzltL6VnQbMfvH3ZRMpx203Hw7O+Tbe8+WXkN0876aAbcdwksmJIUk4/8NbTutHPnaLcn7Hc0TLkDRvwoWex5F8SU15OxZ0qSpCwrLk3mZJpyKxz+3WRYb6/i6r03BNjnYDj+FzDqn9CyffWmW1jxUTKtQWU2boCn/ycpMl/2AYz6Pzjrxp1PpDYpLoHl82DOU7v09iwUoNszJUlSlu1/PIz4YdKD0/2gXTvHIZcnX9+ZmCRTa5dXXhgeI0y7E8Z/D9Yth29OhQ49Nu9f+Cbcdyl88AoMPA1OujbpPauJfidBi1yS13t4zc6VEnumJEnKsoJmcOT3dz2RqqioFDasgRn3b7tv5ce5ST8vgo49IZbD1DuSfeUb4dk/JBNwLn4Hzr4p6emqaSIF0KwlHHAGzBwH61bs0ilSHuUzmZIkqdHoPhQ699m24Pv1e+BPmyb9/Dlc9ATse2hy3KJZyVIwj10JfY6By16EA86q3biKSqFs9eYkr2wt/Psq+PvJyaSfO5CBUT6H+SRJajQ2TUfwxM9hyRxo3g7GfzeZQX2vA+H06zfPVVVUAuO+Btd9Fpq3hjP/khSa10WRUo9h0Gm/ZKhvjwFw32Ww8I1k35vjq0zenGdKkiTVn6LRQIB//SA36eeDlU/6Oeh0aLtncuffZS/mpjGoo36gTUnee8/AjccmNV2ld8Jue1dZMB8yUIFuz5QkSY1J++7Q6wh462HYsxC+dD90HbTtcS3awXdm7vJ0BTutuARe+BPsfwKc8Eto1SGZAPTZ38GKD5NpFDLKZEqSpMZm5K/h/edgyBeTAvftqa9ECpIk7/vvbtn7VVwKz1ybzLN16De2+1YL0CVJUv3aoz8M/cqOE6k0bD1k16Uv7D00KYTfTsaU/iCfyZQkScqy4hL4eEYy03pGmUxJkqTsGnQmFDTf4fp9MeX7+UymJElSdrXuBP1GJjOzb1i/7f4MjPNlqgC9rKyMefPmsXbt2lo7Z/v27Zk5c2atnS+ftWzZku7du9OsWcbGyCVJ2pGi0mRCz1mPQf+TttmddgF6ppKpefPm0a5dO3r27Flr80asWLGCdu3a1cq58lmMkU8++YR58+bRq1evtMORJKn6+hwNbXaHybduk0xloGMqW8N8a9eupXPnzpmYgKuhCSHQuXPnWu31kySpXhQ0g8Gj4K1HYPXitKPZRqaSKcjGTKYNlW0rScpbxSVQXgbT7ko7km1kLpmSJEnaxp6DoetgmHLrFpuz0FFgMrWVgoICiouLOeCAAzjnnHNYvXp1rZ5/+PDhTJo0aYfH/O53v9viuieeeCJLly6t1TgkSco7xSUw/zX4+I0tNseUK9BNprbSqlUrJk+ezOuvv07z5s254YYb6j2GrZOp8ePH06FDh3qPQ5KkTBl8DoSCLXqnMtAxla27+Sr66QPTmTF/eY3Ps3HjRgoKCgAYuNdu/OSUShZz3I7DDz+cqVOnsnjxYr7yla/wzjvv0Lp1a8aMGUNhYSFXXXUVs2fP5oMPPmDu3Ll8//vf56KLLmLixIlcc801PPjggwB87WtfY+jQoZx33nlbnP/SSy/l5ZdfZs2aNZx99tn89Kc/5Q9/+APz589nxIgRdOnShQkTJtCzZ08mTZpEly5duPbaa7npppsAuPDCC/nWt77FnDlzGDlyJIcddhjPPfcce++9N/fffz+tWrWqcftJkpQZbfeAvscma/Ud/RNoUpB2RIA9U9u1YcMG/vWvfzF48GB+8pOfMGTIEKZOncovfvELvvSlL3163NSpU3nooYd4/vnn+dnPfsb8+fOrfY2rr76aSZMmMXXqVJ588kmmTp3KN77xDfbaay8mTJjAhAkTtjj+lVde4W9/+xsvvvgiL7zwAn/5y1947bXXAHj77be5/PLLmT59Oh06dODuu++unYaQJClLikpgxQL463GwfAFAyvOfZ7hnamd6kHZkZ+eZWrNmDcXFxUDSM3XBBRdw8MEHf5qcHHXUUXzyyScsW7YMgNNOO41WrVrRqlUrRowYwUsvvVTtIbmxY8cyZswYNmzYwIIFC5gxYwaFhYXbPf6ZZ57hjDPOoE2bNgCceeaZPP3005x66qn06tXr07gPOugg5syZU+3PLElS3ug3Epo0gw8mwTO/JXBM2hFVL5kKIZwA/B4oAG6MMf5yq/0ht/9EYDVwXozx1VqOtV5sqpmqqLLCtk13D2x9F0EIgaZNm1JeXv7ptsrmdnr33Xe55pprePnll+nYsSPnnXdelXNA7ajArkWLFp8+LygoYM2aNTs8lyRJealpC/jqU3DfJTDtTprGI9OOqOphvhBCAfAnYCQwECgJIQzc6rCRQN/c42Lg+lqOM1VHHHEEt9xyCwATJ06kS5cu7LbbbgDcf//9rF27lk8++YSJEyfymc98hn333ZcZM2awbt06li1bxuOPP77NOZcvX06bNm1o3749H330Ef/6178+3deuXTtWrFhRaRz33Xcfq1evZtWqVdx7770cfvjhdfSpJUnKqK4DYcQPYc1iDuO1vFhOZhgwK8b4DkAI4XbgNGBGhWNOA/4Zk66TF0IIHUII3WKMC2o94hRcddVVnH/++RQWFtK6dWv+8Y9/fLpv2LBhnHTSSbz//vtceeWV7LXXXgCMGjWKwsJC+vbty5AhQ7Y5Z1FREUOGDGHQoEH07t2bQw899NN9F198MSNHjqRbt25b1E0deOCBnHfeeQwbNgxICtCHDBnikJ4kqfHZ72hoswe/XnUtD33SBDggtVBCVXMzhBDOBk6IMV6Ye/1F4OAY49cqHPMg8MsY4zO5148DP4gxTtrqXBeT9FzRtWvXg26//fYtrtW+fXv69OlT4w9VUcW7+WrbL37xC9q2bcs3vvGNOjl/XZg1a9an9V6brFy5krZt26YUUX6wjarHdqqabVQ9tlPVbCPY64OHaDHrQWa0O4xWB35+m/212UYjRox4JcY4tLJ91emZqmwGh60zsOocQ4xxDDAGYOjQoXH48OFb7J85c2atL0pclwsdt2jRghYtWuTVQsotW7bcpqds4sSJbP290JZso+qxnapmG1WP7VQ12whgOPAb9t3O3vpqo+okU/OAHhVedwe2vv+/Osc0OFdddVXaIUiSpJRVZ56pl4G+IYReIYTmwGhg3FbHjAO+FBKfBZY1lHopSZKkHamyZyrGuCGE8DXgEZKpEW6KMU4PIVyS238DMJ5kWoRZJFMjnF93IUuSJGVHteaZijGOJ0mYKm67ocLzCFxeu6FJkiRln8vJSJIk1UBml5NJS0FBAYMHD/709ejRo7niiitSjEiSJGWZydRWKltOpqY2bNhA06Y2tSRJDVF2f8P/6wr4cFqNT9Nq4wYoyH3MPQfDyF/u+A3b0bNnT7785S/zwAMPUFZWxp133kn//v1ZtWoVX//615k2bRobNmzgqquu4rTTTuPvf/87Dz30EGvXrmXVqlU8+OCDnHfeebzxxhsMGDCAOXPm8Kc//YkpU6bw+uuv89vf/haAv/zlL8ycOZNrr722xp9dkiTVPWumtrJmzRqKi4s/fdxxxx2f7uvSpQuvvvoql156Kddccw0AV199NUcddRQvv/wyEyZM4Hvf+x6rVq0C4Pnnn+cf//gHTzzxBNdddx0dO3Zk6tSpXHnllbzyyitAMow4btw4ysrKAPjb3/7G+ed7M6QkSfkiuz1Tu9iDtLU1OzkD+o6G+c4880wADjroIO655x4AHn30UcaNG/dpcrV27Vref/99AI499lg6deoEwDPPPMM3v/lNAA444AAKCwsBaNOmDUcddRQPPvggAwYMoKysbIuaLUmSlG3ZTaYyqEWLFkBSpL5hwwYAYozcfffd9OvXb4tjX3zxRdq0afPp6x2tgXjhhRfyi1/8gv79+9srJUlSnnGYr4aOP/54/vjHP36aLL322muVHnfYYYcxduxYAGbMmMG0aZvrwQ4++GDmzp3LrbfeSklJSd0HLUmSao3J1Fa2rpmqalqEK6+8krKyMgoLCznggAO48sorKz3usssuY+HChRQWFvKrX/2KwsJC2rdv/+n+UaNGceihh9KxY8da/TySJKluOcy3lY0bN1a6fc6cOZ8+Hzp0KBMnTgSSGqs///nP2xx/3nnncd555336umXLltx88820bNmS2bNnc/TRR7PvvpvXuX7mmWf49re/XSufQZIk1R+TqXqyevVqRowYQVlZGTFGrr/+epo3b87SpUsZNmwYRUVFHH300WmHKUmSdpLJVD1p164dkyZN2mZ7hw4deOutt1KISJIk1YbM1Uzt6K431YxtK0lS7ctUMtWyZUs++eQTf+nXgRgjn3zyCS1btkw7FEmSGpRMDfN1796defPmsXDhwlo759q1a00gclq2bEn37t3TDkOSpAYlU8lUs2bN6NWrV62ec+LEiQwZMqRWzylJkrRJpob5JEmS8o3JlCRJUg2YTEmSJNVASOvOuRDCQuC9erhUF2BRPVwnn9lGVbONqsd2qpptVD22U9Vso6rVZhvtG2PcvbIdqSVT9SWEMCnGODTtOLLMNqqabVQ9tlPVbKPqsZ2qZhtVrb7ayGE+SZKkGjCZkiRJqoHGkEyNSTuAPGAbVc02qh7bqWq2UfXYTlWzjapWL23U4GumJEmS6lJj6JmSJEmqMyZTkiRJNdBgk6kQwgkhhDdDCLNCCFekHU+aQgg3hRA+DiG8XmFbpxDCYyGEt3NfO1bY9/9y7fZmCOH4dKKuXyGEHiGECSGEmSGE6SGEb+a22045IYSWIYSXQghTcm3009x222grIYSCEMJrIYQHc69to62EEOaEEKaFECaHECblttlOFYQQOoQQ7gohvJH7v+kQ22hLIYR+uZ+hTY/lIYRv1Xs7xRgb3AMoAGYDvYHmwBRgYNpxpdgeRwAHAq9X2PZr4Irc8yuAX+WeD8y1VwugV64dC9L+DPXQRt2AA3PP2wFv5drCdtrcRgFom3veDHgR+KxtVGlbfQe4FXgw99o22raN5gBdttpmO23ZHv8ALsw9bw50sI122F4FwIfAvvXdTg21Z2oYMCvG+E6McT1wO3BayjGlJsb4FLB4q82nkfxDJff19Arbb48xrosxvgvMImnPBi3GuCDG+Gru+QpgJrA3ttOnYmJl7mWz3CNiG20hhNAdOAm4scJm26h6bKecEMJuJH8I/xUgxrg+xrgU22hHjgZmxxjfo57bqaEmU3sDcyu8npfbps26xhgXQJJIAHvktjf6tgsh9ASGkPS82E4V5IavJgMfA4/FGG2jbf0O+D5QXmGbbbStCDwaQnglhHBxbpvttFlvYCHwt9yQ8Y0hhDbYRjsyGrgt97xe26mhJlOhkm3OAVE9jbrtQghtgbuBb8UYl+/o0Eq2Nfh2ijFujDEWA92BYSGEA3ZweKNroxDCycDHMcZXqvuWSrY16Daq4NAY44HASODyEMIROzi2MbZTU5LyjOtjjEOAVSTDVdvTGNvoUyGE5sCpwJ1VHVrJthq3U0NNpuYBPSq87g7MTymWrPoohNANIPf149z2Rtt2IYRmJInULTHGe3KbbadK5IYbJgInYBtVdChwaghhDkl5wVEhhJuxjbYRY5yf+/oxcC/JUIvttNk8YF6u9xfgLpLkyjaq3Ejg1RjjR7nX9dpODTWZehnoG0LolctWRwPjUo4pa8YBX849/zJwf4Xto0MILUIIvYC+wEspxFevQgiBpDZhZozx2gq7bKecEMLuIYQOueetgGOAN7CNPhVj/H8xxu4xxp4k/+88EWP8ArbRFkIIbUII7TY9B44DXsd2+lSM8UNgbgihX27T0cAMbKPtKWHzEB/UdzulXX1fVw/gRJI7smYDP0w7npTb4jZgAVBGkpVfAHQGHgfezn3tVOH4H+ba7U1gZNrx11MbHUbS1TsVmJx7nGg7bdFGhcBruTZ6HfhxbrttVHl7DWfz3Xy20ZZt05vkjqopwPRN/0fbTtu0UzEwKfdv7j6go21UaTu1Bj4B2lfYVq/t5HIykiRJNdBQh/kkSZLqhcmUJElSDZhMSZIk1YDJlCRJUg2YTEmSJNWAyZQkSVINmExJkiTVwP8HEKfJMF89uLoAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" @@ -90,28 +787,29 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 69, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "vision_pixel_size 9\n", - "angles 247.5 292.5\n", + "vision_pixel_size 18\n", + "angles 225.0 315.0\n", "(1, 0.5) 27\n", - "(-0.8, -0.5) 212\n", + "(-0.25, -0.5) 243\n", + " chunk: 1 0.5590169943749475\n", "(-0.1, -0.6) 261\n", " chunk: 1 0.6082762530298219\n", - "(-0.67, 0.2) 163\n", + "(-0.32, 0.2) 148\n", "\n", "Vision array (shows a 1 when there is a being within viewing distance in that direction)\n", - "[0, 1, 0, 0, 0]\n" + "[0, 2, 0, 0, 0]\n" ] }, { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAJOCAYAAAAUOGurAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8XUlEQVR4nO3dd3iUxdfG8e9QQlUQKQIqoCIIIirYf0IQUMQC9l5fxK4oFuxdsFcsqChWbICAFBEIdgVUJIAoNqSLgPQ+7x9n0YgJpOzu7O5zf64rV5Kt58lmd8/OnDnjvPeIiIiISPKVCh2AiIiISFQpERMREREJRImYiIiISCBKxEREREQCUSImIiIiEogSMREREZFAlIiJSNw556Y457K3cpmdnXPLnXOlkxOViEjqUSImIkXinBvpnLszn9M7OefmOefKeO+beu9ztnQ73vuZ3vvK3vsNCQs2Dpxz9Z1z3jlXJkn3d65z7pM43davzrl28bgtEUkMJWIiUlQvAWc559xmp58FvOa9X5/8kERE0pMSMREpqkFANeDQTSc457YDjgZejv3+90iMc25/59wE59xS59x859zDsdP/NdLknKvjnBvsnFvknJvhnLsgz+3f7px7yzn3snNuWWzqs2V+wTnziHNugXPuL+fcd865PZ1z+8Xuv0yey57gnPt2S3ECH8W+L4lNpR4Uu/z5zrlpzrnFsVHCenlu1zvnLnHO/RiL9y7n3K7Ouc9jt/+Wcy4rn9j3AJ4BDord15LY6eWccw8652bGYnvGOVchdl5159xQ59yS2N/uY+dcKefcK8DOwJDYbV1XqEdXRJJKiZiIFIn3fhXwFnB2npNPBr733k/K5yqPAY9577cFdo1dNz9vALOAOsCJwL3OubZ5zj8W6A9UBQYDTxZwO4cDrYDdY5c9BfjTez8e+BNon+eyZwKvbCXOVrHvVWNTqZ875zoDNwLHAzWAj2Px59UBaAEcCFwH9AHOAHYC9gRO2zxw7/004CLg89h9VY2ddV/sePYGdgPqArfGzuuO/d1qALVicXnv/VnATOCY2G3dX8DfS0QCUiImIsXRDzhp06gMlpT1K+Cy64DdnHPVvffLvfdfbH4B59xOwP+A6733q7333wLPY9Odm3zivR8Wqyl7BWi+hfvbBmgMOO/9NO/93Dxxnxm7z2rAEcDrhY0zjwuBnrHbXg/cC+ydd1QMuM97v9R7PwXIBT7w3v/svf8LGA7ss4Xb/1tsCvgC4Crv/SLv/bLY/Z2aJ+7aQD3v/Trv/cdemwiLpA0lYiJSZN77T4A/gE7OuV2A/fgnodnc/2GjOd8758Y7547O5zJ1gE1Jxia/YSM/m8zL8/NKoHx+BfTe+zHYaFlvYL5zro9zbtvY2a8CxzjnKmOjeB/nSdIKE+cm9YDHYtOBS4BFgNss3vl5fl6Vz++Vt3D7edUAKgIT89zfiNjpAA8AM4APnHM/O+d6FPJ2RSQFKBETkeJ6GRsJOwsb7Zmf34W89z96708DamJTbO845yptdrE5QDXn3DZ5TtsZmF2cwLz3j3vvWwBNseTq2tjps4HPgeNicb+S5zoFxZnf6NLvwIXe+6p5vip47z8rTrybh7/Z7wuxxK1pnvuq4r2vHIt7mfe+u/d+F+AY4Oo8U7oaGRNJcUrERKS4XgbaYdNmBU1L4pw70zlXw3u/EVgSO/lfLSu8978DnwE9nXPlnXN7YSNUrxU1qFhR/gHOubLACmD1Zvf3Mlaz1QwYWIg4/wA2ArvkuY1ngBucc01j163inDupqLEWYD6w46Zi/lg8zwGPOOdqxu6vrnPuiNjPRzvndotNYS6Nxbwhz23tsvkdiEjqUCImIsXivf8VS54qYcXzBekATHHOLccK4k/13q/O53KnAfWx0bGBwG3e+1HFCG1bLHFZjE1v/gk8mOf8gdjU4kDv/Yqtxem9XwncA3wamxo80Hs/EBs16++cW4rVgB1ZjFjzMwaYAsxzzi2MnXY9Nv34Rez+PgQaxc5rGPt9OTba91SeHm49gZtjcV8Tp/hEJI6cajpFJGqccz9hU4sfho5FRKJNI2IiEinOuROw2qkxoWMREUnKlh0iIqnAOZcDNAHOitVeiYgEpalJERERkUA0NSkiIiISSFpOTVavXt3Xr18/ofexYsUKKlXavNVRdET5+KN87BDt49exR/PYIdrHH+Vjh+Qc/8SJExd672vkd15aJmL169dnwoQJCb2PnJwcsrOzE3ofqSzKxx/lY4doH7+OPTt0GMFE+fijfOyQnON3zv1W0HmamhQREREJRImYiIiISCBKxEREREQCUSImIiIiEogSMREREZFAlIiJiIiIBKJETERERCQQJWIiIiIigSgRExEREQlEiZiIiIhIIErERERERAJRIiYiIiISiBIxERERkUCUiImIiIgEokRMREREJBAlYiIiIiKBKBETERERCUSJmIiIiEggSsREREREAlEiJiIiIhJIXBIx51xf59wC51xuAec759zjzrkZzrnvnHP75jmvg3Nueuy8HvGIR0RERCQdxGtE7CWgwxbOPxJoGPvqCjwN4JwrDfSOnd8EOM051yROMZWIc2tDhyAiIiIJtSZ0APFJxLz3HwGLtnCRTsDL3nwBVHXO1Qb2B2Z473/23q8F+scuG1h/9tuvCzAzdCAiIiKSEFOARmy33cSgUZRJ0v3UBX7P8/us2Gn5nX5AfjfgnOuKjaZRq1YtcnJyEhIowLbbLqJZs0WsWnUAkyY9zOrVtRN2X6lq+fLlCf0bp7IoHztE+/h17DmhwwgmyscfxWOvVGkGzZtfg/dlWLSoYtDjT1Yi5vI5zW/h9P+e6H0foA9Ay5YtfXZ2dtyC+69sJkwoTcuWN3DggdcDY4DdEnh/qScnJ4fE/o1TV5SPHaJ9/Dr27NBhBBPl44/esU8ErgO2Acbg3Oygx5+sVZOzgJ3y/L4jMGcLpwe3fHkjYCywCmgFfB82IBERESmhL4C2wLbAR1jpeljJSsQGA2fHVk8eCPzlvZ8LjAcaOucaOOeygFNjl00RzbFkbCPQGsh3UaiIiIikvE+Aw4HqWBLWIGw4MXGZmnTOvQFkA9Wdc7OA24CyAN77Z4BhQEdgBrASOC923nrn3GXASKA00Nd7PyUeMcXPnkAOcBjQBvgQS9BEREQkPeQAR2MTb6OxEvXUEJdEzHt/2lbO98ClBZw3DEvUUlhjLHvelIx9ALQMGpGIiIgUxiisIUMDLAnbIWw4m1Fn/ULbDRgHVMHml78IG46IiIhsxTDgGKwWLIdUS8JAiVgRNcCSsRpAe+DjsOGIiIhIAQYBnYGmWPeDGiGDKZASsSLbGZumrIttJjA2bDgiIiKymbeBk4B9senI7cOGswVKxIqlDjYy1gBbg/BB2HBEREQk5nWsCcOB2Ptz1aDRbI0SsWKrhY2GNcLmn98PG46IiEjkvQScibWcGo71C0ttSsRKpAY279wMOA4YGDYcERGRyOqDdcdqBwwFKocNp5CUiJVYNay3WAtsPvqtsOGIiIhEzpPAhVi50GCgYthwikCJWFxUxeahDwJOA14LGo2IiEh0PAxcjvUKGwCUDxtOESkRi5ttgBHYvPRZwIthwxEREcl4PYHu2IzU20C5sOEUgxKxuKqEzUu3B84Hng0bjoiISEbywB3AjcDp2ErJskEjKi4lYnFXEXgPOAq4CHgibDgiIiIZxQM3AbcD5wIvE6cdG4NQIpYQ5bF56s7AFcBDQaMRERHJDB64FpuS7Aq8AJQOGlFJKRFLmCxsBeXJwDXAvWHDERERSWseuBIb3LgMeIZMSGPSdywvLZTFVlBmYcOoa4HbABcyKBERkTSzEbgY6xXWHXiATHkvVSKWcGWwTr9lscLCNdjoWGb8A4mIiCTWBqAL9l56A3APmfQeqkQsKUoDz2MjY72wZOwhMukfSUREJP7WA+dgqyJvB24l0947lYglTSngaSwZewSbpnycTJjfFhERib91wBlYf7B7sdGwzKNELKkc8BjWcO5BLBnLjGJDERGR+FkDnAoMwmaQrg4aTSIpEUs6B9yPjYzdiyVj6b/8VkREJD5WAycAw7BenJeFDSfBlIgF4YC7sZGx27Dh137o4RARkWhbifXgHIXtTtM1aDTJoHf+YBxWdJiFzXuvJZ23aBARESmZ5cAxwDigL3Be2HCSRIlYcD2wkbGrsZGxN0nHTUtFRESKbym2NeBnwCtYkX40qEo8JVwFPIntUXk8Nj8uIiISBUuAw4EvgP5EKQkDJWIp5FKsY/BwbGh2ZdhwREREEm4R0A74GmtTcVLYcAJQIpZSLsDmxUdjQ7TLw4YjIiKSMH8AbYBcYCBWpB89SsRSzrnAq8DHQAds3lxERCSTzAOygR+AwdjgQzQpEUtJp2Pz5F9i8+ZLgkYjIiISP7OxJOxXrFfY4SGDCU6JWMo6EXgHmzdvC/wZNhwREZESmwm0xpKxkdjUZLQpEUtpnbDtHaYAhwELgkYjIiJSfL9gSdhCrGHr/8KGkyKUiKW8jsAQ4Efsk8O8sOGIiIgU2QygFfAXtiDtwLDhpBAlYmmhPTaP/hv/DOmKiIikg++xJGw1MBZoETacFKNELG1kY/Ppc7FkbGbQaERERLYuF3vP2gjkAM2DRpOKlIillUOwefWF2KeLn8OGIyIiUqBvsUGEMtj+kU1DBpOylIilnQOw+fVl2KeMH8OGIyIi8h8TsEVmFbEkrFHYcFKYErG01AIYg823twamhQ1HRETkb59jbZeqAB8Bu4UNJ8UpEUtbzbH59o3Y0G9uyGBERESwXWEOB2piSVj9oNGkAyViaa0pNuRbBkvGvgkajYiIRNkYbGu+HbH3pp3ChpMmlIilvUbYp45K2Hz8+LDhiIhIBI3E9otsgM3W1AkaTTpRIpYRdsU+fWwHtAM+CxuOiIhEyFDgWGxgYCxQK2w4aUaJWMaojyVjtYAjsFEyERGRRBoIHA/shU1N1ggbThpSIpZRdsKSsR2BI7E2FyIiIonwFnAStpL/Q6Ba2HDSlBKxjFMbm5/fBTgam7cXERGJp1eB04CDgA+wVhVSHErEMlItbJ6+MTZvPyRsOCIikkH6AmdjfSxHANuEDSfNKRHLWNWxqcm9sPn7AWHDERGRDPAs8H9Ae6xIv1LYcDKAErGMVg2bt98POBl4M2w4IiKSxp4ALsLaVLyHbV8kJaVELONVwerEDgFOB14JG46IiKShB4ErgOOwGZbyYcPJIErEImEbYBjWff8cbH5fRESkMO4BruWfmZWssOFkGCVikVEJm88/HJvffzpsOCIikuI8cBtwM3Am8BpQNmhEmUiJWKRUAAZhbS0uAR4LGo2IiKQqD9wI3AmcB7yE7Wss8aZELHLKA+9iKym7AQ8EjUZERFKNB7oDvbDi/OeB0kEjymRKxCIpC+gPnAJcB9wdNhwREUkRG4HLgUew4vynUKqQWBpnjKyyWGfkLOAWYC1wB+BCBiUiIsFsBC7ERsCuAe5H7wmJp0Qs0soAL2JJ2V1YMtYTPfFERKJmA7aQqx9wE/aeoPeCZIhLIuac64BVfpcGnvfe99rs/GuBM/Lc5x5ADe/9Iufcr8Ay7L9gvfe+ZTxiksIqDTwHlAPuA9YADweNSEREkse5DdiWRa9jxfm3hA0oYkqciDnnSgO9sf0OZgHjnXODvfdTN13Ge/8Asapw59wxwFXe+0V5bqaN935hSWOR4iqFPYRZwKPYyNgJIQMSEZGkWMcee9wFjMOK868PHE/0xGNEbH9ghvf+ZwDnXH+gEzC1gMufBrwRh/uVuHJYcWYW8AC77/4b1gBWRZoiIplpDXAyNWuOw2ZCrgocTzQ5733JbsC5E4EO3vsusd/PAg7w3l+Wz2UrYqNmu20aEXPO/QIsxtbLPuu971PA/XQFugLUqlWrRf/+/UsU99YsX76cypUrJ/Q+UpOnfv0XqV//FebNO5zvv7+OqC1bju5jb6J8/Dr2aB47RO/4S5VaQ9Omt7H99l8yefJF/PnnKaFDCiYZj32bNm0mFlR6FY8Rsfyq+QrK7o4BPt1sWvIQ7/0c51xNYJRz7nvv/Uf/uUFL0PoAtGzZ0mdnZ5cw7C3Lyckh0feRutrwyy9laNDgRXbYoRq2P2V01nVE+7GP9vHr2LNDhxFMtI5/JTZx9RXQhz//bBihY/+v0I99POadZgE75fl9R2BOAZc9lc2mJb33c2LfFwADsalOCey3387Givf7Yw/b2rABiYhIHCwHjgLGYKvmLwgbjsQlERsPNHTONXDOZWHv2oM3v5BzrgrQGngvz2mVnHPbbPoZ2wgxNw4xSVxch9WNvQuciNUTiIhIeloKdAA+xmY6zgkbjgBxmG/y3q93zl0GjMSKifp676c45y6Knf9M7KLHAR9471fkuXotYKBzblMsr3vvR5Q0JomnblgB/6VAZ2AAtmeliIikj8VYEvY1NtNxYthw5G9xKfzx3g8Dhm122jOb/f4Stmto3tN+BprHIwZJpEuwZKwrVub3HlApaEQiIlJYf2IdpnKBd7D6MEkV6k0ghdQFy6PHAh2xHrwiIpLaFgBtsI5S76EkLPUoEZMiOBt4DfgUG+L+K2w4IiKyBXOxJGwGMBQ4Mmw4ki8lYlJEpwJvYsue22N1ByIiklpmY025fwOGA+2CRiMFUyImxXACtpJyEtAW0O5UIiKp4zegFTYiNhJrWCCpSomYFNOxWL3BVOAwrA5BRETC+hlLvP4ERgGHhA1HtkqJmJRAB+B9rP4gG/v0JSIiYfyIJWHLsIatB4QNRwpFiZiUUFus/mAm9gIwK2w4IiKRNA2bjlyNrW7fN2w4UmhKxCQOWmN1CPNiP/8WNhwRkUiZjL32eiAH2CtoNFI0SsQkTg4BPgQWYZ/KfgobjohIJHyDtagoC4wDmoYNR4pMiZjE0f7AaGxT2dbAD2HDERHJaOOxxVKVgI+ARmHDkWJRIiZxti82NL4WS8amBo1GRCQzfYb1BtsOS8J2DRuOFJsSMUmAZlgyBraa8rtgkYiIZJ6PgMOBWrGf64UNR0pEiZgkSBOsXiELq1/4Omw4IiIZYTTWOmgn7DV2x7DhSIkpEZME2h17oaiMtbn4Kmw4IiJpbQRwNDYNmQPUDhqNxIcSMUmwXbGh82pYPcNnYcMREUlLQ4BOQGOsT1itsOFI3CgRkySoh42M7YDVNYwLG46ISFoZABwPNMc65lcPG47ElRIxSZIdsQRsZ+BIrOeYiIhsWX/gZGA/bO/I7cKGI3GnREySqDZW17AbVucwPGg0IiKp7WXgDKxh9kigSthwJCGUiEmS1cTqG5oAnYHBQaMREUlNLwDnYi2AhgHbhAxGEkiJmASwPbYEe2/gBODdoNGIiKSWp4EuwBHAUKxzvmQqJWISyHbAB9i2SKcAb4QNR0QkJTwGXAIcAwwCKgSNRhJPiZgEVAXri3MIcCbQL2w4IiJB3Q90w1ZIvgOUCxqNJIcSMQlsG6z+oQ1wHvB82HBERIK4C7geOBVbKZkVNhxJGiVikgIqYc0KjwAuAJ4KG46ISNJ44BbgVuAs4FWgbNCIJLmUiEmKqIDVQxwDXAo8GjIYEZEk8EAP4G7g/4AXgdJBI5LkUyImKaQcVhdxAnAVcF/YcEREEsZjr3P3AxcDfVASFk1KxCTFZGH1EadinxTvChuOiEjcbcRG/h8DrgR6o7fj6CoTOgCR/yqD1UlkYXUTa4E7ARcyKBGRONgIdMUatl4H9EKvbdGmRExSVGmsXiILq59Yg01V6gVLRNLVBuB8bOuiW4A70GuaKBGTFFYKeBZLxh7ARsYeQS9cIpJ+1gFnY6UXd2KJmIgSMUl5pYAnsWTsUWxkTPUUIpJO1gKnAQOwkf3rwoYjKUWJmKQBBzyMraq8D3tR0wojEUkHa4CTsF6Jj2Cd80X+oURM0oQDemLJ2J1YMvYi+hcWkdS1CtuuaATWqPrisOFIStK7mKQRhxW3lsXqK9YBr6Au1CKSelYAnYAx2NZt/xc2HElZSsQkDd2MjYxdh42MaV82EUkly4CjgU+Al7AifZH8qeJZ0tS1WPH+QKwT/+qg0YiImL+wfXM/BV5DSZhsjRIxSWNXAk8DQ4HOWD2GiEgoi4H2wHjgTWyHEJEtUyImae4irEP1B9hUwIqw4YhIRC0E2gKTsDYVJ4QNR9KGEjHJAJs6VecAR2L1GSIiybIAOAyYCrwHHBM2HEkrSsQkQ5wJvA58htVn/BU2HBGJiLlANjADeB/oEDQaST9KxCSDnAK8BUwA2gGLwoYjIhluFtAamAkMx6YmRYpGiZhkmOOx+ozvsBfFhWHDEZEM9SvQCpiP1ai2DhqNpC8lYpKBjgYGA98DbbAXShGRePkJS7wWA6OAg8OGI2lNiZhkqCOwthY/YfUbc4JGIyKZYjqWhC0HRgP7hw1H0p4SMclgbbE93jbVcfweNhwRSXNTsdeStdgq7X2DRiOZQYmYZLhWWP3GAuwF9Neg0YhIuvoOG113WBLWLGQwkkGUiEkEHAR8iNVztMKmK0VECutrrN40CxgHNAkbjmQUJWISEfsBY4CVWDI2PWw4IpImvsLKHCoDHwG7hw1HMo4SMYmQfYCxwHpsmnJK2HBEJMV9ivUkrIYlYbuEDUcykhIxiZhmWH1HKazeY1LIYEQkZeVgq69rY9OR9YJGI5lLiZhE0B7YC2t5rO5jYthwRCTFfAh0xJKvHGDHoNFIZlMiJhHVEJtq2Bar//gybDgikiKGY02hd8NKGWqHDUcyXlwSMedcB+fcdOfcDOdcj3zOz3bO/eWc+zb2dWthryuSOA2wkbHtgfbAJ2HDEZHABgOdsVWRY4GaQaORxBr0zWwO6TWGybP/4pBeYxj0zewgcZQp6Q0450oDvbF3slnAeOfcYO/91M0u+rH3/uhiXlckQephI2OHAR2wbvwiEjU1aowD7saatI4AtgsbkCTUoG9mc8OAyaxatwF2gtlLVnHDgMkAdN6nblJjiceI2P7ADO/9z977tUB/oFMSrisSJ3X5pxi3I9ttNyFwPCKSXK/TpMmd2FvSKJSEZb4HRk5nzZq1dPz+E8qsXg3AqnUbeGBk8lsbOe99yW7AuROBDt77LrHfzwIO8N5flucy2cC72KjXHOAa7/2Uwlw3z210BboC1KpVq0X//v1LFPfWLF++nMqVKyf0PlJZFI+/bNklNG/enQoVfmfKlDtZtOjA0CEFEcXHfhMde/SOvVatETRu/ACLFjVh6tT72bChQuiQki5qj73bsIG1bw+h5eB32G7ubCZcdAmf/+/wv89vVrdK3O+zTZs2E733LfM7r8RTk9h+D5vbPLv7GqjnvV/unOsIDMKqpQtzXTvR+z5AH4CWLVv67Ozs4sZbKDk5OST6PlJZdI//UJYtO4i99roVeJsoDtBG97HXsUfv2J8H7gfaMmVKd1q16hA6oCAi89ivXQsvvww9e8LPPzO1ZgNu7NSDJgfvz0OTLR2qW7UCl5+RndSw4jE1OQvYKc/vO2KjXn/z3i/13i+P/TwMKOucq16Y64ok1/ZMmvQw1vz1RCwZE5HM0xu4AOsVNpiNG8sHjkcSZvVq6N0bdtsNLrgAqlXji0f6csIFvRne+H9QylKhCmVLc+0RjZIeXjwSsfFAQ+dcA+dcFnAqtvTkb865HZxzLvbz/rH7/bMw1xVJtvXrK2N1Igdg/5Kvhw1IROLsEeAy4FhsgiZ605GRsGIFPPwwNGgAl10GO+8MI0bAV19xYLfz6HnCXtStao993aoV6Hl8s6QX6kMcpia99+udc5cBI4HSQN9Y/ddFsfOfwYYWLnbOrQdWAad6K07L97oljUmk5LbFVk4dA5wJrAPOCRqRiMTDfUAP4ATsQ1ZW2HAk/pYuhaeesiTsjz+gTRt4/XXIzgb3T0VU533q0nmfuuTk5CR9OjKveNSIbZpuHLbZac/k+flJ4MnCXlckNVQG3sfqxM4D1mJTGSKSnu4CbgVOA14mTm+BkioWL4bHH4fHHrOfO3SAm2+GQw4JHdkW6b9QZIsqAkOA47FFu2uBS4NGJCJF5YFbgHuAs4G+2CSMZISFC+GRR+DJJ200rFMnS8Ba5rtIMeUoERPZqvLAQOAUrK5kDXB10IhEpLA8cB3wINAFeBbt7pch5s2DBx+Ep5+GVavgxBMtAdtrr9CRFYkSMZFCKYetoDwd6I4lYzcEjUhEtsYD3YDHgUuAJ1ASlgF+/x3uvx+eew7WrYPTT4cbb4Q99ggdWbEoERMptLLAG1hx743YNOWt5N8OT0TC2oiVETwDXAU8hJ6rae6XX6BXL3jxRfAezjkHevSwthRpTImYSJGUwYp8ywK3Y8nY3egFXiSVbMBqOvsC1wM90XM0jf3wA9x7L7z6KpQuDV26wPXXQ716oSOLCyViIkVWGnuBzwLuxaYpH0Av9CKpYD22yvlVbMT6dvTcTFO5uZaAvfkmlCsHl18O114LdeqEjiyulIiJFEspbMojC5vyWAs8hl7wRUJah/X9ewsbqb4pbDhSPN98A3ffDQMGQOXKcM01cPXVUKtW6MgSQomYSLGVwop/ywEPYyNjT6NiYJEQ1mI7YQzERqivCRuOFN2XX1oCNnQoVKkCt9wCV14J228fOrKEUiImUiIOWxafBfTC3gyeRz2KRJJpNbaBy/vYyPQVYcORovnoI0vARo2CatXs50svhapVQ0eWFErERErMYbVi5YA7sOmRl9DTSyQZVgGdgQ+wEemLgkYjheQ9jB4Nd91liVjNmtaS4uKLbToyQvROIRIXDisKzsLqUtYCr2GrK0UkMVZg+8HmAC8A5weNRgrBexg2zEa9vvgC6ta1LYkuuAAqRHPzdSViInF1IzYydg02MtY/9ruIxNcy4CjgU6ylzJlhw5Et27gR3nvPErCvv7bWE888A+eeaysiI0xVxSJx1x3r5D0IOAGrXxGR+PkLOBz4DHgdJWEpbMMG6N8fmjeH44+3vSD79oUff4QLL4x8EgZKxEQS5HKsvcX7QCdgZdhwRDLGIqAdMBHbduyUsOFI/tavh379oEkTOO00GxF77TWYNg3OOw/KqmxjEyViIglzIdb4dRRwNFbPIiLFtxBoC3wHDACOCxuO/NfatbYH5O6727RjhQrw9tswebLtCVlGFVGbUyImklDnYfUr44AOwNKw4YikrflANvA9MBj7cCMpY9UqePJJ2HVX6NoVqleHwYOtOeuJJ0IppRsFUWoqknBnYqspT8fqWkYAVUMGJJJm5mAjYTOx6f7DwoYj/1ixworuH3wQ5s2DQw6B55+Hww8Hp51GCkOJmEhSnIy1sjgFq2/5AKgWNCKR9PA7lnjNwz7EHBo2HDFLl0Lv3vDww7BwIRx2GLzxBrRurQSsiDRWKJI0x2F1LZOxN5Y/woYjkvJ+BVoDC7APL0rCglu8GG6/3dpP3Hgj7LcffPqpNWfNzlYSVgxKxESS6mhgCDAdaIN9yheR/5oBtAIWAx8CB4UNJ+r++MMSr3r14I47LOkaP96asx58cOjo0poSMZGkOxyrc/kFKz6eHTQakdTzPTYSthIYC+wXNpwomzsXuneH+vWhVy848kiYNAkGDoSWLUNHlxGUiIkEcRhW7zIbe8OZGTYckZQxBfuAsh7bumjvgLFE2O+/w+WXQ4MGtgXRCSfA1Knw5puw116ho8soSsREgjkU6zH2B5aM/RI2HJHgJmFJWCms5cueQaOJpJ9/tvYTu+5qqyHPPBOmT4eXX4bGjUNHl5GUiIkEdSAwGtuypTVWFyMSRROxusnyWBKmN/2kmj4dzjnHGrH262ebcP/0k7Wi2HXX0NFlNLWvEAmuJTAGaI8VJ49Bb0ISLV9gDY+rYjVhDYJGEym5uexx110wdiyULw9XXAHXXAN16oSOLDI0IiaSEvbG3oA2YiNjuUGjEUmeT7APIdWBj1ASliRff22bcDdrxvaffw7XXQe//mp9wZSEJZUSMZGUsSdWnFwaq5P5NmAsIsmQAxwB1MGmI3cOGk0kfPEFHH00tGgBY8bArbfyRf/+tiKyZs3Q0UWSEjGRlNIYe0OqgK2snBA2HJGEGQV0BOpj//N1g0aT8T76CNq3h4MOsmTsnnvgt9/gjjtYv+22oaOLNCViIimnITZFUwXbX++LsOGIxN0w4Bjsfz0H2CFoNBnLexg1Clq1sq2HJk+GBx6wKcgbb4QqVUJHKCgRE0lRDbBRghpY/czHYcMRiZtBQGegKbYwpUbIYDKT9zB0qI1+HX64taR4/HH45RcrxK9cOXSEkocSMZGUtTM2MlYXW1E2Jmw4IiX2NnASsC/WtmX7sOFkmo0bYcAAq/865hiYP996gf30kzVnrVAhdISSDyViIiltUxFzA+AobONjkXT0GnAqcAD2f1w1aDQZZcMGeOMN63h/wgmwfDm8+CL88ANceCGUKxc6QtkCJWIiKa8W1tqiEVZX837YcESK7CXgLKxP3ghAxeFxsW4dvPQS7LEHnH66TUm+9hpMmwbnngtly4aOUApBiZhIWqiBTU02A44DBoYNR6TQ+gDnAe2wDxGqTyqxNWugTx9o1AjOOw8qVYJ33rFi/NNPh9KlQ0coRaBETCRtVAM+BFpgdTZvhQ1HZKueBC7E2lQMBiqGDSfdrVoFTzwBu+1mU441asCQIdac9YQToJTe0tORtjgSSStVgZFYvdhpwFrgzJABiRTgYaA70Al4E1CdUrEtXw7PPgsPPgjz5sH//gcvvGB9wZwLHZ2UkBIxkbSzLTAcOBY4G1iHTf2IpIqewI3AicDrgGqVimXpUnjySdt26M8/oW1b6N/feoJJxlAiJpKWKgNDsX5M52MjYxeGDEgE8MCdwO3A6UA/9DZTDIsWwWOPWe+vJUugY0e4+WbrCyYZR88QkbRVEau7ORG4CEvGLg8akUSZB27CRsPOBZ7H9k2VQluwAB55BHr3hmXLoHNnS8BatAgdmSSQEjGRtFYeGACcAlwBrAGuCRqRRJHH/u8eBroCT6O1YEUwd65tPfTMM7B6NZx8Mtx0EzRrFjoySQIlYiJpLwtbQXkGcC02MnZj0IgkSjz2IeBJ4DLgcUAF5IUycybcfz88/zysXw9nnAE33ACNG4eOTJJIiZhIRiiLFUVnYdNDa4Hb0BuiJNZG4GKsV9jVwIPof64Qfv4ZevaEfv3s93POgR49YNddw8YlQSgRE8kYZbDi6LLAHdg05b3ojVESYwPQBeuafwNwD/pf24rvv4d774XXX4cyZaBrV7juOth559CRSUBKxEQySmngBaxnUy8sGXsIvUFKfK0HzsFGYW8HbkX/Y1sweTLccw+89ZZtvH3lldC9O9SpEzoySQFKxEQyTimsWDoLeASbpnwcFU9LfKzD6hHfxkbBVI9YoIkT4e67YdAgqFwZrr8err7aOuKLxCgRE8lIDngMS8YewpKxZ1AyJiWzBjgVGITVg3UPGk3K+vxzS8CGDYOqVeG22+CKK6BatdCRSQpSIiaSsRzwADZNeS+WjL2AejtJ8awGTgCGYSOs6ln3H+PGwV13wejRsP32Nh156aVQpUroyCSFKRETyWgOuBtLxm7DppXU7VyKaiW2i8Mo4FmsV5gA4D2MGmUjYB9/DLVq2Z6QF15o05EiW6FXY5GM57Bi6ixsddtatP+fFN5y4BhgHNAX7Wsa4z0MHWoJ2FdfQd26tiVRly5WkC9SSErERCKjB5aMdcdGxt7ERspECrIU6Ah8DryCFelH3MaNMHCgJWDffgv168Ozz1ovsHJ6PknRqXJXJFKuBp4A3gOOx+p+RPKzBDgc+AJ4g8gnYRs2WP+vZs3gxBNhxQp46SX44QfrB6YkTIpJiZhI5FyG1fkMx6acVoYNR1LQIqAd8DXwDnBy2HBCWrfOEq499rAtiJyzhGzaNBsFK6spfikZTU2KRFJXbJryfOAoYAigwmIB+ANLwqYDA7H/jwhas8YSsF694NdfYZ994N13oXNnKKUxDImfuPw3Oec6OOemO+dmOOd65HP+Gc6572Jfnznnmuc571fn3GTn3LfOuQnxiEdECuNc4FXgI6ADVg8k0TYPyAZ+AAYTySRs1Sorut91V7joIlsFOXSoNWc9/nglYRJ3JR4Rc86VBnoD7YFZwHjn3GDv/dQ8F/sFaO29X+ycOxLbIfaAPOe38d4vLGksIlJUp2OrJ0/HnsIjw4YjwWRl/QFciL2Mvw8cFjagJCu9apW1nXjwQZg/Hw49FF58Edq1s+lIkQSJx9Tk/sAM7/3PAM65/kAn4O9EzHv/WZ7LfwHsGIf7FZG4OAmbpjwJaEuZMrcGjkeSbyb77NMNGxUdARwaNpxk+usvePJJDrz/fli61BKvt96CVq1CRyYR4bz3JbsB504EOnjvu8R+Pws4wHt/WQGXvwZonOfyvwCLAQ88673vU8D1uhLrIlirVq0W/fv3L1HcW7N8+XIqR7gZX5SPP6rHXq3aF+y5560sX16XyZMfZt267UKHlHRRfOzLl59L8+ZXU6bMMiZPvp+lS5uEDikpyixdyo7vvMOOAwZQZsUK5rdsyexzz2Vp06ahQ0u6KP7f55WM42/Tps1E733LfM/03pfoC/sY/Xye388Cnijgsm2AacD2eU6rE/teE5gEtNrafbZo0cIn2tixYxN+H6ksyscf5WP3/gO/fn05730T7/2c0MEkXfQe+x+89zt677fz48c/EzqY5Jg/3/vrr/e+cmXvwfvjjvN+4sQIPvb/iPKxe5+c4wcm+AJymnhUHc4Cdsrz+47AnM0v5JzbC3ge6OS9/zNPIjgn9n0BtkRn/zjEJCLF0p7Jk3sBv2FF27PDhiMJ9D3QGuslN5blyxsFjifB5syBq66yBqz33w9HHw3ffQcDBsC++4aOTiIsHonYeKChc66Bcy4LOBVbbvM359zOwADgLO/9D3lOr+Sc22bTz1j3wNw4xCQixbRkyd5YndBc7I16ZtB4JBFyscd2IzAWaL7li6ez336zjbd32QWeeAJOOsl6gL3xhjVnFQmsxMX63vv1zrnLsOVWpYG+3vspzrmLYuc/g210tz3wlLPVJ+u9zZXWAgbGTisDvO69H1HSmESkpP6HbfB8BNAKGAPsEjQiiZdvsT5hWdjj2jhoNAnz00/Qsyf062erHs89F3r0sIRMJIXEpaGr934YMGyz057J83MXoEs+1/uZjP4oJpLODgBGYwPVrbE37YZBI5KSmoA9npWxx3O3sOEkwvffw733Wvf7MmWsF9i118LOO4eOTCRf6kwnIlvQAnvDXo2NjE0LG46UwOdAW6AKMI6MS8K++w5OOQWaNLEO+FdeCb/8YtORSsIkhSkRE5GtaA7kYB1mWgOTg0YjxfExNhJWA0vCGoQNJ54mTrRth5o3h+HDbfrx11/hoYegdu3Q0YlslRIxESmEptgbeFmsC803YcORIhiDbWFVF9vOKkNGhz77DDp2hJYtYdw4uO02S8DuvRdq1AgdnUihKRETkUJqhCVjFbHtb8aHDUcKYSS2X2QD7LGrEzackvIecnKgbVs45BAYP94Sr99+g9tvh2rVQkcoUmRxKdYXKcigb2bzwMjpzFmyijpVK3DtEY3ovE/d0GFJse2Gjaochq28Gw4cHDQiKchQ4ARgD2wFbBqPEnkPH3wAd98Nn3xiG3E/+KAV4leqFDo6kRLRiJgkzKBvZnPDgMmU/+kHqqxayuwlq7hhwGQGfaMmoemtPja6UhNrb/FR0GgkPwOB44Fm2NRkmiZh3sOQIXDAAdChg009PvGEFeF3764kTDKCRsQkYR4YOZ1V6zZw9wdPsf/vU/imTiPG7tKSQX/9j857X2C9fSRN7YQlY22BI7Eezm2DRiSbvAWcDuyHjVhWDRpNsWzcaB3v774bJk2CBg2gTx845xzIygodnUhcaURMEmbOklUA9Mw+jycPOoWsDeu49uNXeOmJC2HHHeGCC2DgQFi2LHCkUjx1sNWUuwBHY/VIEtarwGnAQcAHpF0Stn49vPYa7LmndcBftQpeegmmT7fXCyVhkoE0IiYJU6dqBWYvWcV3tXfnu9q788ihZ1Bj+WI6z/+Om/gF3noLnn8eypaFVq3gqKNsFdTuu2u0LG3UwrbIaQ8cC7wDHBM0oujqi/XNzgaGAGk0bbduHbz6qhXez5gBTZvaFkQnnQSlS4eOTiShNCImCXPtEY2oUPbfL6LLt6tO0xuvhLffhoULYexY6NYN5s6Fq6+Gxo1ht93giitgxAhYvTpM8FIE1bEO/HthdUkDwoYTSc8A/4clxENJmyRszRp45hlo2BDOPx+22camJL/7Dk49VUmYRIISMUmYzvvUpefxzahbtQIOqFu1Aj2Pb/bPqsmyZSE7G+6/H6ZMsQLc3r1hjz1spOzII205+jHH2Iv1TG0+nbqqAR8CLYGTgTfDhhMpjwMXY20q3sPai6S4lSvhscds38eLL4YddoChQ60563HHQSm9NUl0aGpSEqrzPnUL366ifn245BL7WrXK+gUNGwbvv28v0mC1Ix072tfBB1syJymiClaXdBRWLL4WOCtoRJnvQeBaoDOW/KZ4DdXy5fD009Z6YsECK0no18/6gqkcQSJKHzskNVWoYCNiTzwBP/0E06bZi3fNmvDwwzaSVqMGnHyyvZDPnx86YgFgG2ylXjZwDla3JIlxD5aEnYytlEzhJOyvv2wFZL16cN11th3RuHH21a6dkjCJNI2ISepzzmrHGje23kFLl8KHH9pI2bBhVm8GsN9+NlJ21FHQooWmN4KphNUpHYfVLa3Bps4kPjxwO3AncCbwIin7Uv7nnzYF+fjjlowddRTcfDMceGDoyERSht6pJP1suy0cfzy88ALMng1ffw133QVlysCdd8L++1vNyTnn2MrMJUtCRxxBFYBBWFuLS4DHgkaTOTxwA5aEnQe8REomYQsWwPXXW7nBXXfZ1OPXX1uJgZIwkX9JwWewSBGUKgX77GNfN99sKzFHjrTRsiFD4OWXbeXVIYf8M1rWtKmmQpKiPPAucCrQDasZuzZkQGnOA92BR4ALgadIuc/Ss2fDAw9Y89U1a+CUU+DGG622U0TylWLPYpESql4dzjgDXn/dPpV/8ol9Ml+6FHr0gGbN7FP6xRdborZiReiIM1wWVkR+CnAdcHfYcNLWRuByLAm7HHialHr5/u03W2Szyy7w5JNWuzltmj0PlYSJbJFGxCRzlSljI2GHHAL33GOf1ocPt9GyV16xlhjlylnh/6bRsl13DR11BiqLdXzPAm7BRsbuADQqWTgbsRGw54FrgPtJmb/djBnQs6eNPDsH551nH3x22SV0ZCJpQ4mYREfdutCli32tWQMff2zF/sOGwZVX2tfuu7PrXnvZViuHHmqJmsRBGayovCxwF1bA34uUSShS1gZswUM/4EZsRDEF/mbTplkX/NdftxYyF11kqyF32il0ZCJpR4mYRFO5crZsvl07a4cxY8bfo2V133sP3nkHKle28zf1LatbyH5oUoDSwHPYyNj92MjYw6REYpGS1gNnA29gI4i3EPxvNWmSjS6/8461mLnqKlvJXLt22LhE0pgSMRGwbZUuvxwuv5xPhg+n1fr1/zSTHTTILtO8+T/7YR54oLZfKZZSWJF5FvAolow9QUrVO6WEdVhT3HeAnkCPsOFMmGCrHwcPtm2IevSwJKxGjbBxiWQAJWIim9lYoYLVjR1zDHhv2y9tSsruu8+mZKpVgyOOsMTsiCNskYAUksOSsHLAA1gy9ixKxjZZgzVpHYyNGF4VLpRPP7VGrCNGQNWqcPvttg/sdtuFi0kkwygRE9kS52zV1557Wg3MkiXwwQeWmA0fDm+8YZc54IB/Rsv22UftMbbKAfdhydjdWDLWF5u+jLJVwAnY7gRPApcmPwTvbXuxu+6CsWPtQ0bPnrYqctttkx+PSIbTR1CRoqha1Zbmv/QSzJ0LX30Ft94KGzbALbdYR/+6deH//g8GDLC2GVIAhxXu3wm8jHWJXxc0orBWAscCI4A+JD0J895Gvg49FA47zAryH3oIfv3VpiKVhIkkhEbERIqrVCnbVmm//WzKZv58eyMbNgzefRf69rUVZYce+k/Bf+PGGi37j1uwmrEeWCL2Oim9b2JCLMd2IfgIGxk8N3l37T0MGcK+110H06fbyscnn7QPE+XLJy8OkYjSiJhIvNSqZdsqvfkm/PGHbWh81VXWWPaaa6BJE+tTdtllNq25alXoiFPI9Vg91LvAiVidVFQsBToAn2D91s5Nzt1u3Gj7tO69N3TqRNlly+C552wF8aWXKgkTSRIlYiKJULYstGplxf2TJ9v0ztNPW63Ziy/a6Nj228PRR8NTT1ln8si7CugNDAE6Y/VSmW4x0B74EuiPrZRMsPXr4dVX7X/x5JOtp16/fnz18svWYy8raqORImEpERNJhnr1rOnl4MHw5582hdmli9XhXHqpbbvUtKktCMjJgXVRrZW6BOs1NhI4BsjkLaj+BNoC32BtKk5M7N2tXWvT5Y0bw1lnWfuV/v1tVfDZZ+PVjkUkCCViIslWvry1vHj8cZsG+v57aypbuzY8+ii0aWMr1U46yUbP5s0LHXGSdQFeAsYCHYFlQaNJjAVAG2AqMAjolLi7Wr3aRmMbNrS6rypVbCHJpEm2KbcSMJGgVKwvEpJz0KiRfV11FSxbBqNHW8+yYcOsgznYasxN7TH2288WCmS0s7HtkM7C6qeGAVWCRhQ/c4F2wC/YNGz7xNzNypXQpw888ADMmWNNiJ9+Go48UgtGRFJIpr+ai6SXbbaBzp2taHrWLPjmG9tSplw5a6x54IGwww5w9tk2rbR4ceiIE+g04E3gKyxZyYRjnQ1kA79hyWUCkrBly+D++6FBA0vuGzaEDz+Ezz6zRF5JmEhKUSImkqqcsxVtN95oHc4XLIDXXoPDD7fRstNOsynMQw+FXr3gu++sFUFGOQFbSTkJq6daGDacEvkNaIWNiI3EErI4WrLEmrDWrw/XX29bcn30kdUctm2rBEwkRSkRE0kX228Pp59uK97mz7cRjhtvhBUr4IYb7I13553hwgttUcDy5aEjjpNjsTqqqcBhWH1VuvkZS8L+BEYBh8Tvpv/805oJ16tnzYUPPhi++MJ2gDj00Pjdj4gkhBIxkXRUujQcdJCNgHz9NcyeDc8/D/vvb9sudepkidvhh8Njj8GPP4aOuISOBIYCM7CRpLlBoymaH7EkbDkwGjggPjc7f76tsq1Xz6at27e3/4UhQ2zLLRFJC0rERDJBnTq2Iu7dd2HhQiv4v+wy+P136NYNdt/dvrp1g1GjrHdU2mmH7cE4E2gNzAobTqFMw5KwNcAYoEXJb3L2bLjySpuCfOghOPZYyM21hR377FPy2xeRpFIiJpJpsrJsr8CHHrI+ZT/9BE88AbvtBs88Y6Nk229viwL69LFFAWmjNVZfNS/2cyo3wp2MxeiBHKB5yW7u11/h4othl12gd2849VR7fF9/3XrQiUhaUvsKkUy3yy42OnbZZdbSYOxYa4/x/vvw3nt2mb32shV1Rx2F27AhbLxbdQjwIXAENto0Btg1aET/9Q22IrIcFl+j4t/UjBlw773wyitWcH/eebYJd4MG8QlVRILSiJhIlFSsaP3InnrKRlhyc63VQbVq8OCDcOihHHzccbYi85VXbM/MlLQ/Vm+1HBt1mh42nH/5CltUUAnbxLuYSdjUqXDmmdZj7o03bDTs55/h2WeVhIlkECViIlHlnE1pXXutjZItXAhvv83CQw6x388+2zYyP/BAuPNOmDjRNopOGfti3ffXYgX8U4NGYz7Datm2A8ZRrJG6SZNsV4U994SBA+Hqq+GXX2wnhh13jG+4IhKcEjERMVWqwIknMv36660T+/jxcPvtdt7tt0PLllC3Lpx/vhWG//VXyGhj9sLqr8CSse+CRWKjX4cDO2BJWP2iXX38eFvtuvfeMHKktST57TfrjL/DDvEOVkRShBIxEfmvUqUs8br1VutJNW8evPwytG5tozQnnWTNZNu0sURh6tSAzWSbYIlPFrZ/49cBYhiNbcW0UyyWnQp/1U8+gQ4drPXIxx/DHXdYAnbPPfY3FpGMpkRMRLauZk046yzbVumPP6xj+zXXWDPR666zKc5ddoFLL7VFACtXJjnA3bEEqDLWgf+rJN73COBobBoyB6i99at4D2PGWCJ76KHW/6tXL6vbu/VW2G67RAYsIilEiZiIFE2ZMpY89Oxp2yrNnGltMfbaC156CY4+2tpjdOxobRZ++SVJge2KTQ9uh9VpfZqE+xwCdAIaY/VqtbZ8ce9h+HD43/9s26Hp0+Hhh+1vdP31sO22iQ9ZRFKKEjERKZmddrJtld57z0bIRo6033/80Vpm7LIL7LGHjaCNGQNr1yYwmHpYMrYD1t5iXALvawBwPFanNhrYwjTixo3299l/f0tQf//dktSff7aNuStVSmCcIpLKlIiJSPyUL28NYx991BKxH36ARx6xZO2JJ2wUqHp1OOEE6NsX5iZiq6IdsQRsZ2xrpA8TcB/9gZOB/WK3Xy3/i23YAG+9ZR3vO3eGRYvgueesN9gll9jfS0QiTYmYiCROw4a2rdIHH9ho2aBB1qPsyy9tS6Y6daBFC9u0+osvLHGJi9pYvdZuWP3W8DjdLsDLwBlYY9mRQJX/XmT9euvDtueecMoptqXUyy/bVGSXLrb7gYgISsREJFkqV7b2DM8+a1NzkyZZx/iKFe37QQdZ37Izz7QGposWlfAOa2J1W02AzsDgkh4B8AJwLtYqYxiwzb/PXrsWXngBGje2Pmxly8Kbb8KUKbbYoYw2MxGRf1MiJiLJ55wV999wg7Vs+OMPS76OPNJqzE4/HWrUsKL2e++1pK1Y7TG2x+q3mgMnAO+WIOingS5Yr7ChWOf8mNWrbbeChg1txKtKFWvz8e23cPLJULp0Ce5XRDKZEjERCa9aNdvE+pVXrGfZF1/ATTdZgnPTTdbkdKedoGtXm95ctqwIN74dMArbFukU4I1iBPgYcAk2zTkIqGAnr1xpNXCbWnfUrQvDhsGECVYTVkovsSKyZXqVEJHUUro0HHCAbas0YYJ1+e/b17Za6t8fjjvO2mO0b29J0A8/FGK0rArW7+sQ4EygXxECuh/ohq2QfBcob4ngffdB/fq2BVGjRjB6NHz6qY3qOVf04xaRSFIiJiKprXZtOO8821Zp4UJrgXHllTB79j9JUMOGdtrIkTaKlq9tsLquNsB5wPOFuPO7gOuxkbT+sGSlJYj16kGPHrYa8uOPbW/Oww5TAiYiRaZETETSR1bWv7dV+vln68fVqBH06WNbBW2/PRx7rDWZnTlzsxuohDVhPQK4AHiqgDvywC3ArcBZsPBRuPkOS8Buu81q17780hK///0vUUcrIhGgJTwikr4aNLB+XJdcAqtW2cjUsGG2zdKQIXaZPfeEo46yRqoHHwxlKmB1XicBlwJrsanHTTzQA7gf5p0KD9WAp3eDFSus/9nNN1vNmohIHMRlRMw518E5N905N8M51yOf851z7vHY+d855/Yt7HVFRAqlQgVLtp580kbKpk61kbMaNeChh2zD8urVra/Xy2/CgqewlZRXwTenQv36tD6sDfStArPuhyubQYNB8PCj1nYjN9emR5WEiUgclXhEzDlXGugNtAdmAeOdc4O991PzXOxIoGHs6wBsHfgBhbyuiEjROGfbKm3aWmnpUhg1ykbLhg2zbvfOwX4t4eAd4fQ34SxwZYCvlsGFgJ9qvcBuuMFq0EREEiAeU5P7AzO89z8DOOf6Y7vg5k2mOgEve+898IVzrqpzrjZQvxDXFREpmW23tWnFE06wfR+//damL4cNg0dnwaPQrYNd9NFRwAag7g62WlNEJIHikYjVBX7P8/ssbNRra5epW8jrAuCc6wp0BahVqxY5OTklCnprli9fnvD7SGVRPv4oHztE6PgPPRQOOYTWbdviysG3O2DFGtcBPcHPmcO4KPwdYiLzuBcgyscf5WOH8Mcfj0Qsv/Xamzf1Kegyhbmuneh9H6APQMuWLX12dnYRQiy6nJwcEn0fqSzKxx/lY4cIHf+338LFF9nP+8ROqwbcC9QE9+hO0fg7xETmcS9AlI8/yscO4Y8/HsX6s4Cd8vy+IzCnkJcpzHVFROJn6VLbiLxFC/jpW+vtultsC6KFwCPYIsoPGgIbw8QoIpERj0RsPNDQOdfAOZcFnMp/d9cdDJwdWz15IPCX935uIa8rIlJy3tt+lo0aweOPw0U7w/Q1cPYjUPrMfy732M4w5WjYfTTWa2xDqIhFJAJKnIh579cDlwEjgWnAW977Kc65i5xzsXF/hgE/AzOA57BN2wq8bkljEhH5l++/h3btbDPxHevAlwdA719hu95AN6hYEUqXZknz5vDrb9B0MNbQtS9wLrA+XOwiktHi0tDVez8MS7bynvZMnp891jmxUNcVEYmLlSvhnnusn1jFivDUI9B1MJTOwT4TdrHLTZkCe1fKc0UH3AlkYQnZOuAVoGzyYheRSNAWRyKSmYYMgSZN4N574bTTYPpEuHgglB4HvMTfSZj31qy1UqV8buRmbNPvN7H9JtcmJ3YRiQwlYiKSWX791faaPPZYqFwZxo2Dfo9DrbOAT4HXgLP/ufy8ebBoUQGJGMC1wKPAQKwTf0GbiouIFJ0SMRHJDGvW2OhXkyYwejTcfz988w20aoZt3jEeG9k69d/Xy8217wUmYgBXYhuED8V6Tq+Ke/giEk3a9FtE0t/o0XDppTB9unXPf+QR2GknrB9Fe2yzjneBY/973byJ2IoVW7iTi7GasQuAo7EF3ltK3kREtk4jYiKSvubOtZWQ7drBunW2ZdE778SSsAXAYdiC7PfINwkDK9SvUQPKFqYQ//+wxmM52Ba6y+JwECISZUrERCT9rF9vvcAaNYIBA+C222xk68gjYxeYC2RjHXPeBzoUfFu5ubDnnkW487OA14HPgCOAv4pxACIiRomYiKSXL76A/faDK6+Egw+GyZPh9tuhQoXYBWYBrYGZwHCgbcG3tXGjjYgVKREDW0H5FjABaAcsKuL1RUSMEjERSQ9//gkXXAAHHQR//AFvvw3Dh0PDhnku9CvQCpgHfIAlZFswcyYsX16MRAzgeKzu7Dss2VtYjNsQkahTIiYiqW3jRnjhBZuGfPFFuOYamDYNTjwRnMtzwZ+wxGsx8CFw8NZve1OhftOmxQzuGKz+7HugDTC/mLcjIlGlRExEUtekSfC//0GXLrDHHtaO4oEHYJttNrvgdCwJWw6MBvYv3O1Pie2oVuxEDKz+bCiWCGYDc0pwWyISNUrERCT1LF0K3brBvvvCjBnw0kvw0UfQrFk+F56KJWFrsdWM+xb+fnJzYccdoWrVEgbcFhjBP/Vpv5fw9kQkKpSIiUjq8B7694fGjW1V5IUXWm+wc87ZbBpyk++wUSiHJWH5JWpbUOQVk1vSChiJtc1ojdWriYhsmRIxEUkN06dD+/a2L2SdOvDll/DUU7DddgVc4WusLisLGAc0Kdr9rV9vtWZxS8TA6tI+xOrUWmHTlSIiBVMiJiJhrVwJN99s044TJkDv3paE7bffFq70FTYdWBlLwnYv+v3+9JNti1Si+rD87AeMAVZiydj0ON++iGQSJWIiEs6QIZYI3XMPnHqqjYpdcgmULr2FK32K9e6qBnwE7Fq8+95UqB/XEbFN9gHGAuuxacopCbgPEckESsREJPl+/RU6dYJjj4WKFSEnB15+GWrV2soVc7Bu9rWxkbB6xY8hN9fqzvbYo/i3sUXNsHhLYXVskxJ0PyKSzpSIiUjyrF0LPXtCkybw4Ydw333WkqL1VhqvAlZ71RHYGUtwdixZLLm5sMsuttl3wuyBJYzlsXq2iQm8LxFJR0rERCQ5xoyB5s3hxhttT8hp0+C66yArqxBXHg4cDeyGJWG1Sx5PXFdMbklDLBnbFqtr+zIJ9yki6UKJmIgk1ty5cMYZ0LatjYi9/z68+y7svHMhb2Aw0BlbFTkWqFnymNasgR9+SEChfkF2wZKx7YH2wCdJul8RSXVKxEQkMdavt15gjRvDO+/ArbfaKFTHjkW4kXeAE4C9sY7528cnth9+gA0bkjQitkk9bHFBbawbf04S71tEUpUSMRGJvy++sPYTV14JBx5oCdgdd0CFCkW4kdeBU7HtikYBBfUTK4ZNe0wmNREDqMs/iww6YsclIlGmRExE4ufPP6FrVzjoIPjjD3j7bRgxAho2LOIN9QPOAg7ButVvG984c3OhTBnbSDzpdsBGwxpim4YPCxCDiKQKJWIiUnIbN0LfvpbY9O0L3btbMf6JJxawNdGWPA+ch60yHIY1bY2z3FxLDgu1UCARamBNX5ti9W/vBYpDREJTIiYiJTNpEhx6KPzf/1k92DffwIMPwjbbFOPGegMXYL3ChgAJai2RtBWTW7I9Vve2D3Ai8HbYcEQkCCViIlI8S5fCVVdBixZW/P7ii/DRR7ZVUbE8AlwGHAsMAopST1YEK1bAL7+kQCIGUBWrEzsAq4d7PWg0IpJ8SsREpGi8h7feso70jz0GF1xgWxOdey6UKu5LSi/gamyF5NtAuXhF+1/TptkxpEQiBlb/NgI4FDgTeCloNCKSXErERKTwfvgBDj8cTjkFdtjBVkc+/TRUq1aCG70TuAEbEeoPJLhuK9iKyS2pjNXDtcXq4/qEDUdEkkaJmIhs3apVcMstNu04fjw8+SR89RXsv38JbtQDNwO3AWcDrwJl4hHtluXmQrlysGsxNwtPmIpYXdyRwIVYvZyIZLokvOqJSFobOhSuuMLqqs48Ex54wEbDSsQD1wEPAl2AZ0na58LcXJtWLV06OfdXJOWBgcApWL3cGmzKVkQylUbERCR/v/0Gxx0HxxwD5cvD2LHwyitxSsK6YUnYJSQ1CQOYMiXFpiU3Vw6rkzsR6A70DBuOiCSURsRE5F/cunXQqxfceaf1ALvvPujWLU49tzbyT/LVDXgYKGqfsRJYsgRmzUrxRAygLPAGVi93I7AWuJWk/q1EJCmUiInIP8aOpWWXLjBzpo2GPfpoETbn3poNWI+wF4HrsZGeJCcWU6bY95RPxMBenl/GkrLbsWTsbpSMiWQWJWIiAvPmwTXXwGuvUap2basLO+qoON7Bemw14KvYyM7tBEkoNq2YbNo0+fddLKWBvtjI2L1YzdgDKBkTyRxKxESibMMGaz9x002wejXccgvjDzmEVkccEcc7WYf1x3oLG9G5KY63XUS5uVC5chxH+ZKhFPAMlow9hI2MPYaSMZHMoERMJKq+/BIuvti2JGrfHnr3hoYN2ZiTE8c7WYv1BxsI3A9cG8fbLoYpU2w0rNiNZ0MpBTyBJWOPYCNjT6P1ViLpT89ikahZtAguvBAOOgjmz7cu+SNH2ibYcbUaOB5Lwh4leBIGKbLHZHE5bESsB9bw9f+wujsRSWcaEROJio0boV8/uO46WLzY9om8/fZibs69NauAzsAH2MjNRQm4jyJasAD++CONEzGwZOxerMXFHdi070vopVwkfenZKxIF330Hl1wCn34KBx9sdWF77ZWgO1sBHAPkAC8A5yfofooo7Qr1C+KwxQ5ZWL3dWuA1bHWliKQbTU2KZLJly6B7d9h3X9uYu29f+PjjBCZhy7AtesZhrRdSJAmDFN1jsiRuxJrivg2cjNWNiUi60YiYSCbyHt5+26Yf586FCy6Anj1LuDn31izBkrDxwOvYNj0pZMoUO/4S7wyQSrpjI2NXYPV472LbJIlIutCImEim+eEHOOIIOOUUqFULPv8cnn02wUnYIqA9MBFrU5FiSRj8U6jvMq3tw+VYe4thwLHAyrDhiEiRKBETyRSrVsGtt0KzZtaa4oknYPx4OOCABN/xQqAt8B0wABuZSTHep/mKya25EGv8+iFwNFanJyLpQFOTIplg2DC47DL45Rc44wx48MEkTcHNx5Kwn4DBQDwbwcbRrFmwdGkGFOpvyXlYwf45QAfgfWDboBGJyNZpREwknW3aE/Koo6BcORgzBl59NUlJ2BwgG/gFe9NP0SQMMrBQvyBnYpuFfw4cjtXtiUgqUyImko7WroX77oM99oAPPoBevWDSJGjTJkkB/A60BmYBI4DDknS/xbRps++MHhHb5GRsJeXXQDusfk9EUpUSMZF0k5MDe+8NPXrA4YfD1Klw/fWQlZWkAH7FkrAFWMPWQ5N0vyWQmwu1a8P224eOJEmOw+r1JmNJ8h9hwxGRAikRE0kX8+bBWWfZqNeqVTBkCAwcCPXqJTGIGUArYDFWGH5QEu+7BDK6UL8gRwNDgOlAG2Be2HBEJF9KxERS3YYNtiF348a2L+TNN9tU29FHJzmQ77GRsJXAWGC/JN9/MW3YYKOGkZiW3NzhWP3eL1g93+yg0YjIfykRE0llX30F++9vKyL32w8mT4a77oKKFZMcSC72Rr4e27po7yTffwn88ouNIEZuRGyTw7A6vtlYIj0zbDgi8i9KxERS0aJFcNFFcOCB1hn/zTetKH/33QMEMwmb2iqFJWFpltBsKtSPbCIGVsf3AVYr1hobIRORVKBETCSVbNwIL70EjRrB889Dt27w/fdw8smBOsJPxJKw8tj+kXsEiKGENrWuaNIkbBzBHQSMBv7CkrEZYcMREUCJmEjqmDwZWreG886zka+JE+Hhh2HbUE05v8CatW4LfAQ0DBRHCeXmQv36sM02oSNJAS2BMcAqbNHF92HDERElYiLBLVsG3bvDPvvAtGnwwgvw8cfQvHnAoD7B9o6sjiVhDQLGUkK5uREt1C/I3thii43YyFhu0GhEoq5EiZhzrppzbpRz7sfY9+3yucxOzrmxzrlpzrkpzrkr85x3u3NutnPu29hXx5LEI5JWvIe337bVkA8/DOefD9On2/dS4T4jVa36LdYlvw42HblzsFhKbN06+5tGuj4sP3ti9X6lsUUY3waMRSTaSvpq3wMY7b1viBUf9MjnMuuB7t77PYADgUudc3mLNR7x3u8d+xpWwnhE0sOPP0KHDlb7VbMmfP459OmTAg1HR9GsWQ+gPpaE1Q0bTkn9+KMlY0rE8tEYe4wrAIexzTbTA8cjEk0lTcQ6Af1iP/cDOm9+Ae/9XO/917GflwHTSPtXd5FiWrUKbrvNEoMvvoDHH4fx4211ZHDDgGNYtaouNlqSjP0qEywye0wWV0Ns6rkKzZt3x+oCRSSZnPe++Fd2bon3vmqe3xd77/8zPZnn/PrYs35P7/1S59ztwLnAUmACNnK2uIDrdgW6AtSqVatF//79ix13YSxfvpzKlSsn9D5SWZSPP1HHXu3LL2n4+ONUmDOH+W3b8tPFF7M2+AiYqV79E5o0uYMVKxrw2We3U65cndAhxUX9vn2p99prfDx8OBu3sgVUt2+7sWHDBp5o8USSoksd5crNZ6+9rqJcuSVMntyLv/7aK3RISafXvGgeOyTn+Nu0aTPRe98y3zO991v8wvYxyc3nqxOwZLPLLt7C7VTG1sIfn+e0WliRQingHqDv1uLx3tOiRQufaGPHjk34faSyKB9/3I995kzvjz/ee/C+cWPvR4+O7+2X2Fve+zLe+wO894sz67E/7jjvd9+9UBdt/WJr3/yR5omNJ4V9+ulb3vtG3vuK3vtU+x9NvIz6vy+iKB+798k5fmCCLyCnKbO1LM57366g85xz851ztb33c51ztbFdgPO7XFngXeA17/2APLc9P89lngOGbi0ekbSxbh088gjccYcV5vfsCVdfncTNuQvjNeBsrMfUMKxVRQbJzYVmzUJHkRbWrq2BTUm3BY4C3sO2SBKRRCppjdhg4JzYz+dgz9x/cc454AVgmvf+4c3Oq53n1+PQOmrJFOPGwd57w/XXQ/v2ttdhjx4ploS9BJyF9ZMaQcYlYatWwU8/qT6sSHbAkrFGwDHYPpUikkglTcR6Ae2dcz9iTYd6ATjn6jjnNq2APAR7tT8snzYV9zvnJjvnvsPad19VwnhEwpo/H84+G7KzYeVKGDwYBg2yhqIppQ9wHtAOe7PNwPqQ77+3nQqUiBVRDazpazPs8/HAsOGIZLitTk1uiff+T2wce/PT5wAdYz9/AuS7N4v3/qyS3L9IytiwAZ59Fm680RKwm26yn5O+OXdhPAlcjj1F38W2L8pAWjFZAtWw8uAjgZOA14GTg0YkkqlKlIiJCNZ+4uKLbUuitm2hd2/bKzIlPQx0x9bavAmUCxtOIuXmQtmysNtuoSNJU1WBkVi92GnAWuDMkAGJZCRtcSRSXIsXWwJ2wAEwZw707w+jRqVwEtYTS8JOBN4mo5MwsESscWNLxqSYtgWGY1shnQ28GDYckQykREykqLyHfv0s4erTB6680uqRTjkFXL6z8IF54A7gRuB04A0gAsnJlCmaloyLytiC9nbA+cCzYcMRyTBKxESKIjcXWreGc8+1Ka+JE61FxbapuuLQAzcBt2O9k18mEhUJS5fCb78pEYubitgi+aOAi4DoNb0VSRQlYiKFsXw5XHuttaSYOhWefx4++cR+T1keuAabkuyKdZEpHTSipJk61b4rEYuj8sAAbCe7K4AHg0Yjkiki8NFYpAS8hwEDbPpx9my44AJrzJoiWxMVzGNvlk8ClwGPU8Di5cy0acVk06Zh48g4WcBbwBnAtVgB/41BIxJJd0rERAoyYwZcdhmMHGkjX2+/DQcdFDqqQtgIXIz1CrsaG7mIUBIGVh9WoQI0aBA6kgxUFmtnkYVNe68FbiNy/2MicaJETGQzpdauhdtvh169rBP+Y4/BJZdAmXR4umwAumBd82/AtnCN4Btkbq6NhpVS9UVilAH6YUnZHcAa4F4i+b8mUkLp8M4ikjzDh7Nfly7WjuK00+Chh6B27a1fLyWsx3Yaex0rzr+VyL4x5uZChw6ho8hwpbG6w3LYpiprgIeI7P+cSDEpERMB+P13uOoqePdd/E47wejRcNhhoaMqgnVY3c7b2ChYhOt2Fi6EefNUqJ8UpYCnsWnKR7BpysfROjCRwlMiJtG2bh08+ijccYftS3jvvYxv0YLWaZWErQFOBQZh9WDdg0YT3JQp9l2F+knigMewZOwhLBl7BiVjIoWjREyi66OPrPZryhQ49lirBatfH5+TEzqyIlgNnAAMw0YiLg8bTirYlIhpRCyJHPAANk15L5aMRahdikgJKBGT6FmwwHqCvfwy1KsH771niVjaWYn1dBqFdTvvGjSalJGbC1WqQN26oSOJGAfcjSVjt2HT5f3Q24zIlukZItGxYYNtSXTjjbBihX2/6SaoWDF0ZMWwHDgGGAf0Bc4LG04qyc210bCU3G4q0zlskUgWtmp3LbZ4JAJbaokUkxIxiYYJE2yD7gkTrAi/d2/bEDotLQU6Ap8Dr2BF+gJYA97cXDj55NCRRFwPLBnrjo2MvUnGbzIvUkyqppTMtnix1YHtvz/MmgVvvAEffpjGSdgS4HDgC2zzbiVh/zJ3rj3mKtRPAVdje1K+BxyP1TOKyOaUiElm8t5qwBo1gmefhSuugO+/h1NPTeMpq0VAO+Br4B1Aoz7/oUL9FHMZVr84HJtKXxk2HJEUpKlJyTy5uXDppbYq8sAD4YMPUnxz7sL4A0vCpgMDgaPChpOqNu0xqUQshXTFpinPx/5vhwCVg0Ykkko0IiaZY/lyuO462Gcfe0N+/nn49NMMSMLmAdnAD8BglIRtQW4u1KwJNWqEjkT+5VzgVeAjoANW5ygioBExyQTew4AB0K2b1YF16QI9e0L16qEji4PZQFvgd+B9IJ0azQawacWkpKDTsdWTp2N1jiOAqiEDEkkJGhGT9DZjBnTsCCeeCNtvD599Bs89lyFJ2EygNZaMjUBJ2FZs3Gg1YirUT2EnYfWNX2MfMP4MG45IClAiJulp9WrblmjPPW368dFHrTXFQQeFjixOfsGSsIVYw9ZDw4aTDmbOtP5wGhFLcZ2w7bimYB8uFgSNRiQ0JWKSfkaMsDfb22+H446z1ZBXXgllMmWm/UegFfAXMBo4MGw46UKF+mmkI1a0/yPQBpgbNhyRgJSISfqYNQtOOgmOPBJKl4ZRo6wvWJ06oSOLo++xkbDVwFigRdhw0smmRExTk2miPbZH6m/YYpTZQaMRCUWJmKS+devgwQetCevQoXDPPfDdd9CuXejI4iwXS8I2YklY87DhpJvcXNhpJ9tnUtJENlb/OBf7358ZNBqREJSISWr7+GNrR3HttdCmDUydantElsu07VK+xd6USgM5gKbXiiw3V6Nhael/WB3kQmxK/uew4YgkmRIxSU0LFsC550KrVtYf7L33YMgQaNAgdGQJMAErWq6I9VlK1+2XAlq/3moFVR+Wpg7A6iGXYSNjP4YNRySJlIhJatmwAZ55xrYmev11uOEGa0lw7LGhI0uQz7Fl/FWwJGy3sOGkq59+gjVrlIiltRbAGKw+sjUwLWw4IkmiRExSx8SJ1n7i4oth332tDuzee6FSpdCRJcjHWGPLGlgSVj9oNGlNKyYzRHNsan4jNlWfGzIYkaRQIibhLVlie0Putx/8/ruNhH34oRXnZ6wx2FYvdbEkbKew4aS73FzbzH2PPUJHIiXWFBiHbfySDXwTNBqRRFMiJuF4D6+8YtOQzzwDl19udT6nnWZvqhlrJLZfZAPsDSeT2m8EkpsLu+wCFSuGjkTiohH23KiI1U+ODxuOSAIpEZMwpkyB7Gw4+2wrwJ8wAR57LAKtB4YCx2JvNGOBWmHDyRRTpmhaMuPsho0Wbwe0Az4LG45IgigRk+Ravhyuvx723ttGMfr0sf0h99kndGRJMBA4HmiGTU3WCBtOplizBn74QYlYRqqPjYzVBI7AEjORzKJETJLDexgwAJo0gfvvh3POgenT4YILoFQU/g3fwjY8bgF8CFQLG04mmT7dVtsqEctQO2HJ2I7AkVibC5HMEYV3QAntp5/gqKPghBNgu+1sk+7nn4fq1UNHliSvAqcBBwEfAFWDRpNxtGIyAupgqyl3AY7G6ixFMoMSMUmc1avhzjut2/nHH8Mjj1iLioMPDh1ZEvUFzsb6Io0AtgkbTibKzbUN33ffPXQkklC1sLrKxlid5ZCw4YjEiRIxSYwPPoBmzeC226BzZ1sN2a2bvWFGxrPA/2GbGw8FMrUfWmBTplgSlpUVOhJJuOrY1OReWL3lgLDhiMSBEjGJr1mz4OST4YgjrPZr1Cjo3x/q1g0dWZI9AVyEtal4D1uGLwmRm6tpyUiphtVZ7gecDLwZNhyRElIiJvGxbh08/LA11BwyBO6+2zrjt2sXOrIAHgSuADpjn9jLB40mo61YAT//rEQscqpgdWIHA6cDr4QNR6QEojRPJInyySe2LVFurhXlP/FEhm7OXRj3ADdjn9RfBcqGDSfTTZ1q35s2DRuHBLANMByrFzsHWAecHzQikeLQiJgU3x9/wHnnwaGHwtKlMGiQjYZFMgnzwG1YEnYm8BpKwpJAKyYjrhJWf3k4Vo/5dNhwRIpBiZgU3caN8OyztjXRa69Bjx42MtGpU4ZvTVQQD9wI3AmcB7yEBpuTZMoUKFcOdt01dCQSTAVgENbW4hLgsaDRiBSV3i2kaCZOhEsuga++gjZtoHfviG+07IHuwCPAhcBT6PNNEuXmWpPg0qVDRyJBlQfeBU4FugFrgWtDBiRSaHrHkMJZssQ25d5/f/jtNxsJGz064knYRuByLAm7HJsW0VMqqbRiUv6Wha2gPAW4Drg7bDgihaQRMdky7y3puuYaqwm79FK4664IbM69NRuxEbDngWuA+4EoTssGtHgxzJ6tQn3Joyy2SCYLuAUbGbsDPTcllSkRk4JNnWrTkOPG2UjYsGGw776ho0oBG7DC4H7ATcBd6IU+gClT7LtGxORfygAvYknZXVgy1hM9RyVVKRGT/1qxgl369IG334ZttrHC/C5dIrI599asx5bKv4590r41bDhRpkRMClQaeA4bGbsPWAM8jJIxSUVKxOQf3sN778EVV7Dz77/D+edDr15Qo0boyFLEOqx55DvYJ+weYcOJutxcqFwZdt45dCSSkkphi2eygEexkbEnUB2npBr9R4r5+Wc4+mg47jioWpWvH38cXnhBSdjf1gAnYknYwygJSwGbCvUj2TJFCsdhSdi1WFJ2IVbfKZI6lIhF3Zo1VnzftCl89JFtU/T11yxt1ix0ZClkFXAcMBh4ErgqbDhio7eTJ6tQXwrBYdOTN2OLa87D6jxFUoOmJqPsgw/gssvgxx9to+6HH47g5txbsxLoBIwG+gAXhA1HzIIF8Oefqg+TQnJY4X4WVte5FtufUm+BEp7+C6No9my4+mp46y1o2NASsvbtQ0eVgpYDxwDjsFVY54QNR/6hQn0plluwZKwHVvP5eux3kXA0NRkl69fDI49A48YweLBNSU6erCQsX0uBDsDHWF8iJWEpRXtMSrFdj9V5vovVfa4JG45EXolGxJxz1bBWxvWBX4GTvfeL87ncr8AybGJ+vfe+ZVGuL8Uz6JvZPDByOnOWrOKIJT9x35hnqPLjNOjYEZ54AnbZJXSIKalMmWVAe+BroD/2Yi0pJTcXtt8eatUKHYmkpauAcsClQGdgQNBoJNpKOiLWAxjtvW+IFdFsaSlZG+/93puSsGJcX4pg0DezuWHAZFbNmcd9wx7lmWevZMX8hXz50PMwdKiSsAL9SfPm3YFvsBWSSsJSUm6uFeprxaQU2yVYr7GRwDGUKrU6cDwSVSWtEesEZMd+7gfkYOO+ybq+FOCBkdNZtW4Drwy4m+Zzf+CpA0/kiYNOpdra7fhUb14FWAC0p1KlX4FBQMeg0UgBvLcasTPPDB2JpL0uWI3Yeey110Lgf0DlsCFJ5DjvffGv7NwS733VPL8v9t5vl8/lfgEWAx541nvfpyjXj53XFegKUKtWrRb9+/cvdtyFsXz5cipXTt8n5OTZfwFQ66cfWFu+Aovr7vT3ec3qbn2fyHQ//qLKyrKRsPLl5zF+/E2sXn1o6JCCSfXHvtyCBRx0yin80K0bczp1itvtdvu2Gxs2bOCJFk/E7TbTSao/7olUs+ZoGje+l2XL9uC773qxYUO0/g5RfuwhOcffpk2biZvNCP5tqyNizrkPgR3yOeumIsRwiPd+jnOuJjDKOfe99/6jIlyfWPLWB6Bly5Y+Ozu7KFcvspycHBJ9H4l0U68xzF6yCmhiHRgW2el1q1bg8jOyt3r9dD/+opmNNXpcCIxg9WoidOz/lfKP/fDhAOx+/PHsfmj8Euaqv1ZlyZIlqX3sCZTyj3tCZZObW4Y997ybQw+9E5uuzHdMICNF+7EPf/xbrRHz3rfz3u+Zz9d7wHznXG2A2PcFBdzGnNj3BcBAYP/YWYW6vhTdtUc0okLZ0v86rULZ0lx7RKNAEaWq34BWwFzsxTc7aDRSCJtWTKqZq8TRwoWtsZWUk4C22AczkcQrabH+YP5Z138O8N7mF3DOVXLObbPpZ+BwILew15fi6bxPXXoe34y6VSvgsJGwnsc3o/M+atj6j5+B1sCfwCjgkLDhSOHk5kLt2lCtWuhIJOMci70NTQUOQ2MDkgwlLdbvBbzlnPs/YCZwEoBzrg7wvPe+I1ALGOisQLwM8Lr3fsSWri/x0Xmfukq8CvQj9kK7EhgD7Bs2HCm8TXtMiiREB2AolpRlYwv6a4cMSDJciRIx7/2f2Bju5qfPIbbkzHv/M9C8KNcXSaxpWBK2HkvC8v33lFS0YQNMmwYXXRQ6Eslo7YDhwFHYqPkYYMegEUnmUmd9iZjJ2Aurx7qlKAlLK7/8AqtWaURMkqA1Vjc6L/bzb2HDkYylREwi5BugDVAW2z9Sxd5pR1sbSVIdAnyILTtvhdWVisSXEjGJiPHYdGQl4CNAq0fT0qZErEmTsHFIhOyP1Yktx5KxH8KGIxlHiZhEwGdYzcd22EjYrmHDkeLLzYX69SHCzSclhH2BscBabJpyathwJKMoEZMM9xHWMaUWloTVDxqNlNCUKZqWlED2wupKwVZTfhcsEsksSsQkg43GlqLvhCVhO2354pLa1q6F779XIiYBNcFeS7KwetOvw4YjGUGJmGSoEcDR2DRkDuoDlAF+/BHWr1ciJoHtjiVjlbHuS1+FDUfSnhIxyUBDgE5AY6yuo1bYcCQ+tLWRpIxdsbKH7bD608/ChiNpTYmYZJgBwPFYPcdooHrYcCR+cnOhVClo3Dh0JCJAPSwZ2wGrQx0XNhxJW0rEJIP0B04G9sN6/2gvwowyZQo0bAjly4eORCRmRywB2xk4EnvdESkaJWKSIV4BzsAaMI4EqoQNR+JPe0xKSqqN1aHuhtWljtjipUU2p0RMMkBf4BxsSfkwYJug0UgCrFoFM2YoEZMUVROrR22C1acOCRuOpBUlYpLmngb+D6vRGIp1zpeMM20aeK9CfUlh22N1qc2xOtV3w4YjaUOJmKSxx4BLsOmAQUCFoNFIAmmPSUkL2wGjsG2RTgHeCBuOpAUlYpKm7ge68c8nTxVwZ7QpUyArC3bbLXQkIltRBasTOwQ4E+gXNhxJeUrEJA3dDVwPnIqtlMwKG44k1KBvZvPZe+OYVqUOhzz0MYO+mR06JJGt2AarV20DnAc8HzYcSWlKxCSNeOBW4BbgLGylZNmgEUliDfpmNjcMmMzOc39meo16zF6yihsGTFYyJmmgEla0fwRwAfBU2HAkZSkRkzThgR7AXcD5wItAmaARSeI9MHI6pZcvY8elf/BD9XoArFq3gQdGTg8cmUhhVMDqV48BLgUeDRmMpCglYpIGPHAVVhd2MfAcUDpoRJIcc5asot6SuawrVfrvRGzT6SLpoRzwDnAC9jp2X9hwJOVoSEFS3EbgMqxNxZXAI4ALGpEkT52qFZjCrjS5+p3/nC6SPrKwetazsJH9tViJhYhGxCSlbQQuxJKw61ASFj3XHtGICmVLs650WdaVtnrACmVLc+0RjQJHJlJUZYBXgbP5p9bVB41IUoNGxCRFbcBqwV4GbgbuRElY9HTepy5gtWJzlqyiTtUKXHtEo79PF0kvpbH61ixs9fcabKpSr21RpkRMUtA67FNjfywB0xB+lHXep64SL8kgpYBnsRXfD2DTlBrtjzIlYpJi1gKnAQOwT4rXhQ1HRCTuSgG9sUL+R7GRsd6oWiialIhJClkDnIT13nkE65wvIpKJHPAwlozdh30I7YNWhEePEjFJEauw7YpGYJ8MLwkbjohIwjmgJ1YzdhdWltEXvTVHix5tSQErgE7AGKxHWJew4YiIJI3DamGzsHrYtWjXkGhRIiaBLQOOBj4BXsKK9EVEouZmbJryOiwZ0z66UaHKQAnoL2wftk+B11ASJiLRdi1WvD8Q68S/Jmg0khxKxCSQxUB7YDzwJnBq2HBERFLClVgT66FYyYa288p0SsQkgIVAW2AS1qbihLDhiIiklIuAF4APsNKNFWHDkYRSIiZJtgA4DJgKvAccEzYcEZGUdD7QD8gBjsTqaSUTKRGTJJoLZAMzgPeBDkGjERFJbWcBrwOfYfW0f4UNRxJCiZgkySygNTATGI5NTYqIyJadArwFTADaYfW1kkmUiEkS/IYlYfOxmofWYcMREUkrx2P1tN9hpR0Lw4YjcaVETBLsJ6AVsAgYBRwcNhwRkbR0NDAY+B5og32wlUygREwSaDo2+rUcGA3sHzYcEZG0dgTW1uInrN52TtBoJD6UiEmCTMVeKNZiq372DRmMiEiGaIvtybup7vb3sOFIiSkRkwT4DkvCwJKwZsEiERHJPK2wetsFWDL2a9BopGSUiEmcfY3VL2QB44AmYcMREclIBwEfYqsoW2PTlZKOlIhJHH2FDZtXxpKw3cOGIyKS0fYDxmCd91thdbmSbpSISZx8ivW4qQZ8BOwaNhwRkUjYBxgLrMdGxqaEDUeKTImYxME4bDVP7djP9cKGIyISKc2wetxSWH3upJDBSBEpEZMS+hDbB60e9kKwY9BoRESiaQ/sg3B5rOnr12HDkUJTIiYlMBxrMrgbNjReO2w4IiKR1hArDdkGS8a+DBuOFIoSMSmmwUBnbFXkWKBm0GhERASgATYytj3QHvgkbDiyVUrEpBjeBU4A9sY65m8fNBoREcmrHjYyVhvogJWNSKpSIiZF9AZwCrZd0Shgu7DhiIhIPuryz+Kpjlg9r6QiJWJSBP2AM4FDgJHAtmHDERGRLdgBGw1riNXzDgsajeRPiZgU0vPAeVjX/GFY01YREUltNbCmr02xut73gkYj/6VETAqhN3AB1itsCFApbDgiIlIE22P1vPsAJwJvhw1H/kWJmGzFI8BlwLHAIKBC0GhERKQ4qmJ1vQcApwKvB41G/lGiRMw5V805N8o592Ps+38qt51zjZxz3+b5Wuqc6xY773bn3Ow853UsSTwSb/cBV2MrJN8GyoUNR0RESmBbYAS2L+WZWN2vhFbSEbEewGjvfUNs3LPH5hfw3k/33u/tvd8baAGsBAbmucgjm8733quSMEXUq/cy9nCeBvQHssIGJCIicVAZeB9oi9X9Phc2HClxItaJf1Lqflgl4Ja0BX7y3v9WwvuVhPHAzTRo8CJwNvAKUCZsSCIiEkcVsXrfDkBX6tQZuJXLSyI5733xr+zcEu991Ty/L/beF9hYyjnXF/jae/9k7PfbgXOBpcAEoLv3fnEB1+0KdAWoVatWi/79+xc77sJYvnw5lStHbWWgZ5ddnmXnnd9k5szD+fnn64liGWE0H/t/RPX4u33bjQ0bNvBEiydChxJEVB/3TaJ4/M6tpWnTO6le/VNmzLiEWbNOCh1SEMl47Nu0aTPRe98yv/O2mog55z7EmpFs7iagX2ETMedcFjAHaOq9nx87rRawEBuGuQuo7b0/f2sH1LJlSz9hwoStXaxEcnJyyM7OTuh9pBYPXAU8BlxCTs4JZGcfFjimMKL32P9bVI8/+6VslixZwrfdvg0dShBRfdw3ie7xr2PBgvbUrDkO6Ek+FUYZLxmPvXOuwERsq3NO3vt2W7jh+c652t77uc652sCCLdzUkdho2Pw8t/33z86554ChW4tHEmEjcCnwDJaMPYR1ZBYRkcxWlmnTbqFmzbrADcBa4BbAhQ0rQko67zQYOCf28zlsuVPcadj+OH+LJW+bHAfkljAeKbINWI+wZ4DrsSRMT0ARkajwvjTwMvY2fhtwMzZLIslQ0irsXsBbzrn/A2YCJwE45+oAz3vvO8Z+r4htA3/hZte/3zm3N/aI/5rP+ZJQ67FVM68CtwK3oyRMRCSKSgN9sRXy9wJrgAfQe0LilSgR897/ia2E3Pz0Odguo5t+X4m19t38cmeV5P6lJNYBZwFvAndjJX8iIhJdpbDZkSxsdmQtVjesZCyR1JcgktZinZUHYp94rgkbjoiIpIhSwBNYA++HsfeLp4jiCvpkUSIWOauxGeSh2CedK8KGIyIiKcYBD2IjY72wZOw5bPpS4k2JWKSswnrufgA8DVwUNBoREUlVDqsVKwfcgSVjL6G0If70F42MFdjG3WOBF4CttmsTEZFIc9giriysjngdtrirbMCYMo8SsUhYBhwFfIotUT4zbDgiIpJGbsRGxq7BkjHtPxxPqr7LeH8BRwCfAa+jJExERIquO/A4tsjreKzeWOJBiVhGWwS0w7bxfBs4JWw4IiKSxi7H2lu8D3QCVoYNJ0MoEctYC7EWb98BA7CNC0REREriQqzx6yjgaKz+WEpCiVhGmg+0Ab7HdqE6Omw4IiKSQc7D6o3HAR2wOmQpLiViGWcOkA38jA0fHxE0GhERyURnYttHfw4cDiwJGk06UyKWUX4HWgOzgBHAYWHDERGRDHYyVn88EatHXhQ2nDSlRCxj/IolYQuwhq2HBo1GRESi4DisDnky9uH/j7DhpCElYhnhJ6AVsBj4EDgobDgiIhIhRwNDgOlYffL8sOGkGSViaW86loStxLrm7xc2HBERiaDDsbrkX7A65TlBo0knSsTS2hRsOnI9kAPsHTIYERGJtMOw+uRZ2HvT72HDSRNKxNLWJOxTRylsCfGeQaMRERGx+uRRWL1yK2yETLZEiVhamojNw5fHkrDGYcMRERH524HAaGyLvdbAjLDhpDglYmnnS6xj/rbAR0DDsOGIiIj8R0tgDLAKGxn7Pmw4KUyJWFr5BGgPVMeSsAZhwxERESnQ3tgiso1YKU1uyGBSlhKxtJGDbSVRB5uO3DloNCIiIlu3J/b+VQorqZkUNJpUpEQsLYwCOgL1sH/oukGjERERKbzG2CxOBSwZmxA2nBSjRCzlDQOOwWrBcoAdgkYjIiJSdLthszlVsDrnL8KGk0KUiKW094DOQFOs6LFG0GhERESKrwGWjNXA6p0/CRtOilAilrLeBk4E9sWWAW8fNhwREZES2xmbpqwLHIEV80ebErGU9DpwKnAAtoF31aDRiIiIxM+mRWcNsPrnD8KGE5gSsZTzEnAm1ndlBNYvTEREJJPUwkbDGmF10O+HDScgJWIppQ9wHtAO+6esHDYcERGRhKmB1T83A44DBgWNJhQlYimjN3AhNkw7GKgYNhwREZGEqwZ8CLQATsLqo6NFiVhKeBi4DOgEDMD2kBQREYmCqlid2IFYffRrQaNJNiViwfUEuvPPJ4FyYcMRERFJum2wuujWwFnAi2HDSSIlYsF44A7gRuB0bKVk2aARiYiIhFMJGIrVSZ8PPBs2nCRRIhaEB24GbgfOBV4GygSMR0REJBVUxOqkjwIuAp4IG04SKBFLOg9cC9wLdAVeAEoHjUhERCR1lMfqpTsDVwAPBY0m0ZSIJZUHrsT+qS4DnkEPgYiIyOaygLew+ulrsMGLzKT5sKTZCFyM9Qq7GngQcEEjEhERSV1lsfrpLOAmYC1wG5n23qlELCk2AF2wrvk3APeQaf9IIiIi8VcG6IclZXdgyVhmvYcqEUu49VhB/mtYcf6tZNI/kIiISGKVxuqpy2Etn9aQSbNKSsQSah1wBtYf7F5sNExERESKphTwNDZN+TA2MvYYmVBnrUQsYdZgHYIHYZl796DRiIiIpDeHJV9Z2KK3NWTCojclYgmxGjgBGAY8DlweNhwREZGM4IAHsGnKe7GRsfRuA6VELO5WYr1PRmFdgbsGjUZERCSzOOBuLBm7DSsD6ke6pjTpGXXKWgEcA+QAfYHzgkYjIiKSmRy2+C0Lq79ehy2KS7+tApWIxc1SbEuGz4BXsCJ9ERERSZwe2MjY1dg05Zux39NHele4pYwlwOHA50B/lISJiIgky1XAk8B7wPFYnXb6UCJWYouwneK/Bt7BtmMQERGR5LkUq8seDhyL1WunByViJfIHcBiQCwzEivRFREQk+bpi9dkfYqVCy8OGU0hKxIptHtAGmA4Mxh50ERERCedc4FXgY6ADVr+d2pSIFctsIBv4BesVdnjQaERERGST04E3gC+x9+clQaPZGiViRTYTaI0lYyOwUTERERFJHSdhddtfA22BP8OGswVKxIrkFywJW4g1bD00bDgiIiJSgE7YNoNTsHruP4JGUxAlYoU2A0vC/gJGAweGDUdERES2oiMwBPgRKymaFzSa/CgRK5TvgVbAKmAs0CJsOCIiIlJI7bF67t/4p7QodSgR26pc7IHbiG1d1DxoNCIiIlJU2cBIYC72nj4zaDR5lSgRc86d5Jyb4pzb6JxruYXLdXDOTXfOzXDO9chzejXn3Cjn3I+x79uVJJ74+xZ78EpjSVjTgLGIiIhI8R2C1XcvxGa5fgkbTkxJR8Rysf0EPiroAs650kBv4EigCXCac65J7OwewGjvfUOs8KpH/reSfNtsMx0r7quIHV7jsAGJiIhICR2ApRvLsGTsx7DhUMJEzHs/zXs/fSsX2x+Y4b3/2Xu/FtuMsVPsvE5Av9jP/UiZ1vRf0Lx5d6AKloTtFjgeERERiY8WwBhsT8rWVKz4W9BoyiThPuoCv+f5fRaWkgLU8t7PBfDez3XO1SzoRpxzXbH9C6hVqxY5OTmJiRaoWXMMO+9clcmT72PNml+BXxN2X6lq+fLlCf0bp7IoHztE9/irr69OlXJVInnsEN3HfZMoH39Uj71ixfvZa68b2Ljx96DHv9VEzDn3IbBDPmfd5L1/rxD34fI5zRfiev++gvd9gD4ALVu29NnZ2UW9iSLIZty4/9G6dXQ75ufk5JDYv3HqivKxQ3SPPzs7O7LHDtF93DeJ8vFH99izgdNZvfrzoMe/1UTMe9+uhPcxC9gpz+87AnNiP893ztWOjYbVBhaU8L7ixvus0CGIiIhIQpULHUBS2leMBxo65xo457KAU7Fdsol9Pyf28zlAYUbYRERERDJCSdtXHOecmwUcBLzvnBsZO72Oc24YgPd+PXAZ1sBjGvCW935K7CZ6Ae2dcz9iHdd6lSQeERERkXRSomJ97/1AYGA+p8/B9hXY9PswrK3t5pf7E9uNU0RERCRy1FlfREREJBAlYiIiIiKBKBETERERCUSJmIiIiEggSsREREREAlEiJiIiIhKIEjERERGRQJSIiYiIiASiRExEREQkECViIiIiIoEoERMREREJRImYiIiISCBKxEREREQCUSImIiIiEogSMREREZFAlIiJiIiIBKJETERERCQQJWIiIiIigSgRExEREQnEee9Dx1Bkzrk/gN8SfDfVgYUJvo9UFuXjj/KxQ7SPX8ceXVE+/igfOyTn+Ot572vkd0ZaJmLJ4Jyb4L1vGTqOUKJ8/FE+doj28evYo3nsEO3jj/KxQ/jj19SkiIiISCBKxEREREQCUSJWsD6hAwgsyscf5WOHaB+/jj26onz8UT52CHz8qhETERERCUQjYiIiIiKBKBETERERCSTSiZhz7iTn3BTn3EbnXIFLV51zHZxz051zM5xzPfKcXs05N8o592Ps+3bJibzkChO7c66Rc+7bPF9LnXPdYufd7pybnee8jkk/iBIo7GPnnPvVOTc5dowTinr9VFTIx34n59xY59y02HPkyjznpd1jX9BzOM/5zjn3eOz875xz+xb2uumgEMd/Ruy4v3POfeaca57nvHyfA+miEMee7Zz7K8//862FvW46KMTxX5vn2HOdcxucc9Vi56X7Y9/XObfAOZdbwPmp8bz33kf2C9gDaATkAC0LuExp4CdgFyALmAQ0iZ13P9Aj9nMP4L7Qx1SEYy9S7LG/wzysKR3A7cA1oY8j0ccP/ApUL+nfL5W+ChM7UBvYN/bzNsAPef7v0+qx39JzOM9lOgLDAQccCHxZ2Oum+lchj/9gYLvYz0duOv7Y7/k+B9Lhq5DHng0MLc51U/2rqMcAHAOMyYTHPhZ/K2BfILeA81PieR/pETHv/TTv/fStXGx/YIb3/mfv/VqgP9Apdl4noF/s535A54QEmhhFjb0t8JP3PtE7GiRLSR+7jH7svfdzvfdfx35eBkwD6iYrwDjb0nN4k07Ay958AVR1ztUu5HVT3VaPwXv/mfd+cezXL4AdkxxjopTk8YvEY7+Z04A3khJZEnjvPwIWbeEiKfG8j3QiVkh1gd/z/D6Lf96Qannv54K9cQE1kxxbSRQ19lP57xP0sthwbt90mpqLKezxe+AD59xE51zXYlw/FRUpdudcfWAf4Ms8J6fTY7+l5/DWLlOY66a6oh7D/2GjBJsU9BxIB4U99oOcc5Occ8Odc02LeN1UVuhjcM5VBDoA7+Y5OZ0f+8JIied9mUTdcKpwzn0I7JDPWTd5798rzE3kc1pa9PzY0rEX8XaygGOBG/Kc/DRwF/a3uAt4CDi/eJEmRpyO/xDv/RznXE1glHPu+9inrJQWx8e+MvbC3M17vzR2cso/9pspzHO4oMuk7fM/j0Ifg3OuDZaI/S/PyWn5HIgpzLF/jZVcLI/VOw4CGhbyuqmuKMdwDPCp9z7vCFI6P/aFkRLP+4xPxLz37Up4E7OAnfL8viMwJ/bzfOdcbe/93Nhw5oIS3ldcbenYnXNFif1I4Gvv/fw8t/33z86554Ch8Yg5nuJx/N77ObHvC5xzA7Eh64+IwGPvnCuLJWGvee8H5LntlH/sN7Ol5/DWLpNViOumusIcP865vYDngSO9939uOn0Lz4F0sNVjz/MBA+/9MOfcU8656oW5bhooyjH8Z9YjzR/7wkiJ572mJrduPNDQOdcgNjJ0KjA4dt5g4JzYz+cAhRlhSxVFif0/dQOxN/BNjgPyXZWSwrZ6/M65Ss65bTb9DBzOP8eZ0Y+9c84BLwDTvPcPb3Zeuj32W3oObzIYODu2iupA4K/YtG1hrpvqtnoMzrmdgQHAWd77H/KcvqXnQDoozLHvEPt/xzm3P/a++GdhrpsGCnUMzrkqQGvyvBZkwGNfGKnxvE/UKoB0+MLeRGYBa4D5wMjY6XWAYXku1xFbNfYTNqW56fTtgdHAj7Hv1UIfUxGOPd/Y8zn2itiLUpXNrv8KMBn4LvYPWjv0McX7+LEVM5NiX1Oi9NhjU1M+9vh+G/vqmK6PfX7PYeAi4KLYzw7oHTt/MnlWURf0/E+nr0Ic//PA4jyP9YTY6QU+B9LlqxDHflns2CZhCxUOjtJjH/v9XKD/ZtfLhMf+DWAusA57r/+/VHzea4sjERERkUA0NSkiIiISiBIxERERkUCUiImIiIgEokRMREREJBAlYiIiIiKBKBETERERCUSJmIiIiEgg/w/YKzhQDYQguwAAAABJRU5ErkJggg==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAJOCAYAAAAUOGurAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB1XklEQVR4nO3deZzNZf/H8ddlGISIECpUIiUVbb/uGGmRu6K032m7S/vdokUbWkn7viut2pAkEqZ90W5sJVIhsmXJ7vr98Tlq0syYmbNc55zv+/l4zMPMWT9fZ2bOe67r870u571HRERERFKvQugCRERERKJKQUxEREQkEAUxERERkUAUxEREREQCURATERERCURBTERERCQQBTERSTjn3CTnXN5mbrO9c265cy4nNVWJiKQfBTERKRPn3Gjn3I1FXN7FOferc66i935X731+SY/jvf/Je1/de78+acUmgHOuiXPOO+cqpuj5TnfOfZCgx/rROXdwIh5LRJJDQUxEyuppoLtzzm1yeXfgee/9utSXJCKSmRTERKSshgG1gQM3XuCc2wo4Angm9vWfIzHOuX2cc58755Y65+Y55+6KXf63kSbnXEPn3HDn3CLn3HTn3NmFHr+vc+5l59wzzrllsanPtkUV58zdzrn5zrnfnXPfOud2c87tHXv+ioVu280593VJdQLvxf5dEptK3T92+zOdc1Occ4tjo4SNCz2ud86d75z7PlbvTc65HZ1zH8ce/2XnXG4Rte8CPALsH3uuJbHLKzvn7nDO/RSr7RHnXNXYdVs750Y455bE/u/ed85VcM49C2wPvBF7rCtL9eqKSEopiIlImXjvVwIvA6cWuvh4YKr3/psi7nIvcK/3fktgx9h9i/Ii8AvQEDgWuNU517HQ9UcBg4FawHDggWIe51CgHbBz7LYnAAu99xOAhcAhhW57CvDsZupsF/u3Vmwq9WPnXFfgGuAYoC7wfqz+wjoBbYD9gCuBx4D/ANsBuwEnbVq4934KcC7wcey5asWuui12PHsAOwGNgN6x63pi/291gfqxurz3vjvwE3Bk7LEGFPP/JSIBKYiJSHkMAo7bOCqDhbJBxdx2LbCTc25r7/1y7/0nm97AObcd8C/gKu/9Ku/918AT2HTnRh9470fGesqeBVqX8Hw1gBaA895P8d7PLVT3KbHnrA0cBrxQ2joLOQfoF3vsdcCtwB6FR8WA27z3S733k4AC4G3v/Qzv/e/AW8CeJTz+n2JTwGcDl3rvF3nvl8We78RCdTcAGnvv13rv3/faRFgkYyiIiUiZee8/AH4DujjndgD25q9As6n/YqM5U51zE5xzRxRxm4bAxpCx0Sxs5GejXwt9/gdQpagGeu/9OGy07EFgnnPuMefclrGrnwOOdM5Vx0bx3i8U0kpT50aNgXtj04FLgEWA26TeeYU+X1nE19VLePzC6gJbAF8Uer5RscsBbgemA28752Y453qV8nFFJA0oiIlIeT2DjYR1x0Z75hV1I+/99977k4B62BTbq865apvcbA5Q2zlXo9Bl2wOzy1OY9/4+730bYFcsXF0Ru3w28DFwdKzuZwvdp7g6ixpd+hk4x3tfq9BHVe/9R+Wpd9PyN/l6ARbcdi30XDW999VjdS/z3vf03u8AHAlcVmhKVyNjImlOQUxEyusZ4GBs2qy4aUmcc6c45+p67zcAS2IX/23JCu/9z8BHQD/nXBXn3O7YCNXzZS0q1pS/r3OuErACWLXJ8z2D9Wy1AoaWos7fgA3ADoUe4xHgaufcrrH71nTOHVfWWosxD9h2YzN/rJ7Hgbudc/Viz9fIOXdY7PMjnHM7xaYwl8ZqXl/osXbY9AlEJH0oiIlIuXjvf8TCUzWseb44nYBJzrnlWEP8id77VUXc7iSgCTY6NhTo470fU47StsSCy2JsenMhcEeh64diU4tDvfcrNlen9/4P4Bbgw9jU4H7e+6HYqNlg59xSrAfs8HLUWpRxwCTgV+fcgthlV2HTj5/Enu8doHnsumaxr5djo30PFVrDrR9wXazuyxNUn4gkkFNPp4hEjXPuB2xq8Z3QtYhItGlETEQixTnXDeudGhe6FhGRlGzZISKSDpxz+UBLoHus90pEJChNTYqIiIgEoqlJERERkUAycmpy66239k2aNEnqc6xYsYJq1TZd6ig6onz8UT52iPbx69ijeewQ7eOP8rFDao7/iy++WOC9r1vUdRkZxJo0acLnn3+e1OfIz88nLy8vqc+RzqJ8/FE+doj28evY80KXEUyUjz/Kxw6pOX7n3KzirtPUpIiIiEggCmIiIiIigSiIiYiIiASiICYiIiISiIKYiIiISCAKYiIiIiKBKIiJiIiIBKIgJiIiIhKIgpiIiIhIIApiIiIiIoEoiImIiIgEoiAmIiIiEoiCmIiIiEggCmIiIiIigSiIiYiIiASiICYiIiISiIKYiIiISCAKYiIiIiKBKIiJiIiIBKIgJiIiIhJIQoKYc26gc26+c66gmOudc+4+59x059y3zrm9Cl3XyTk3LXZdr0TUIyIiIpIJEjUi9jTQqYTrDweaxT56AA8DOOdygAdj17cETnLOtUxQTXFxbk3oEkRERCSpVocuIDFBzHv/HrCohJt0AZ7x5hOglnOuAbAPMN17P8N7vwYYHLttYIPZe++zgJ9CFyIiIiJJMQlozlZbfRG0ioopep5GwM+Fvv4ldllRl+9b1AM453pgo2nUr1+f/Pz8pBQKsOWWi2jVahErV+7LN9/cxapVDZL2XOlq+fLlSf0/TmdRPnaI9vHr2PNDlxFMlI8/isderdp0Wre+HO8rsmjRFkGPP1VBzBVxmS/h8n9e6P1jwGMAbdu29Xl5eQkr7p/y+PzzHNq2vZr99rsKGAfslMTnSz/5+fkk9/84fUX52CHax69jzwtdRjBRPv7oHfsXwJVADWAczs0OevypOmvyF2C7Ql9vC8wp4fLgli9vDowHVgLtgKlhCxIREZE4fQJ0BLYE3sNa18NKVRAbDpwaO3tyP+B37/1cYALQzDnX1DmXC5wYu22aaI2FsQ1Ae6DIk0JFREQk7X0AHApsjYWwpmHLiUnI1KRz7kUgD9jaOfcL0AeoBOC9fwQYCXQGpgN/AGfErlvnnLsQGA3kAAO995MSUVPi7AbkAwcBHYB3sIAmIiIimSEfOAKbeBuLtainh4QEMe/9SZu53gMXFHPdSCyopbEWWHreGMbeBtoGrUhERERKYwy2IENTLIRtE7acTWhl/VLbCXgXqInNL38SthwRERHZjJHAkVgvWD7pFsJAQayMmmJhrC5wCPB+2HJERESkGMOArsCu2OoHdUMWUywFsTLbHpumbIRtJjA+bDkiIiKyiVeA44C9sOnIOmHLKYGCWLk0xEbGmmLnILwdthwRERGJeQFbhGE/7P25VtBqNkdBrNzqY6NhzbH55zfDliMiIhJ5TwOnYEtOvYWtF5beFMTiUhebd24FHA0MDVuOiIhIZD2GrY51MDACqB62nFJSEItbbWxtsTbYfPTLYcsRERGJnAeAc7B2oeHAFmHLKQMFsYSohc1D7w+cBDwftBoREZHouAu4CFsrbAhQJWw5ZaQgljA1gFHYvHR34Kmw5YiIiGS9fkBPbEbqFaBy2HLKQUEsoaph89KHAGcCj4YtR0REJCt54AbgGuBk7EzJSkErKi8FsYTbAngd+DdwLnB/2HJERESyigeuBfoCpwPPkKAdG4NQEEuKKtg8dVfgf8CdQasRERHJDh64ApuS7AE8CeQErSheCmJJk4udQXk8cDlwa9hyREREMpoHLsYGNy4EHiEbYkzmjuVlhErYGZS52DDqGqAP4EIWJSIikmE2AOdha4X1BG4nW95LFcSSriK20m8lrLFwNTY6lh3fQCIiIsm1HjgLey+9GriFbHoPVRBLiRzgCWxkrD8Wxu4km76RREREEm8dcBp2VmRfoDfZ9t6pIJYyFYCHsTB2NzZNeR/ZML8tIiKSeGuB/2Drg92KjYZlHwWxlHLAvdiCc3dgYSw7mg1FREQSZzVwIjAMm0G6LGg1yaQglnIOGICNjN2KhbHMP/1WREQkMVYB3YCR2FqcF4YtJ8kUxIJwwM3YyFgfbPh1EHo5REQk2v7A1uAcg+1O0yNoNamgd/5gHNZ0mIvNe68hk7doEBERic9y4EjgXWAgcEbYclJEQSy4XtjI2GXYyNhLZOKmpSIiIuW3FNsa8CPgWaxJPxrUJZ4WLgUewPaoPAabHxcREYmCJcChwCfAYKIUwkBBLI1cgK0Y/BY2NPtH2HJERESSbhFwMPAltkzFcWHLCUBBLK2cjc2Lj8WGaJeHLUdERCRpfgM6AAXAUKxJP3oUxNLO6cBzwPtAJ2zeXEREJJv8CuQB3wHDscGHaFIQS0snY/Pkn2Lz5kuCViMiIpI4s7EQ9iO2VtihIYsJTkEsbR0LvIrNm3cEFoYtR0REJG4/Ae2xMDYam5qMNgWxtNYF295hEnAQMD9oNSIiIuU3EwthC7AFW/8Vtpw0oSCW9joDbwDfY385/Bq2HBERkTKbDrQDfsdOSNsvbDlpREEsIxyCzaPP4q8hXRERkUwwFQthq4DxQJuw5aQZBbGMkYfNp8/FwthPQasRERHZvALsPWsDkA+0DlpNOlIQyygHYPPqC7C/LmaELUdERKRYX2ODCBWx/SN3DVlM2lIQyzj7YvPry7C/Mr4PW46IiMg/fI6dZLYFFsKahy0njSmIZaQ2wDhsvr09MCVsOSIiIn/6GFt2qSbwHrBT2HLSnIJYxmqNzbdvwIZ+C0IWIyIigu0KcyhQDwthTYJWkwkUxDLartiQb0UsjH0VtBoREYmycdjWfNti703bhS0nQyiIZbzm2F8d1bD5+AlhyxERkQgaje0X2RSbrWkYtJpMoiCWFXbE/vrYCjgY+ChsOSIiEiEjgKOwgYHxQP2w5WQYBbGs0QQLY/WBw7BRMhERkWQaChwD7I5NTdYNW04GUhDLKtthYWxb4HBsmQsREZFkeBk4DjuT/x2gdthyMpSCWNZpgM3P7wAcgc3bi4iIJNJzwEnA/sDb2FIVUh4KYlmpPjZP3wKbt38jbDkiIpJFBgKnYutYjgJqhC0nwymIZa2tsanJ3bH5+yFhyxERkSzwKPBf4BCsSb9a2HKygIJYVquNzdvvDRwPvBS2HBERyWD3A+diy1S8jm1fJPFSEMt6NbE+sQOAk4Fnw5YjIiIZ6A7gf8DR2AxLlbDlZBEFsUioAYzEVt8/DZvfFxERKY1bgCv4a2YlN2w5WUZBLDKqYfP5h2Lz+w+HLUdERNKcB/oA1wGnAM8DlYJWlI0UxCKlKjAMW9bifODeoNWIiEi68sA1wI3AGcDT2L7GkmgKYpFTBXgNO5PyEuD2oNWIiEi68UBPoD/WnP8EkBO0omymIBZJucBg4ATgSuDmsOWIiEia2ABcBNyNNec/hKJCcmmcMbIqYSsj5wLXA2uAGwAXsigREQlmA3AONgJ2OTAAvSckn4JYpFUEnsJC2U1YGOuHfvBERKJmPXYi1yDgWuw9Qe8FqZCQIOac64R1fucAT3jv+29y/RXAfwo95y5AXe/9Iufcj8Ay7Ltgnfe+bSJqktLKAR4HKgO3AauBu4JWJCIiqePcemzLohew5vzrwxYUMXEHMedcDvAgtt/BL8AE59xw7/3kjbfx3t9OrCvcOXckcKn3flGhh+ngvV8Qby1SXhWwlzAXuAcbGesWsiAREUmJteyyy03Au1hz/lWB64meRIyI7QNM997PAHDODQa6AJOLuf1JwIsJeF5JKIc1Z+YCt7PzzrOwBWDVpCkikp1WA8dTr9672EzIpYHriSbnvY/vAZw7FujkvT8r9nV3YF/v/YVF3HYLbNRsp40jYs65mcBi7HzZR733jxXzPD2AHgD169dvM3jw4Ljq3pzly5dTvXr1pD5HevI0afIUTZo8y6+/HsrUqVcStdOWo/vamygfv449mscO0Tv+ChVWs+uufahT51MmTjyXhQtPCF1SMKl47Tt06PBFca1XiRgRK6qbr7h0dyTw4SbTkgd47+c45+oBY5xzU7337/3jAS2gPQbQtm1bn5eXF2fZJcvPzyfZz5G+OjBzZkWaNn2Kbbapje1PGZ3zOqL92kf7+HXseaHLCCZax/8HNnH1GfAYCxc2i9Cx/1Po1z4R806/ANsV+npbYE4xtz2RTaYlvfdzYv/OB4ZiU50S2KxZp2LN+4Oxl21N2IJERCQBlgP/BsZhZ82fHbYcSUgQmwA0c841dc7lYu/awze9kXOuJtAeeL3QZdWcczU2fo5thFiQgJokIa7E+sZeA47F+glERCQzLQU6Ae9jMx2nhS1HgATMN3nv1znnLgRGY81EA733k5xz58aufyR206OBt733KwrdvT4w1Dm3sZYXvPej4q1JEukSrIH/AqArMATbs1JERDLHYiyEfYnNdBwbthz5U0Iaf7z3I4GRm1z2yCZfP43tGlr4shlA60TUIMl0PhbGemBtfq8D1YJWJCIipbUQW2GqAHgV6w+TdKG1CaSUzsJy9HigM7YGr4iIpLf5QAdsRanXUQhLPwpiUganAs8DH2JD3L+HLUdEREowFwth04ERwOFhy5EiKYhJGZ0IvISd9nwI1ncgIiLpZTa2KPcs4C3g4KDVSPEUxKQcumFnUn4DdAS0O5WISPqYBbTDRsRGYwsWSLpSEJNyOgrrN5gMHIT1IYiISFgzsOC1EBgDHBC2HNksBTGJQyfgTaz/IA/760tERML4Hgthy7AFW/cNW46UioKYxKkj1n/wE/YL4Jew5YiIRNIUbDpyFXZ2+15hy5FSUxCTBGiP9SH8Gvt8VthyREQiZSL2u9cD+cDuQauRslEQkwQ5AHgHWIT9VfZD2HJERCLhK2yJikrAu8CuYcuRMlMQkwTaBxiLbSrbHvgubDkiIlltAnayVDXgPaB52HKkXBTEJMH2wobG12BhbHLQakREstNH2NpgW2EhbMew5Ui5KYhJErTCwhjY2ZTfBqtERCT7vAccCtSPfd44bDkSFwUxSZKWWL9CLta/8GXYckREssJYbOmg7bDfsduGLUfipiAmSbQz9ouiOrbMxWdhyxERyWijgCOwach8oEHQaiQxFMQkyXbEhs5rY/0MH4UtR0QkI70BdAFaYOuE1Q9bjiSMgpikQGNsZGwbrK/h3bDliIhklCHAMUBrbMX8rcOWIwmlICYpsi0WwLYHDsfWHBMRkZINBo4H9sb2jtwqbDmScApikkINsL6GnbA+h7eCViMikt6eAf6DLZg9GqgZthxJCgUxSbF6WH9DS6ArMDxoNSIi6elJ4HRsCaCRQI2QxUgSKYhJAHWwU7D3ALoBrwWtRkQkvTwMnAUcBozAVs6XbKUgJoFsBbyNbYt0AvBi2HJERNLCvcD5wJHAMKBq0Gok+RTEJKCa2Lo4BwCnAIPCliMiEtQA4BLsDMlXgcpBq5HUUBCTwGpg/Q8dgDOAJ8KWIyISxE3AVcCJ2JmSuWHLkZRREJM0UA1brPAw4GzgobDliIikjAeuB3oD3YHngEpBK5LUUhCTNFEV64c4ErgAuCdkMSIiKeCBXsDNwH+Bp4CcoBVJ6imISRqpjPVFdAMuBW4LW46ISNJ47PfcAOA84DEUwqJJQUzSTC7WH3Ei9pfiTWHLERFJuA3YyP+9wMXAg+jtOLoqhi5A5J8qYn0SuVjfxBrgRsCFLEpEJAE2AD2wBVuvBPqj323RpiAmaSoH65fIxfonVmNTlfqFJSKZaj1wJrZ10fXADeh3miiISRqrADyKhbHbsZGxu9EvLhHJPGuBU7HWixuxICaiICZprwLwABbG7sFGxtRPISKZZA1wEjAEG9m/Mmw5klYUxCQDOOAu7KzK27BfajrDSEQywWrgOGytxLuxlfNF/qIgJhnCAf2wMHYjFsaeQt/CIpK+VmLbFY3CFqo+L2w5kpb0LiYZxGHNrZWw/oq1wLNoFWoRST8rgC7AOGzrtv+GLUfSloKYZKDrsJGxK7GRMe3LJiLpZBlwBPAB8DTWpC9SNHU8S4a6AmveH4qtxL8qaDUiIuZ3bN/cD4HnUQiTzVEQkwx2MfAwMALoivVjiIiEshg4BJgAvITtECJSMgUxyXDnYitUv41NBawIW46IRNQCoCPwDbZMRbew5UjGUBCTLLBxpep84HCsP0NEJFXmAwcBk4HXgSPDliMZRUFMssQpwAvAR1h/xu9hyxGRiJgL5AHTgTeBTkGrkcyjICZZ5ATgZeBz4GBgUdhyRCTL/QK0B34C3sKmJkXKRkFMsswxWH/Gt9gvxQVhyxGRLPUj0A6Yh/Wotg9ajWQuBTHJQkcAw4GpQAfsF6WISKL8gAWvxcAY4P/CliMZTUFMstRh2LIWP2D9G3OCViMi2WIaFsKWA2OBfcKWIxlPQUyyWEdsj7eNfRw/hy1HRDLcZOx3yRrsLO29glYj2UFBTLJcO6x/Yz72C/THoNWISKb6Fhtdd1gIaxWyGMkiCmISAfsD72D9HO2w6UoRkdL6Eus3zQXeBVqGLUeyioKYRMTewDjgDyyMTQtbjohkiM+wNofqwHvAzmHLkayjICYRsicwHliHTVNOCluOiKS5D7E1CWtjIWyHsOVIVlIQk4hphfV3VMD6Pb4JWYyIpK187OzrBth0ZOOg1Uj2UhCTCNoF+8VaBev7+CJsOSKSZt4BOmPhKx/YNmg1kt0UxCSimmFTDVti/R+fhi1HRNLEW9ii0DthrQwNwpYjWS8hQcw518k5N805N90516uI6/Occ787576OffQu7X1FkqcpNjJWBzgE+CBsOSIS2HCgK3ZW5HigXtBqJLmGfTWbA/qPY+Ls3zmg/ziGfTU7SB0V430A51wO8CD2TvYLMME5N9x7P3mTm77vvT+inPcVSZLG2MjYQUAnbDV+EYmaunXfBW7GFmkdBWwVtiBJqmFfzebqIRNZuXY9bAezl6zk6iETAei6Z6OU1pKIEbF9gOne+xne+zXAYKBLCu4rkiCN+KsZtzNbbfV54HpEJLVeoGXLG7G3pDEohGW/20dPY/XqNXSe+gEVV60CYOXa9dw+OvVLGznvfXwP4NyxQCfv/Vmxr7sD+3rvLyx0mzzgNWzUaw5wufd+UmnuW+gxegA9AOrXr99m8ODBcdW9OcuXL6d69epJfY50FsXjr1RpCa1b96Rq1Z+ZNOlGFi3aL3RJQUTxtd9Ixx69Y69ffxQtWtzOokUtmTx5AOvXVw1dUspF7bV369ez5pU3aDv8VbaaO5vPzz2fj/916J/Xt2pUM+HP2aFDhy+8922Lui7uqUlsv4dNbZruvgQae++XO+c6A8OwbunS3Ncu9P4x4DGAtm3b+ry8vPLWWyr5+fkk+znSWXSP/0CWLduf3XfvDbxCFAdoo/va69ijd+xPAAOAjkya1JN27TqFLiiIyLz2a9bAM89Av34wYwaT6zXlmi69aPl/+3DnRItDjWpV5aL/5KW0rERMTf4CbFfo622xUa8/ee+Xeu+Xxz4fCVRyzm1dmvuKpFYdvvnmLmzx12OxMCYi2edB4GxsrbDhbNhQJXA9kjSrVsGDD8JOO8HZZ0Pt2nxy90C6nf0gb7X4F1SwKFS1Ug5XHNY85eUlIohNAJo555o653KBE7FTT/7knNvGOedin+8Te96FpbmvSKqtW1cd6xPZF/uWfCFsQSKSYHcDFwJHYRM00ZuOjIQVK+Cuu6BpU7jwQth+exg1Cj77jP0uOYN+3XanUS177RvVqkq/Y1qlvFEfEjA16b1f55y7EBgN5AADY/1f58aufwQbWjjPObcOWAmc6K05rcj7xluTSPy2xM6cOhI4BVgLnBa0IhFJhNuAXkA37I+s3LDlSOItXQoPPWQh7LffoEMHeOEFyMsD91dHVNc9G9F1z0bk5+enfDqysET0iG2cbhy5yWWPFPr8AeCB0t5XJD1UB97E+sTOANZgUxkikpluAnoDJwHPkKC3QEkXixfDfffBvffa5506wXXXwQEHhK6sRPouFCnRFsAbwDHYSbtrgAuCViQiZeWB64FbgFOBgdgkjGSFBQvg7rvhgQdsNKxLFwtgbYs8STHtKIiJbFYVYChwAtZXshq4LGhFIlJaHrgSuAM4C3gU7e6XJX79Fe64Ax5+GFauhGOPtQC2++6hKysTBTGRUqmMnUF5MtATC2NXB61IRDbHA5cA9wHnA/ejEJYFfv4ZBgyAxx+HtWvh5JPhmmtgl11CV1YuCmIipVYJeBFr7r0Gm6bsTdHL4YlIWBuwNoJHgEuBO9HPaoabORP694enngLv4bTToFcvW5YigymIiZRJRazJtxLQFwtjN6Nf8CLpZD3W0zkQuAroh35GM9h338Gtt8Jzz0FODpx1Flx1FTRuHLqyhFAQEymzHOwXfC5wKzZNeTv6RS+SDtZhZzk/h41Y90U/mxmqoMAC2EsvQeXKcNFFcMUV0LBh6MoSSkFMpFwqYFMeudiUxxrgXvQLXySktdi6fy9jI9XXhi1Hyuerr+Dmm2HIEKheHS6/HC67DOrXD11ZUiiIiZRbBaz5tzJwFzYy9jBqBhYJYQ22E8ZQbIT68rDlSNl9+qkFsBEjoGZNuP56uPhiqFMndGVJpSAmEheHnRafC/TH3gyeQGsUiaTSKmwDlzexken/hS1Hyua99yyAjRkDtWvb5xdcALVqha4sJRTEROLmsF6xysAN2PTI0+jHSyQVVgJdgbexEelzg1YjpeQ9jB0LN91kQaxePVuS4rzzbDoyQvROIZIQDmsKzsX6UtYAz2NnV4pIcqzA9oPNB54EzgxajZSC9zBypI16ffIJNGpkWxKdfTZUjebm6wpiIgl1DTYydjk2MjY49rWIJNYy4N/Ah9iSMqeELUdKtmEDvP66BbAvv7SlJx55BE4/3c6IjDB1FYskXE9sJe9hQDesf0VEEud34FDgI+AFFMLS2Pr1MHgwtG4Nxxxje0EOHAjffw/nnBP5EAYKYiJJchG2vMWbQBfgj7DliGSNRcDBwBfYtmMnhC1HirZuHQwaBC1bwkkn2YjY88/DlClwxhlQSW0bGymIiSTNOdjCr2OAI7B+FhEpvwVAR+BbYAhwdNhy5J/WrLE9IHfe2aYdq1aFV16BiRNtT8iK6ojalIKYSFKdgfWvvAt0ApaGLUckY80D8oCpwHDsjxtJGytXwgMPwI47Qo8esPXWMHy4Lc567LFQQXGjOIqmIkl3CnY25clYX8sooFbIgkQyzBxsJOwnbLr/oLDlyF9WrLCm+zvugF9/hQMOgCeegEMPBaedRkpDQUwkJY7HlrI4AetveRuoHbQikczwMxa8fsX+iDkwbDlili6FBx+Eu+6CBQvgoIPgxRehfXsFsDLSWKFIyhyN9bVMxN5Yfgtbjkja+xFoD8zH/nhRCAtu8WLo29eWn7jmGth7b/jwQ1ucNS9PIawcFMREUuoI4A1gGtAB+ytfRP5pOtAOWAy8A+wftpyo++03C16NG8MNN1jomjDBFmf9v/8LXV1GUxATSblDsT6XmVjz8eyg1Yikn6nYSNgfwHhg77DlRNncudCzJzRpAv37w+GHwzffwNCh0LZt6OqygoKYSBAHYf0us7E3nJ/CliOSNiZhf6Csw7Yu2iNgLRH2889w0UXQtKltQdStG0yeDC+9BLvvHrq6rKIgJhLMgdgaY79hYWxm2HJEgvsGC2EVsCVfdgtaTSTNmGHLT+y4o50NecopMG0aPPMMtGgRurqspCAmEtR+wFhsy5b2WF+MSBR9gfVNVsFCmN70U2raNDjtNFuIddAg24T7hx9sKYoddwxdXVbT8hUiwbUFxgGHYM3J49CbkETLJ9iCx7WwnrCmQauJlIICdrnpJhg/HqpUgf/9Dy6/HBo2DF1ZZGhETCQt7IG9AW3ARsYKglYjkjofYH+EbA28h0JYinz5pW3C3aoVdT7+GK68En780dYFUwhLKQUxkbSxG9acnIP1yXwdsBaRVMgHDgMaYtOR2wetJhI++QSOOALatIFx46B3bz4ZPNjOiKxXL3R1kaQgJpJWWmBvSFWxMys/D1uOSNKMAToDTbDv+UZBq8l6770HhxwC++9vYeyWW2DWLLjhBtZtuWXo6iJNQUwk7TTDpmhqYvvrfRK2HJGEGwkciX2v5wPbBK0ma3kPY8ZAu3a29dDEiXD77TYFec01ULNm6AoFBTGRNNUUGyWoi/XPvB+2HJGEGQZ0BXbFTkypG7KY7OQ9jBhho1+HHmpLUtx3H8ycaY341auHrlAKURATSVvbYyNjjbAzysaFLUckbq8AxwF7Ycu21AlbTrbZsAGGDLH+ryOPhHnzbC2wH36wxVmrVg1doRRBQUwkrW1sYm4K/Bvb+FgkEz0PnAjsi30f1wpaTVZZvx5efNFWvO/WDZYvh6eegu++g3POgcqVQ1coJVAQE0l79bGlLZpjfTVvhi1HpMyeBrpj6+SNAtQcnhBr18LTT8Muu8DJJ9uU5PPPw5QpcPrpUKlS6AqlFBTERDJCXWxqshVwNDA0bDkipfYYcAZwMPZHhPqT4rZ6NTz2GDRvDmecAdWqwauvWjP+ySdDTk7oCqUMFMREMkZt4B2gDdZn83LYckQ26wHgHGyZiuHAFmHLyXQrV8L998NOO9mUY9268MYbtjhrt25QQW/pmUhbHIlklFrAaKxf7CRgDXBKyIJEinEX0BPoArwEqE+p3JYvh0cfhTvugF9/hX/9C5580tYFcy50dRInBTGRjLMl8BZwFHAqsBab+hFJF/2Aa4BjgRcA9SqVy9Kl8MADtu3QwoXQsSMMHmxrgknWUBATyUjVgRHYekxnYiNj54QsSATwwI1AX+BkYBB6mymHRYvg3ntt7a8lS6BzZ7juOlsXTLKOfkJEMtYWWN/NscC5WBi7KGhFEmUeuBYbDTsdeALbN1VKbf58uPtuePBBWLYMuna1ANamTejKJIkUxEQyWhVgCHAC8D9gNXB50Iokijz2fXcX0AN4GJ0LVgZz59rWQ488AqtWwfHHw7XXQqtWoSuTFFAQE8l4udgZlP8BrsBGxq4JWpFEicf+CHgAuBC4D1ADean89BMMGABPPAHr1sF//gNXXw0tWoSuTFJIQUwkK1TCmqJzsemhNUAf9IYoybUBOA9bK+wy4A70PVcKM2ZAv34waJB9fdpp0KsX7Lhj2LokCAUxkaxREWuOrgTcgE1T3oreGCU51gNnYavmXw3cgr7XNmPqVLj1VnjhBahYEXr0gCuvhO23D12ZBKQgJpJVcoAnsTWb+mNh7E70BimJtQ44DRuF7Qv0Rt9jJZg4EW65BV5+2Tbevvhi6NkTGjYMXZmkAQUxkaxTAWuWzgXuxqYp70PN05IYa7F+xFewUTD1Ixbriy/g5pth2DCoXh2uugouu8xWxBeJURATyUoOuBcLY3diYewRFMYkPquBE4FhWD9Yz6DVpK2PP7YANnIk1KoFffrA//4HtWuHrkzSkIKYSNZywO3YNOWtWBh7Eq3tJOWzCugGjMRGWLVm3T+8+y7cdBOMHQt16th05AUXQM2aoSuTNKYgJpLVHHAzFsb6YNNKWu1cyuoPbBeHMcCj2FphAoD3MGaMjYC9/z7Ur297Qp5zjk1HimyGfhuLZD2HNVPnYme3rUH7/0npLQeOBN4FBqJ9TWO8hxEjLIB99hk0amRbEp11ljXki5SSgphIZPTCwlhPbGTsJWykTKQ4S4HOwMfAs1iTfsRt2ABDh1oA+/praNIEHn3U1gKrrJ8nKTt17opEymXA/cDrwDFY349IUZYAhwKfAC8S+RC2fr2t/9WqFRx7LKxYAU8/Dd99Z+uBKYRJOSmIiUTOhVifz1vYlNMfYcuRNLQIOBj4EngVOD5sOSGtXWuBa5ddbAsi5yyQTZlio2CVNMUv8dHUpEgk9cCmKc8E/g28AaixWAB+w0LYNGAo9v0RQatXWwDr3x9+/BH23BNeew26doUKGsOQxEnId5NzrpNzbppzbrpzrlcR1//HOfdt7OMj51zrQtf96Jyb6Jz72jn3eSLqEZHSOB14DngP6IT1A0m0/QrkAd8Bw4lkCFu50prud9wRzj3XzoIcMcIWZz3mGIUwSbi4R8SccznAg8AhwC/ABOfccO/95EI3mwm0994vds4dju0Qu2+h6zt47xfEW4uIlNXJ2NmTJ2M/wqPDliPB5Ob+BpyD/Rp/EzgobEEplrNypS07cccdMG8eHHggPPUUHHywTUeKJEkipib3AaZ772cAOOcGA12AP4OY9/6jQrf/BNg2Ac8rIglxHDZNeRzQkYoVeweuR1LvJ/bc8xJsVHQUcGDYclLp99/hgQfYb8AAWLrUgtfLL0O7dqErk4hw3vv4HsC5Y4FO3vuzYl93B/b13l9YzO0vB1oUuv1MYDHggUe9948Vc78exFYRrF+/fpvBgwfHVffmLF++nOoRXowvyscf1WOvXfsTdtutN8uXN2LixLtYu3ar0CWlXBRf+ypV5tK69WVUrLiMiRMHsHRpy9AlpUTFpUvZ9tVX2XbIECquWMG8tm2ZffrpLN1119ClpVwUv+8LS8Xxd+jQ4Qvvfdsir/Tex/WB/Rn9RKGvuwP3F3PbDsAUoE6hyxrG/q0HfAO029xztmnTxifb+PHjk/4c6SzKxx/lY/f+bb9uXWXvfUvv/ZzQxaRc9F7777z323rvt/ITJjwSupjUmDfP+6uu8r56de/B+6OP9v6LLyL42v8lysfufWqOH/jcF5NpEtF1+AuwXaGvtwXmbHoj59zuwBNAF+/9wkJBcE7s3/nYKTr7JKAmESmXQ5g4sT8wC2vanh22HEmiqUB7bC258Sxf3jxwPUk2Zw5ceqktwDpgABxxBHz7LQwZAnvtFbo6ibBEBLEJQDPnXFPnXC5wIna6zZ+cc9sDQ4Du3vvvCl1ezTlXY+Pn2OqBBQmoSUTKacmSPbA+obnYG/VPQeuRZCjAXtsNwHigdck3z2SzZtnG2zvsAPffD8cdZ2uAvfiiLc4qEljczfre+3XOuQux061ygIHe+0nOuXNj1z+CbXRXB3jI2dkn67zNldYHhsYuqwi84L0fFW9NIhKvf2EbPB8GtAPGATsErUgS5WtsnbBc7HVtEbSapPnhB+jXDwYNsrMeTz8devWyQCaSRhKyoKv3fiQwcpPLHin0+VnAWUXcbwZZ/aeYSCbbFxiLDVS3x960mwWtSOL1OfZ6Vsdez53ClpMMU6fCrbfa6vcVK9paYFdcAdtvH7oykSJpZToRKUEb7A17FTYyNiVsORKHj4GOQE3gXbIuhH37LZxwArRsaSvgX3wxzJxp05EKYZLGFMREZDNaA/nYCjPtgYlBq5HyeB8bCauLhbCmYctJpC++sG2HWreGt96y6ccff4Q774QGDUJXJ7JZCmIiUgq7Ym/glbBVaL4KW46UwThsC6tG2HZWWTI69NFH0LkztG0L774LffpYALv1VqhbN3R1IqWmICYipdQcC2NbYNvfTAhbjpTCaGy/yKbYa9cwbDnx8h7y86FjRzjgAJgwwYLXrFnQty/Urh26QpEyS0izvoiEM+yr2dw+ehpzlqykYa2qXHFYc7ru2ShJz7YTNqpyEHbm3VvA/yXpuSQ+I4BuwC7YGbAZPErkPbz9Ntx8M3zwgW3Efccd1ohfrVro6kTiohExkQw27KvZXD1kInWmfEPF9WuZvWQlVw+ZyLCvkrkQaxNsdKUetrzFe0l8LimfocAxQCtsajJDQ5j38MYbsO++0KmTTT3ef7814ffsqRAmWUFBTCSD3T56GrlLl/DC4Gt5a+BF7D/rG1auXc/to6cl+Zm3w8LYtsDh2DIXkh5exnaeawO8A2TgdN2GDfDqq7DnnnDUUbBgATz2mK0NduGFULVq6ApFEkZBTCSDzVmykt+r1uDCo66k0oZ1vDj4Wu5543bW/pKKrYkaYmdT7gAcgfUjSVjPAScB+wNvA7WCVlNm69bB88/DbrvZCvgrV8LTT8O0aXD22ZCbG7pCkYRTEBPJYA1r2chA/o57c+iZD3Lv/53E4dM+ZNwT58F999kbW1LVx7bIaQEcBbyR5OeT4g0ETsWWGBkF1AhbTlmsXQtPPQW77AKnnAIVKtgWRJMnw2mnQaVKoSsUSRoFMZEMdsVhzalaKQeA1ZUqc/eB/6HLOY+wYs+2tqDl3nvDJ58kuYqtsanJ3bG+pCFJfj75p0eA/wKHYE36GdI7tXo1PPIINGsGZ54JNWrYJtzffgsnngg5OaErFEk6BTGRDNZ1z0b0O6YVjWpVxQGNalXl3LM6Uf+j8fDyy/Dbb7D//tCjByxcmMRKamP9SG2B44GXkvhc8nf3Aedhy1S8ji0vkub++APuvdf2fTzvPNhmGxgxwhZnPfpoGxETiQgtXyGS4bru2ajo5SqOO87ONLvhBrjnHhtpGDDANj9OyhtdTawv6d/AycAaoHsSnkf+cgdwBdAVC79p3kO1fDk8/LAtPTF/PrRrZ5tyd+xoG3OLRJD+7BDJZjVq2JveV19Bixbw3//CgQfa1E9ynhBbWywPOA3rW5LkuAULYcdjZ0qmcQj7/XdbA6xxY7jyStuO6N137ePggxXCJNIUxESioFUreO89a4j+7jvYay+47DJYujQJT1YN61M6FOtbejgJzxFlHugDXAecAjyPbT2VhhYuhN69LYBdf71Nk3/8sS3O2q5d6OpE0oKCmEhUVKhg05LTpsFZZ9l05S67WC+Z9wl+sqrAMGxZi/OBexP8+FHlgauBG4EzgKdJyw6T+fPhqqugSRO46SabevzyS+sD22+/0NWJpBUFMZGoqV3bzlT75BNrkj7hBDj0UBspS6gqwGvA0cAlwO0Jfvyo8UBP4DbgHOAJIM3OKpw9Gy65xALYHXfAkUfCxInw2mu2OKuI/IOCmEhU7bMPfPYZPPCAbZ7cqhVcfz0VVq9O4JPkYk3kJwBXAjcn8LGjZANwEXB37N+HSatf37Nmwfnn21mQDzwAxx8PU6bACy/Y4qwiUqw0+kkWkZTLyYELLoCpU+3N8+ab2fuMM2wKKWEqYSu+dweuB3pjoztSOhuwEbAHgcuxad40aW6fPt1OANlpJ3jiCZv6/u47Ww1/551DVyeSERTERMSmKJ99FsaPZ0Nurk0pHX20jXQkREXgKeBM4CagFwpjpbEe+z97ArgGGEBahLApU6B7d2je3LYkOvdc2wfy0UdtVExESk1BTET+kpfH548/Dv3725ltu+xin69Zk4AHzwEeB87FAsVlKIyVZB02ijgIuAGb1g0cwr75xkZOd93V1qW79FKYORPuvx+22y5sbSIZSkFMRP7GV6pkZ7xNmWILwl59ta37NH58Ah69AvAQ8D/gHuBCbOpN/m4ttnn3i0A/bDo3YAj7/HPo0gX22ANGjYJeveDHH60hv0GDcHWJZAEFMREp2vbb26jHiBG2J+BBB9mGzL/+GucDOyyEXYGFsnNQGCtsNXAs8CpwFzaNG8iHH8Lhh9uepe+9B3372nT1rbdC3brh6hLJIgpiIlKyf/8bJk2yBTlfecX6gh54ANavj+NBHbYMw3VY/9MZWD9U1K3ElvsYDjwAXJr6Ery30c+DDoJ//ctGw/r1swDWpw9stVXqaxLJYgpiIrJ5VavCjTfamlD77gsXXWSjJJ9+GseDOqxx/0bgGWyV+LWJqDZD/QEcBYwCHgMuSO3Te2/TjgceaCFsyhS4806bguzVC7bcMrX1iESEgpiIlN7OO8Po0bYa/7x5tmXNOefAokVxPOj1QH9gMNYXlYgTAzLNcqAzMBbbn/Ps1D219zB8OHudd55NQ/70k414zpxp22BVq5a6WkQiSEFMRMrGOTjuOFt77NJL4cknbbryqadgQ3l7va7C+qFew/qjErmobLpbCnQCPsDWWzs9NU+7YYNNNe+xB3TpQqVly+Dxx21tsAsugCpVUlOHSMQpiIlI+dSoYVNXX35pI2VnnmkbOX/7bTkf8FJs0dI3gK5Yv1S2WwwcAnyKjQienPynXLcOnnvOVrw//ng7EWPQID575hnbgzQ3N/k1iMifFMREJD677w7vvw8DB9oo2V57Qc+esGxZOR7sfGytsdHAkcCKhJaaXhYCHYGvsDMkj03u061ZY69Rixa2GGtODgwebCdinHoqPifN9q0UiQgFMRGJX4UKcMYZMG2abXlz9932hv/yy9aDVCZnAU8D47G+qfIEunQ3H+gATAaGAV2S91SrVsHDD0OzZvba1Kxpy5J8841t+K4AJhKUgpiIJE6dOrbNzUcfQf369kZ/2GG2/2CZnIr1S32I9U/9nvBSw5mLhbDp2DRs5+Q8zR9/wD33wI472obcDRvCm2/achRHH23hWUSC00+iiCTefvvBZ5/BfffZEhetWkHv3rCyLH1fJwEvAZ9hfVSLk1Jqas0G8oBZwEjsuBJs2TIYMACaNrWTKZo1g3fesXDcubOdbCEiaUNBTESSo2JFW29s2jQ7y/Kmm2yPwpEjy/Ag3bAzKb/B+qkWJKXU1JgFtMNGxEZjgSyBliyx/+MmTWyLqtatbTX8/Hzo2FEBTCRNKYiJSHJts42dpTduHFSubCv1H3OMrVdVKkdhfVSTgYOw/qpMMwMLYQuBMcABiXvohQtt14PGjW3U8f/+Dz75xDZtP/DAxD2PiCSFgpiIpEaHDtYg3q+freC+yy5w2212Nt9mHQ6MwPqq8rBRpUzxPRbClmMLtu6bmIedNw+uvNIC2M03wyGH2FIib7xhux+ISEZQEBOR1MnNte1ypkyBQw+1z/fYw6bPNutg4C3gJ6A98EsSC02UKVgIWw2MA9rE/5CzZ8PFF9sU5J13wlFHQUEBvPoq7Lln/I8vIimlICYiqde4MQwdaqM3K1faaFn37vDrr5u5Y3usv+rX2Oezkl5q+U3EavRAPtA6vof78Uc47zzYYQd48EE48UQLtC+8YL13IpKRFMREJJwjjrAFRa+7Dl56ydYee/BBWL++hDsdALwDLMJGm35ISall8xW2REUl4F0gjqA0fbrtWtCsmW0ndfrp8P33tqXUzjsnpFoRCUdBTETC2mILO9tv4kTYe2+48ELYZx9b/qJY+2D9VsuxUadpKSm1dD7DTiqoBrwHNC/fw0yeDKecYvt4vviijYbNmGHrtDVtmrhyRSQoBTERSQ/Nm9uZfoMHw9y5thbZuefCokXF3GEvbPX9NVgD/+RUVVqCj7Betq2wkbAdy/4Q33xjy33stptN3152GcycaWuybbttYssVkeAUxEQkfThnq/FPnWoN6U88YQHt6aeL2Sppd6z/CiyMlXfD8UR4DzgU2AYLYU3KdvcJE6BLFzt5YfRouPpqmDULbr/dlgARkaykICYi6WfLLW2/yi++sN6oM86Adu1s+vIfWmLBJxfry/oypaWasdhWTNvFatmu9Hf94APo1MmmY99/H264wQLYLbfA1lsnp1wRSRsKYiKSvlq3tqDy5JN2huCee8Lll9s2Pn+zMxaAqmMr8JfUX5Zoo4AjsGnIfKDB5u/ivS1w26GDLbr65ZfQv7+dGdm7N2y1VTILFpE0oiAmIumtQgU7a3DaNPv3zjttMdhXXtlkunJHbHpwK6xP68MUFPcG0AVogfWr1S/55t7DW2/Bv/5l2w5NmwZ33WU9YFddZSOBIhIpCmIikhnq1IHHHoOPP4a6deH4421K7/vvC92oMRbGtgEOw0bJkmUIcAzWpzYWKGEaccMGeP11m37s3Bl+/tmW6ZgxwzbmrlYtiXWKSDpTEBORzLLfftbYft99tqfibrtBnz62MCwA22IBbHtsa6R3klDEYOB4YO/Y49cu+mbr18PLL9uUateudgbo44/b2mDnnw9VqiShNhHJJApiIpJ5KlaEiy6ysyuPPRZuvNEC2VtvxW7QAOvX2gnr33qruEcqh2eA/2ALy44Gav7zJuvWwbPPWk0nnACrV8Mzz9hU5Fln2VZPIiIoiIlIJmvQAJ5/HsaOhUqVbNqvWzeb+qMe1rfVEugKDE/AEz4JnI4tlTESqPH3q9essRMLWrSAU0+1ml56yXYP6N7dAqSISCEKYiKS+Q46CL79Fm691UbFWrSAAQNg7ZZY/1ZroBvwWhxP8jBwFrZW2Ahs5fyYVavgoYdsqY2zzoKaNW0x1q+/tl62nJw4nldEspmCmIhkh9xcWwR18mQ4+GA7C3GPPeC9icAYbFukE4AXy/Hg9wLnY9Ocw4CqdvEff9h6ZzvsABdcAI0awciR8Pnn1hNWQb9iRaRk+i0hItmlSRM7Q3H4cAtK7dvDqRfBvGewvq5TgEFleMABwCXYGZKvAVVsHbPbbrPnuuwyW/1/7Fj48EM4/HDbIUBEpBQUxEQkOx15pPVmXXut7V/ZvA081BXW5wFnAE+U4kFuAq7CRtIGw5I/7MSAxo2hVy87G/L992H8eJseVQATkTJSEBOR7LXFFnDzzbY1Utu2cMFlsO9imLAfcDbwUDF39MD1QG+gOyy4B667wQJYnz62IOunn9qekP/6V4oORkSykYKYiGS/5s1hzBh48UWY8yvs+wmc3xgWXwDcs8mNPdALuBl+PRGuqAtNdrK9Hw85BL76yqY999kn5YchItknIUHMOdfJOTfNOTfdOderiOudc+6+2PXfOuf2Ku19RUQSwjk48URbe+zii+HRn6F5ZRh0KXx5AjRpQvuDOsDAmvDLALi4FTQdBnfdA126QEEBvPqqnQAgIpIgcQcx51wO8CC2hHVL4CTnXMtNbnY40Cz20QM7D7y09xURSZwtt7QzHb/4Anba05YFu+RlOGwWri/w2TJoCjw4GU46yYLb88/DrrsGLVtEslMiVhfcB5juvZ8B4JwbjO2CO7nQbboAz3jvPfCJc66Wc64B0KQU9xURSbw99oAPPoT6deHLRVxSDfgJ7hkDrAcabQMDB4atUUSyXiKCWCPg50Jf/wLsW4rbNCrlfQFwzvXARtOoX78++fn5cRW9OcuXL0/6c6SzKB9/lI8donf87Rcvwl0NX/+CzRFcCfQDP2cO70bo/yFqr/umonz8UT52CH/8iQhiRZ2v7Ut5m9Lc1y70/jHgMYC2bdv6vLy8MpRYdvn5+ST7OdJZlI8/yscOUTv+tTBkC3jyD9u3uxZwK1AP3D3bRej/IWqv+z9F+fijfOwQ/vgT0az/C7Bdoa+3BeaU8jalua+ISBKsAU6E7f/4axvKRcDd2PqtbzcDNgSqTUSiIhFBbALQzDnX1DmXC5zIP3fXHQ6cGjt7cj/gd+/93FLeV0QkwVYDxwJDoM9utjn3RvduD5OOgJ3HYmuNrQ9ToohEQtxBzHu/DrgQGA1MAV723k9yzp3rnDs3drORwAxgOvA4tmlbsfeNtyYRkeKtxM4JegMmXAnDC2yF/JwclrRuDT/Ogl2HYwu6DsROq1wXsF4RyWaJ6BHDez8SC1uFL3uk0OceuKC09xURSY4VwFHAeOBxuP5VqFPHRsSqVSt0OwfcCORigWwt8CxQadMHFBGJi1bWF5GIWAZ0BvKBp+GDFrZF0ZVXwpQpmwSxja7DNv1+Cdtvck2qihWRiFAQE5EI+B04DPgQeB44Fa6/HurXh27dYNGiYoIYwBXYNkhDgW7AqlQULCIRkZCpSRGR9LUYC2FfYSNb3WDcOMjPh3vvhRkz7GbFBjGAi7FpyvOx/rJhQNXklSwikaERMRHJYguAg4BvgNeAbuC9jYZtuy306GF7SMJmghjAecATwBjgCKzfTEQkPhoRE5EsNR84GPgOeB3oZBePGgUffQQPPwxVqsCkSVC37t+XsCjWf7GRsdOxLXLfBGokoXYRiQqNiIlIFpoL5GEr5rzJnyFs42hYkyZw5pl2WUEB7LZbGR67O/AC8BE25fl7gmoWkShSEBORLPML0B74CXgL6PjXVa+/Dl98Ab17Q24ubNhgI2JlCmJgZ1C+DHyOjbotSkjlIhI9CmIikkV+BNoBvwJvY4EsZsMGC2DNmkH37nbZTz/B8uXlCGIAx2B9Z99iYW9BPIWLSEQpiIlIlvgBC16LgXeA//v71a++ChMnQt++UDHWHruxUX/XXcv5nEdi/WdTgQ7AvHI+johElYKYiGSBaVgIWw6MBfb5+9Xr10OfPtCyJZxwwl+XT4rtqFbuIAbWfzYCC4J5wJw4HktEokZBTEQy3GQshK3BVs3f6583eeEFmDoVbrwRcnL+urygwJaxqFUrzho6AqP4qz/t5zgfT0SiQkFMRDLYt9golMNCWKt/3mTtWpuO3GMPOProv19X5jMmS9IOGI0tm9Ee61cTESmZgpiIZKgvsb6sXOBdoGXRNxs0yFbPv+kmqFDoV966dbbHZMKCGFhf2jtYn1o7bLpSRKR4CmIikoE+w6YDq2MhbOeib7Z6tQWwffeFf//779f98INdH1d/WFH2BsYBf2BhbFqCH19EsomCmIhkmA+xtbtqA+8BOxZ/0yeesCUqbrwRnPv7dRsb9RM6IrbRnsB4YB02TTkpCc8hItlAQUxEMkg+tpp9A2wkrHHxN125Em65BQ48EA455J/XFxRYONtll6RUav1q+div2Txsv0sRkb9TEBORDPEO0BnYHgs425Z884cfhrlzbWpy09EwsCC2ww6l2Ow7HrtggbEK1s/2RRKfS0QykYKYiGSAt4AjgJ2wENag5JsvXw79+0PHjtC+fdG3SegZkyVphoWxLbG+tk9T8JwikikUxEQkzQ0HumJnRY4H6m3+Lg88AL/9ZqNhRVm9Gr77LgmN+sXZAQtjdYBDgA9S9Lwiku4UxEQkjb0KdAP2wFbMr7P5u/z+OwwYAJ07w/77F32b776z1fZTMiK2UWPs5IIG2Gr8+Sl8bhFJVwpiIpKmXgBOxLYrGgNsVbq73XMPLF5sZ0oWZ+MekykNYgCN+Oskg87YcYlIlCmIiUgaGgR0Bw7AVqvfsnR3W7QI7rrLVtBv06b42xUU2MbfzZvHX2qZbYONhjXDNg0fGaAGEUkXCmIikmaeAM7AzjIciS3aWkp33AHLlsENN5R8u4ICaNYMcnPLX2Zc6mKLvu6K9b+9HqgOEQlNQUxE0siDwNnYWmFvAGVYWmL+fLjvPjjhBGhVxJ6ThaXsjMmS1MH63vYEjgVeCVuOiAShICYiaeJu4ELgKGAYULVsd7/tNlvEtW/fkm+3YgXMnJkGQQygFtYnti/WD/dC0GpEJPUUxEQkDfQHLsPOkHwFqFy2u8+ZAw89BN27b77va8oU8D5NghhY/9so4EDgFODpoNWISGopiIlIYDcCV2MjQoOBcvRt9esH69ZB796bv22wMyZLUh3rh+uI9cc9FrYcEUkZBTERCcQD1wF9gFOB54CKZX+Yn36Cxx6DM86wLYs2p6AAKleGHUvYLDyILbC+uMOBc7B+ORHJdgpiIhKAB64EbgHOAp4Ccsr3UDffbP9ed13pbl9QYBt955Tz+ZKqCjAU6IL1y90VthwRSToFMRFJMQ9cAtwBnA88Srl/Ff3wAwwcCD16wPbbl+4+kyal2bTkpipjfXLHAj2BfmHLEZGkKsc8gIhIeW3gr/B1CTbi48r/cDfeCJUqwTXXlO72S5bAL7+keRADqAS8iPXLXQOsAXoT1/+ViKQlBTERSZH12BphTwFXYSM9cQSLqVPhuefg0kuhQYPS3WfSJPs37YMY2K/nZ7BQ1hcLYzejMCaSXRTERCQF1mFnAz6Hjez0Je5A0bcvVK0KV11V+vtsPGNy113je+6UyQEGYiNjtwKrgdtRGBPJHgpiIpJka7H1sV7GRnSujf8hv/0WXnrJpiTr1i39/QoKoHr10veTpYUKwCNYGLsTGxm7F4UxkeygICYiSbQGWx9sKDAAuCIxD9unD2y5JfTsWbb7TZpko2EVMu08pQrA/VgYuxsbGXsYnW8lkvkUxEQkSVZhZ/69CdwDXJyYh/3iCxg2zDb2rl27bPctKICjjkpMHSnnsBGxythOBGuwDdLTcRkOESktBTERSYKVQFfgbWzk5tzEPXTv3hbALrmkbPebPx9++y1DGvWL47BescrADdi079PoV7lI5tJPr4gk2ArgSCAfeBI4M3EP/fHHMHKkbWm05ZZlu2/GNeoXx2EnO+Ri/XZrgOexsytFJNMoiIlIAi0D/g18iC29cEpiH/7666FePbjoorLfNy33mIzHNdjI2OXYyNhgyrxZuogEpyAmIgmyBNsncQLwAnBCYh8+Px/GjoW77oJq1cp+/0mTbEpzm20SW1dQPbGRsf8BxwCvYdskiUim0Ck3IpIAi4BDgC+wZSoSHMK8t9Gwhg3h3HL2mxUU2GiYy7ZlHy7ClrcYCRwF/BG2HBEpEwUxEYnTAqAj8C0wBBuZSbAxY+CDD+Daa20R17Ly/q8glpXOwRZ+fQc4AuvTE5FMoCAmInGYB+QBU4HhWAhIMO/huutsEdb//rd8j/HLL7B0aRY06pfkDKwv712gE7A0bDkiUirqERORcpqDjYT9hK0VdlBynmbECJgwAZ54AiqXsxk96xr1i3MK1jN2MnAoMAqoFbIgEdkMjYiJSDn8DLQHfsHe7JMUwjZssHXDdtwRTj21/I+zcbPvrB4R2+h44BXgS+BgrH9PRNKVgpiIlNGPWAibjy3YemDynmrIEPj6a9vSqFIc62QVFECDBlCnTsJKS29HY/16E7GQ/FvYckSkWApiIlIG04F2wGKsMXz/5D3V+vUWwFq0gJNPju+xsrpRvzhHAG8A04AOwK9hyxGRIimIiUgpTcVGwv4AxgN7J/fpBg+GyZNtT8mcOPZTXL/eHicS05KbOhTr35uJnVQxO2g1IvJPCmIiUgoF2Bv5Omzroj2S+3Tr1lkA2313OPbY+B5r5kxYuTKCI2IbHYT18c3GgvRPYcsRkb9REBORzfgGm9qqgIWwFASaZ5+F77+HG2+ECnH+mtrYqB/ZIAbWx/c21ivWHhshE5F0oCAmIiX4AgthVbD1qXZJ/lOuWWOjYW3bwlFHxf94G5euaNky/sfKaPsDY4HfsTA2PWw5IgIoiIlIsT7B1gnbEngPaJaapx04EGbNgptuSsx2RAUF0KQJ1KgR/2NlvLbAOGAldtLF1LDliIiCmIgU5QNs78itsRDWNDVPu2oV3Hwz/N//wWGHJeYxCwoi2qhfnD2wky02YCNjBUGrEYm6uIKYc662c26Mc+772L9bFXGb7Zxz451zU5xzk5xzFxe6rq9zbrZz7uvYR+d46hGR+NWq9TVwGNAQm47cPnVP/uijMHu2hbFEjIatXQvTpkW8P6wou2H9fjnYSRhfB6xFJNriHRHrBYz13jfDmg96FXGbdUBP7/0uwH7ABc65ws0ad3vv94h9jIyzHhGJyxhateoFNMFCWKPUPfWKFdCvH3ToYB+J8P33FsYUxIrQAnuNqwIHUaPGtMD1iERTvEGsCzAo9vkgoOumN/Dez/Xefxn7fBkwhZT+dheR0hkJHMnKlY2w0ZJtUvv0Dz4I8+ZZb1iiRGaPyfJqhk0916R1655YX6CIpJLz3pf/zs4t8d7XKvT1Yu/9P6YnC13fBPup3817v9Q51xc4HVgKfI6NnC0u5r49gB4A9evXbzN48OBy110ay5cvp3r16kl9jnQW5eOP4rFvvfUHtGx5AytWNOWjj/pSuXLDlD5/zooV7HfyySxt0YKJt92WsMdtMnAgjZ9/nvffeosNubkl3vaSry9h/fr13N/m/oQ9f6aoXHkeu+9+KZUrL2HixP78/vvuoUtKuSj+3G8U5WOH1Bx/hw4dvvDety3ySu99iR/YPiYFRXx0AZZsctvFJTxOdexc+GMKXVYfa1KoANwCDNxcPd572rRp45Nt/PjxSX+OdBbl44/esb/sva/ovd/Xe784zPHfeKP34P1nnyX2cY8+2vuddy7VTds/1d63vrt1Yp8/g3z44cve++be+y2892MDV5N60fu5/0uUj9371Bw/8LkvJtNU3FyK894fXNx1zrl5zrkG3vu5zrkG2C7ARd2uEvAa8Lz3fkihx55X6DaPAyM2V4+IJNLzwKnYGlMjsaUqUmzxYrjzTujSBfZO8LZJBQXQqlViHzNLrVlTF5uS7gj8G3gd2yJJRJIp3h6x4cBpsc9Pw35y/8Y554AngSne+7s2ua5BoS+PRudRi6TQ00B3bD2pUQQJYQB33QW//26r6CfSypXwww/qDyuTbbAw1hw4EtunUkSSKd4g1h84xDn3PbboUH8A51xD59zGMyAPwH7bH1TEMhUDnHMTnXPfYst3XxpnPSJSKo8BZwAHY2+2gfpDFiyAe+6B446zfSUTaepU2LBBQazM6mKLvrbC/j4eGrYckSy32anJknjvF2Lj2JtePgfoHPv8A6DIBYG8993jeX4RKY8HgIuwH9HXsO2LAhkwAP74w7Y0SjSdMRmH2lh78OHAccALwPFBKxLJVlpZXyRS7sJCWBdgCEFD2K+/wgMPwMknwy5J2MOyoAAqVYKddkr8Y0dCLWA01j94EvBc0GpEspWCmEhk9AN6AscCrwCVA5fTzzb47tMnOY9fUAAtWlgYk3LaEngL2wrpVOCpsOWIZCEFMZGs54EbgGuAk4EXgcDh5Oef4ZFH4PTTkzdiNWmSpiUTojp2QvvBwJnAo2HLEckyCmIiWc0D1wJ9sbWTnyHO1tDEuOUW8B6uvz45j790KcyapSCWMFtgJ8n/GzgXiN6ityLJoiAmkrU8cDk2JdkDW0UmJ2hFAMycCU8+CWefDY0bJ+c5Jk+2fxXEEqgK1lfYFfgfcEfQakSyhYKYSFby2JvlXcCFwCOkzY/7TTdBTg5cc03ynmPjGZO77pq854ikXOBl7EzKK4Bbw5YjkgXSYI5CRBJrA3AetlbYZdjIRZEryKTed9/BoEHwv/9Bo0bJe55Jk6BqVWjaNHnPEVmVsOUscrFp7zVAH9Lme0wkwyiIiWSV9cBZ2Kr5V2NbuKbRG+QNN0CVKtCrV3Kfp6DARsMqpMkoYNapCAzCQtkNwGpsdCyNvtdEMoSCmEjWWIftNPYC1pzfm7R6YywogBdfhCuvhPr1k/9cnTol9zkiLwfrO6yMbaqyGriTtPqeE8kACmIiWWEt8B9sfbBbsKUq0kzfvlC9OlxxRXKfZ8ECWyxWjfopUAF4GJumvBubpryPtOlHFMkACmIiGW81cCIwDOsH6xm0miJ99RW89hr07g116iT3uSZNsn/VqJ8iDrgXC2N3YmEsjU4OEUlzCmIiGW0V0A0YiY1EXBS2nOL07g21asGllyb/uTYGMY2IpZADbsemKW/FwliaLJcikuYUxEQy1h/Ymk5jsNXOewStpliffgojRtgirrVqJf/5CgqgZs3knpUpRXDAzVgY64NNlw9CbzMiJdNPiEhGWg4cCbwLDATOCFtOSa6/Hrbe2pasSIWCAhsNc2oaTz2HnSSSi521uwY7eUT7fYoUR0FMJOMsBToDHwPPYk36aer992HMGLjjDmvUTzbvLYgdf3zyn0tK0AsLYz2xkbGXCL7JvEiaUjelSEZZAhwKfIJt3p3GIcx7uO462GYbOO+81Dzn3LmweLEa9dPCZdielK8Dx2D9jCKyKY2IiWSMRVgI+xZ4FesPS2Njx8J778F998EWW6TmOdWon2YuxEbGzsWm0l/HNhAXkY00IiaSEX4DOgAFwFDSPoR5b71h220HPVJ4EsHGPSYVxNJID6yPcSzwb6y/UUQ20oiYSNr7FegIzACGY6NiaW7kSPjkE3j0Uaicwt6gggKoVw/q1k3dc0opnI6NjHUHOmHLrWwZsiCRtKERMZG0NhvIA34E3iQjQpj3tm7YDjvAGSk+m3PjGZOShk4GBgOfYt/HS4JWI5IuFMRE0tZPQHssjI0CDgpbTmkNGwZffmlhrFIKly3YsMF6xNSon8aOw/obv8RGeReGLUckDSiIiaSlmVgIW4At2Hpg2HJKa8MGC2A77wz/SfEZnT/9BCtWaEQs7XXBtuOahP1xMT9oNSKhKYiJpJ3vgXbA71iD835hyymLl1+26cEbboCKKW5BVaN+BukMvIF9r3cA5oYtRyQgBTGRtDIVGwlbBYwH2oQtpyzWrYM+fSwIhVhQdWMQ09RkhjgEa9qfhfVBzg5ajUgoCmIiaaMAC2EbsBDWOmw5ZfX88/DddzYaViHAr5aCAlsuo2bN1D+3lFMe1v84F/ve/yloNSIhKIiJpIWvsTelHCAfyLDptbVrLYDtuSccfXSYGgoKNBqWkf6F9UEuwKbkZ4QtRyTFFMREgvsca1reAngPaBG2nPJ46imYORNuuinMZtvr1sHUqeoPy1j7Yv2Qy7CRse/DliOSQgpiIkF9jJ3GXxMLYTuFLac8Vq+Gm2+G/faDzp3D1PDDD1aHglgGawOMw/oj2wNTwpYjkiIKYiLBvI8tbFkXC2FNglZTbo8/Dj//HG40DHTGZNZojU3Nb8Cm6gtCFiOSEgpiIkGMw7Z6aYSFsO3CllNef/wBt9wC7dpBx47h6igosBC4yy7hapAE2RV4F9uBLw/4Kmg1IsmmICaScqOxzY+bYm84DcOWE4+HH4Zffw07GgYWxHbYAbbYIlwNkkDNsZ+NLbD+yQlhyxFJIgUxkZQaARyFvdGMB+qHLScey5ZB//5wyCE2IhbSpEmalsw6O2GjxVsBBwMfhS1HJEkUxERSZihwDNAKm5qsG7aceN1/PyxYYKNhIa1ebeuXKYhloSbYyFg94DAsmIlkFwUxkZR4GdvwuA3wDlA7bDnxWrIEbr8djjgC9t03bC3TpsH69QpiWWs7LIxtCxyOLXMhkj0UxESS7jngJGB/4G2gVtBqEuLuuy2M3Xhj6Ep0xmQkNMTOptwBOALrsxTJDgpiIkk1EDgVWxdpFFAjbDmJsHChBbFu3Wwl/dAKCmyD8Z13Dl2JJFV9rK+yBdZn+UbYckQSREFMJGkeBf6LbW48AqgWtpxEuf12WL7ctjRKB5MmWQjLzQ1diSTd1tjU5O5Yv+WQsOWIJICCmEhS3A+ciy1T8Tp2Gn4WmDfPmvRPOil99nUsKNC0ZKTUxvos9waOB14KW45InBTERBLuDuB/QFfsL/YqQatJqNtug1WroE+f0JWYFStgxgwFscipifWJ/R9wMvBs2HJE4qAgJpJQtwBXYH+pvwxk0XTZ7Nnw0ENw6qnp0481ebL9my6jc5JCNYC3sNX3T8P6MUUyj4KYSEJ4oA9wHXAK8DxQKWhFCXfrrbZMRO/eoSv5i86YjLhqWP/loVg/5sNhyxEpBwUxkbh54BrgRuAM4Glsn7wsMmuWbe793/9C06ahq/nLpElQuTLsuGPoSiSYqsAwbFmL84F7g1YjUlYKYiJx8UBPoD9wDvAEkBO0oqS46SaoUAGuuy50JX9XUAAtW0JOFv6fSxlUAV4DjgYuAW4PWo1IWSiIiZTbBuAi4O7Yvw+TlT9S06fD00/DOefAttuGrubvdMak/CkXO4PyBOBK4Oaw5YiUUpbNn4ikygb+GgG7HBgAuKAVJc0NN9gaXVdfHbqSv1u82E4gUKO+/KkStpNFLnA9sAa4gaz92ZSsoCAmUmbrscbgQcC1wE1k7S/6yZPh+efh8sthm21CV/N3kybZvxoRk7+pCDyFhbKbsDDWj6z9GZWMpyAmUibrsFPlX8D+0k6jMwiToW9fqFYNrrwydCX/pCAmxcoBHsdGxm4DVgN3oTAm6UhBTKTU1mKLR76K/YXdK2w5yfbNN/DKK3DttbD11qGr+aeCAqheHbbfPnQlkpYqAA9hYewebGTsfrKyj1MymoKYSKmsxhZpHY79ZX1p2HJSoU8fqFkTevYMXUnRNjbqO41ySHEcFsIqY2dSrsH2gFUYk/Sh70aRzVqJnRY/HHiASISwCRPg9dcthG21Vehq/sl7mDhRjfpSCg6bnrwOO7nmDKzPUyQ9aERMpER/AF2AscBjwNlhy0mV3r2hTh24+OLQlRRt/nxYuFD9YVJKDmvcz8X6Otdg+1PqLVDC03ehSLGWA0cC72JnYZ0WtpwU2XLiRBg1yjb43nLL0OUUTY36Ui7XY2GsF9bz+QJZtR+sZCRNTYoUaSnQCXgfW5coGiEMoOlTT0G9enDBBaFLKZ72mJRyuwrr83wNOBbr/xQJJ64g5pyr7Zwb45z7PvZvkc0kzrkfnXMTnXNfO+c+L+v9RVKpYsVlwCHAp8Bg7EzJ7Dfsq9lcdPadbPXVV9yzz7EM+25J6JKKV1BgU6f164euRDLSpcCDwBtAV6wPVCSMeEfEegFjvffNsCaaks7n7+C938N737ac9xdJgYW0bt0T+ApbpuLYwPWkxrCvZnP1a99y2ltPsnyrOjzc/GCuHjKRYV/NDl1a0QoKrFFfZ0xKuZ2PrTU2GjiSChVWBa5HoireINYFW16c2L9dU3x/kQSaDxxEtWo/AsOwb89ouH30NPac/iVtZ09hQtfjWF0xl5Vr13P76GmhS/sn761HTNOSErezgKeB8ey+ey+sL1QktZz3vvx3dm6J975Woa8Xe+//Mb3onJsJLAY88Kj3/rGy3D92XQ+gB0D9+vXbDB48uNx1l8by5cupXr16Up8jnUXt+HNzbSSsSpVfmTDhWlatOjB0SSk1cfbvuPXr2enTD1nebn/mrqv053WtGtUMWNk/VZ4/n/1POIHvLrmEOV0SF5Yv+foS1q9fz/1t7k/YY2aSqP3MF1av3lhatLiVZct24dtv+7N+fbT+H6L82kNqjr9Dhw5fbDIj+KfNnjXpnHsHKGqTuWvLUMMB3vs5zrl6wBjn3FTv/XtluD+x8PYYQNu2bX1eXl5Z7l5m+fn5JPs50lm0jn82toH3AmAUq1YRoWM31/Yfx+wlK6HGQfRct447J9qvhka1qnLRf/LCFrept94CYOdjjmHnAxMXmGv9WIslS5ZE7rXfKFo/85vKo6CgIrvtdjMHHngjNl0ZnZblaL/24Y9/s1OT3vuDvfe7FfHxOjDPOdcAIPbv/GIeY07s3/nAUGCf2FWlur9I8swC2gFzsV++eUGrCeWKw5pTtVLO3y6rWimHKw5rHqiiEmw8Y1KLuUoCLVjQHjuT8hugI/aHmUjyxdsjNpy/zus/DXh90xs456o552ps/Bw4FCgo7f1FkmcG0B5YCIwBDghbTkBd92xEv2Na0ahWVcBGwvod04quezYKXFkRCgqgQQOoXTt0JZJ1jsLehiYDB6GxAUmFeINYf+AQ59z32Pn+/QGccw2dcyNjt6kPfOCc+wb4DHjTez+qpPuLJN/3WAhbBowD9g1bThroumcjPux1EK0a1eTDXgelZwiDv/aYFEmKTsAIYDo2Qj43aDWS/eJaWd97vxAbw9308jlA59jnM4DWZbm/SHJNwf7aXYeFsCK/PSUdrV8PU6bAueeGrkSy2sHAW8C/sT/YxgHbBq1IspdW1peImYj9YvVAPgphGWbmTFi5UiNikgLtsb7RX2OfzwpbjmQtBTGJkK+ADkAlbP9INXtnHG1tJCl1APAOsAg7qWdG2HIkKymISURMwKYjqwHvAWl4NqBs3sYg1rJl2DokQvbBNn5ZjoWx78KWI1lHQUwi4COs52MrbCRsx7DlSPkVFECTJhDhxSclhL2A8cAabJpycthyJKsoiEmWew9bMaU+FsKaBK1G4qStjSSY3bG+UrCzKb8NVolkFwUxyWJjsVPRt8NC2HZhy5H4rFkDU6cqiElALbHfJblYv+mXYcuRrKAgJllqFHAENg2ZDzQIWo0kwPffw7p1CmIS2M5YGKuOrb70WdhyJOMpiEkWegPoArTA+jrqhy1HEkNbG0na2BFre9gK6z/9KGw5ktEUxCTLDAGOwfo5xgJbhy1HEqegACpUgBYtQlciAjTGwtg2WB/qu2HLkYylICZZZDBwPLA3tvaP9iLMKpMmQbNmUKVK6EpEYrbFAtj2wOHY7x2RslEQkyzxLPAfbAHG0UDNsOVI4mmPSUlLDbA+1J2wvtRRJd5aZFMKYpIFBgKnYaeUjwRqBK1GkmDlSpg+XUFM0lQ9rB+1Jdaf+kbYciSjKIhJhnsY+C/WozECWzlfss6UKeC9GvUljdXB+lJbY32qr4UtRzKGgphksHuB87HpgGFA1aDVSBJpj0nJCFsBY7BtkU4AXgxbjmQEBTHJUAOAS/jrL081cGe1SZMgNxd22il0JSKbURPrEzsAOAUYFLYcSXsKYpKBbgauAk7EzpTMDVuOJNWwr2bz0evvMqVmQw64832GfTU7dEkim1ED61ftAJwBPBG2HElrCmKSQTzQG7ge6I6dKVkpaEWSXMO+ms3VQyay/dwZTKvbmNlLVnL1kIkKY5IBqmFN+4cBZwMPhS1H0paCmGQID/QCbgLOBJ4CKgatSJLv9tHTyFm+jG2X/sZ3WzcGYOXa9dw+elrgykRKoyrWv3okcAFwT8hiJE0piEkG8MClWF/YecDjQE7QiiQ15ixZSeMlc1lbIefPILbxcpHMUBl4FeiG/R67LWw5knY0pCBpbgNwIbZMxcXA3YALWpGkTsNaVZnEjrS87NV/XC6SOXKxftbu2Mj+GqzFQkQjYpLWNgDnYCHsShTCoueKw5pTtVIOa3MqsTbH+gGrVsrhisOaB65MpKwqAs8Bp/JXr6sPWpGkB42ISZpaj/WCPQNcB9yIQlj0dN2zEWC9YnOWrKRhrapccVjzPy8XySw5WH9rLnb292psqlK/26JMQUzS0Frsr8bBWADTEH6Udd2zkYKXZJEKwKPYGd+3Y9OUGu2PMgUxSTNrgJOAIdhfileGLUdEJOEqAA9ijfz3YCNjD6JuoWhSEJM0sho4Dlt7525s5XwRkWzkgLuwMHYb9kfoY+iM8OhREJM0sRLbrmgU9pfh+WHLERFJOgf0w3rGbsLaMgait+Zo0astaWAF0AUYh60RdlbYckREUsZhvbC5WD/sGrRrSLQoiElgy4AjgA+Ap7EmfRGRqLkOm6a8Egtj2kc3KtQZKAH9ju3D9iHwPAphIhJtV2DN+0OxlfhXB61GUkNBTAJZDBwCTABeAk4MW46ISFq4GFvEegTWsqHtvLKdgpgEsADoCHyDLVPRLWw5IiJp5VzgSeBtrHVjRdhyJKkUxCTF5gMHAZOB14Ejw5YjIpKWzgQGAfnA4Vg/rWQjBTFJoblAHjAdeBPoFLQaEZH01h14AfgI66f9PWw5khQKYpIivwDtgZ+At7CpSRERKdkJwMvA58DBWH+tZBMFMUmBWVgIm4f1PLQPW46ISEY5Buun/RZr7VgQthxJKAUxSbIfgHbAImAM8H9hyxERyUhHAMOBqUAH7A9byQYKYpJE07DRr+XAWGCfsOWIiGS0w7BlLX7A+m3nBK1GEkNBTJJkMvaLYg121s9eIYsREckSHbE9eTf23f4cthyJm4KYJMG3WAgDC2GtglUiIpJ92mH9tvOxMPZj0GokPgpikmBfYv0LucC7QMuw5YiIZKX9gXewsyjbY9OVkokUxCSBPsOGzatjIWznsOWIiGS1vYFx2Mr77bC+XMk0CmKSIB9ia9zUBt4DdgxbjohIJOwJjAfWYSNjk8KWI2WmICYJ8C52Nk+D2OeNw5YjIhIprbB+3ApYf+43IYuRMlIQkzi9g+2D1hj7RbBt0GpERKJpF+wP4SrYoq9fhi1HSk1BTOLwFrbI4E7Y0HiDsOWIiERaM6w1pAYWxj4NW46UioKYlNNwoCt2VuR4oF7QakREBKApNjJWBzgE+CBsObJZCmJSDq8B3YA9sBXz6wStRkRECmuMjYw1ADphbSOSrhTEpIxeBE7AtisaA2wVthwRESlCI/46eaoz1s8r6UhBTMpgEHAKcAAwGtgybDkiIlKCbbDRsGZYP+/IoNVI0RTEpJSeAM7AVs0fiS3aKiIi6a0utujrrlhf7+tBq5F/UhCTUngQOBtbK+wNoFrYckREpAzqYP28ewLHAq+ELUf+RkFMNuNu4ELgKGAYUDVoNSIiUh61sL7efYETgReCViN/iSuIOedqO+fGOOe+j/37j85t51xz59zXhT6WOucuiV3X1zk3u9B1neOpRxLtNuAy7AzJV4DKYcsREZE4bAmMwvalPAXr+5XQ4h0R6wWM9d43w8Y9e216A+/9NO/9Ht77PYA2wB/A0EI3uXvj9d57dRKmicaNn8FezpOAwUBu2IJERCQBqgNvAh2xvt/Hw5YjcQexLvwVqQdhnYAl6Qj84L2fFefzStJ44DqaNn0KOBV4FqgYtiQREUmgLbB+305ADxo2HLqZ20syOe99+e/s3BLvfa1CXy/23he7sJRzbiDwpff+gdjXfYHTgaXA50BP7/3iYu7bA+gBUL9+/TaDBw8ud92lsXz5cqpXj9qZgZ4ddniU7bd/iZ9+OpQZM64iim2E0Xzt/xLV47/k60tYv34997e5P3QpQUT1dd8oisfv3Bp23fVGtt76Q6ZPP59ffjkudElBpOK179Chwxfe+7ZFXbfZIOacewdbjGRT1wKDShvEnHO5wBxgV+/9vNhl9YEF2DDMTUAD7/2Zmzugtm3b+s8//3xzN4tLfn4+eXl5SX2O9OKBS4F7gfPJz+9GXt5BgWsKI3qv/d9F9fjzns5jyZIlfH3J16FLCSKqr/tG0T3+tcyffwj16r0L9KOIDqOsl4rX3jlXbBDb7JyT9/7gEh54nnOugfd+rnOuATC/hIc6HBsNm1fosf/83Dn3ODBic/VIMmwALgAewcLYndiKzCIikt0qMWXK9dSr1wi4GlgDXA+4sGVFSLzzTsOB02Kfn0bJK8WdhO2P86dYeNvoaKAgznqkzNZja4Q9AlyFhTD9AIqIRIX3OcAz2Nt4H+A6bJZEUiHeLuz+wMvOuf8CPwHHATjnGgJPeO87x77eAtsG/pxN7j/AObcH9or/WMT1klTrsLNmngN6A31RCBMRiaIcYCB2hvytwGrgdvSekHxxBTHv/ULsTMhNL5+D7TK68es/sKV9N71d93ieX+KxFugOvATcjLX8iYhIdFXAZkdysdmRNVjfsMJYMmldgkhag62sPBT7i+fysOWIiEiaqADcjy3gfRf2fvEQUTyDPlUUxCJnFTaDPAL7S+d/YcsREZE044A7sJGx/lgYexybvpREUxCLlJXYmrtvAw8D5watRkRE0pXDesUqAzdgYexpFBsST/+jkbEC27h7PPAksNnl2kREJNIcdhJXLtZHvBY7uatSwJqyj4JYJCwD/g18iJ2ifErYckREJINcg42MXY6FMe0/nEjqvst6vwOHAR8BL6AQJiIiZdcTuA87yesYrN9YEkFBLKstAg7GtvF8BTghbDkiIpLBLsKWt3gT6AL8EbacLKEglrUWYEu8fQsMwTYuEBERicc52MKvY4AjsP5jiYeCWFaaB3QApmK7UB0RthwREckiZ2D9xu8CnbA+ZCkvBbGsMwfIA2Zgw8eHBa1GRESy0SnY9tEfA4cCS4JWk8kUxLLKz0B74BdgFHBQ2HJERCSLHY/1H3+B9SMvCltOhlIQyxo/YiFsPrZg64FBqxERkSg4GutDnoj98f9b2HIykIJYVvgBaAcsBt4B9g9bjoiIRMgRwBvANKw/eV7YcjKMgljGm4aFsD+wVfP3DluOiIhE0KFYX/JMrE95TtBqMomCWEabhE1HrgPygT1CFiMiIpF2ENaf/Av23vRz2HIyhIJYxvoG+6ujAnYK8W5BqxEREbH+5DFYv3I7bIRMSqIglpG+wObhq2AhrEXYckRERP60HzAW22KvPTA9bDlpTkEs43yKrZi/JfAe0CxsOSIiIv/QFhgHrMRGxqaGLSeNKYhllA+AQ4CtsRDWNGw5IiIixdoDO4lsA9ZKUxCymLSlIJYx8rGtJBpi05HbB61GRERk83bD3r8qYC013wStJh0piGWEMUBnoDH2Dd0oaDUiIiKl1wKbxamKhbHPw5aTZhTE0t5I4EisFywf2CZoNSIiImW3EzabUxPrc/4kbDlpREEsrb0OdAV2xZoe6watRkREpPyaYmGsLtbv/EHYctKEgljaegU4FtgLOw24TthyRERE4rY9Nk3ZCDgMa+aPNgWxtPQCcCKwL7aBd62g1YiIiCTOxpPOmmL9z2+HLScwBbG08zRwCrbuyihsvTAREZFsUh8bDWuO9UG/GbacgBTE0spjwBnAwdg3ZfWw5YiIiCRNXaz/uRVwNDAsaDWhKIiljQeBc7Bh2uHAFmHLERERSbrawDtAG+A4rD86WhTE0sJdwIVAF2AItoekiIhIFNTC+sT2w/qjnw9aTaopiAXXD+jJX38JVA5bjoiISMrVwPqi2wPdgafClpNCCmLBeOAG4BrgZOxMyUpBKxIREQmnGjAC65M+E3g0bDkpoiAWhAeuA/oCpwPPABUD1iMiIpIOtsD6pP8NnAvcH7acFFAQSzkPXAHcCvQAngRyglYkIiKSPqpg/dJdgf8BdwatJtkUxFLKAxdj31QXAo+gl0BERGRTucDLWP/05djgRXbSfFjKbADOw9YKuwy4A3BBKxIREUlflbD+6VzgWmAN0Idse+9UEEuJ9cBZ2Kr5VwO3kG3fSCIiIolXERiEhbIbsDCWXe+hCmJJtw5ryH8ea87vTTZ9A4mIiCRXDtZPXRlb8mk12TSrpCCWVGuB/2Drg92KjYaJiIhI2VQAHsamKe/CRsbuJRv6rBXEkmY1tkLwMCy59wxajYiISGZzWPjKxU56W002nPSmIJYUq4BuwEjgPuCisOWIiIhkBQfcjk1T3oqNjGX2MlAKYgn3B7b2yRhsVeAeQasRERHJLg64GQtjfbA2oEFkaqTJzKrT1grgSCAfGAicEbQaERGR7OSwk99ysf7rtdhJcZm3VaCCWMIsxbZk+Ah4FmvSFxERkeTphY2MXYZNU74U+zpzZHaHW9pYAhwKfAwMRiFMREQkVS4FHgBeB47B+rQzh4JY3BZhO8V/CbyKbccgIiIiqXMB1pf9FnAU1q+dGRTE4vIbcBBQAAzFmvRFREQk9Xpg/dnvYK1Cy8OWU0oKYuX2K9ABmAYMx150ERERCed04DngfaAT1r+d3hTEymU2kAfMxNYKOzRoNSIiIrLRycCLwKfY+/OSoNVsjoJYmf0EtMfC2ChsVExERETSx3FY3/aXQEdgYdhySqAgViYzsRC2AFuw9cCw5YiIiEgxumDbDE7C+rl/C1pNcRTESm06FsJ+B8YC+4UtR0RERDajM/AG8D3WUvRr0GqKoiBWKlOBdsBKYDzQJmw5IiIiUkqHYP3cs/irtSh9KIhtVgH2wm3Ati5qHbQaERERKas8YDQwF3tP/yloNYXFFcScc8c55yY55zY459qWcLtOzrlpzrnpzrlehS6v7Zwb45z7PvbvVvHUk3hfYy9eDhbCdg1Yi4iIiJTfAVh/9wJslmtm2HJi4h0RK8D2E3ivuBs453KAB4HDgZbASc65lrGrewFjvffNsMarXkU/SurVqDENa+7bAju8FmELEhERkTjti8WNZVgY+z5sOcQZxLz3U7z30zZzs32A6d77Gd77NdhmjF1i13UBBsU+H0TaLE3/Ca1b9wRqYiFsp8D1iIiISGK0AcZhe1K2Z4stZgWtpmIKnqMR8HOhr3/BIilAfe/9XADv/VznXL3iHsQ51wPbv4D69euTn5+fnGqBevXGsf32tZg48TZWr/4R+DFpz5Wuli9fntT/43QW5WOH6B7/1uu2pmblmpE8doju675RlI8/qse+xRYD2H33q9mw4eegx7/ZIOacewfYpoirrvXev16K53BFXOZLcb+/38H7x4DHANq2bevz8vLK+hBlkMe77/6L9u2ju2J+fn4+yf0/Tl9RPnaI7vHn5eVF9tghuq/7RlE+/ugeex5wMqtWfRz0+DcbxLz3B8f5HL8A2xX6eltgTuzzec65BrHRsAbA/DifK2G8zw1dgoiIiCRV5dAFpGT5iglAM+dcU+dcLnAitks2sX9Pi31+GlCaETYRERGRrBDv8hVHO+d+AfYH3nTOjY5d3tA5NxLAe78OuBBbwGMK8LL3flLsIfoDhzjnvsdWXOsfTz0iIiIimSSuZn3v/VBgaBGXz8H2Fdj49UhsWdtNb7cQ241TREREJHK0sr6IiIhIIApiIiIiIoEoiImIiIgEoiAmIiIiEoiCmIiIiEggCmIiIiIigSiIiYiIiASiICYiIiISiIKYiIiISCAKYiIiIiKBKIiJiIiIBKIgJiIiIhKIgpiIiIhIIApiIiIiIoEoiImIiIgEoiAmIiIiEoiCmIiIiEggCmIiIiIigSiIiYiIiATivPehaygz59xvwKwkP83WwIIkP0c6i/LxR/nYIdrHr2OPrigff5SPHVJz/I2993WLuiIjg1gqOOc+9963DV1HKFE+/igfO0T7+HXs0Tx2iPbxR/nYIfzxa2pSREREJBAFMREREZFAFMSK91joAgKL8vFH+dgh2sevY4+uKB9/lI8dAh+/esREREREAtGImIiIiEggCmIiIiIigUQ6iDnnjnPOTXLObXDOFXvqqnOuk3NumnNuunOuV6HLazvnxjjnvo/9u1VqKo9faWp3zjV3zn1d6GOpc+6S2HV9nXOzC13XOeUHEYfSvnbOuR+dcxNjx/h5We+fjkr52m/nnBvvnJsS+xm5uNB1GffaF/czXOh655y7L3b9t865vUp730xQiuP/T+y4v3XOfeSca13ouiJ/BjJFKY49zzn3e6Hv596lvW8mKMXxX1Ho2Aucc+udc7Vj12X6az/QOTffOVdQzPXp8XPvvY/sB7AL0BzIB9oWc5sc4AdgByAX+AZoGbtuANAr9nkv4LbQx1SGYy9T7bH/h1+xRekA+gKXhz6OZB8/8COwdbz/f+n0UZragQbAXrHPawDfFfq+z6jXvqSf4UK36Qy8BThgP+DT0t433T9Kefz/B2wV+/zwjccf+7rIn4FM+CjlsecBI8pz33T/KOsxAEcC47LhtY/V3w7YCygo5vq0+LmP9IiY936K937aZm62DzDdez/De78GGAx0iV3XBRgU+3wQ0DUphSZHWWvvCPzgvU/2jgapEu9rl9Wvvfd+rvf+y9jny4ApQKNUFZhgJf0Mb9QFeMabT4BazrkGpbxvutvsMXjvP/LeL459+QmwbYprTJZ4Xr9IvPabOAl4MSWVpYD3/j1gUQk3SYuf+0gHsVJqBPxc6Otf+OsNqb73fi7YGxdQL8W1xaOstZ/IP39AL4wN5w7MpKm5mNIevwfeds594ZzrUY77p6My1e6cawLsCXxa6OJMeu1L+hne3G1Kc990V9Zj+C82SrBRcT8DmaC0x76/c+4b59xbzrldy3jfdFbqY3DObQF0Al4rdHEmv/alkRY/9xWT9cDpwjn3DrBNEVdd671/vTQPUcRlGbHmR0nHXsbHyQWOAq4udPHDwE3Y/8VNwJ3AmeWrNDkSdPwHeO/nOOfqAWOcc1Njf2WltQS+9tWxX8yXeO+Xxi5O+9d+E6X5GS7uNhn7819IqY/BOdcBC2L/KnRxRv4MxJTm2L/EWi6Wx/odhwHNSnnfdFeWYzgS+NB7X3gEKZNf+9JIi5/7rA9i3vuD43yIX4DtCn29LTAn9vk851wD7/3c2HDm/DifK6FKOnbnXFlqPxz40ns/r9Bj//m5c+5xYEQiak6kRBy/935O7N/5zrmh2JD1e0TgtXfOVcJC2PPe+yGFHjvtX/tNlPQzvLnb5JbivumuNMePc2534AngcO/9wo2Xl/AzkAk2e+yF/sDAez/SOfeQc27r0tw3A5TlGP4x65Hhr31ppMXPvaYmN28C0Mw51zQ2MnQiMDx23XDgtNjnpwGlGWFLF2Wp/R99A7E38I2OBoo8KyWNbfb4nXPVnHM1Nn4OHMpfx5nVr71zzgFPAlO893dtcl2mvfYl/QxvNBw4NXYW1X7A77Fp29LcN91t9hicc9sDQ4Du3vvvCl1e0s9AJijNsW8T+37HObcP9r64sDT3zQClOgbnXE2gPYV+F2TBa18a6fFzn6yzADLhA3sT+QVYDcwDRscubwiMLHS7zthZYz9gU5obL68DjAW+j/1bO/QxleHYi6y9iGPfAvulVHOT+z8LTAS+jX2DNgh9TIk+fuyMmW9iH5Oi9NpjU1M+9vp+HfvonKmvfVE/w8C5wLmxzx3wYOz6iRQ6i7q4n/9M+ijF8T8BLC70Wn8eu7zYn4FM+SjFsV8YO7ZvsBMV/i9Kr33s69OBwZvcLxte+xeBucBa7L3+v+n4c68tjkREREQC0dSkiIiISCAKYiIiIiKBKIiJiIiIBKIgJiIiIhKIgpiIiIhIIApiIiIiIoEoiImIiIgE8v8hBHq0vLp2PQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" @@ -124,7 +822,7 @@ "\n", "# Vision model\n", "\n", - "vision_angle = 45\n", + "vision_angle = 90\n", "vision_pixels = 5\n", "vision_distance = 1\n", "\n", @@ -136,7 +834,7 @@ "main = (0, 0)\n", "direction = [0, -1]\n", "\n", - "beings_x = [1, -0.8, -0.1, -0.67]\n", + "beings_x = [1, -0.25, -0.1, -0.32]\n", "beings_y = [0.5, -0.5, -0.6, 0.2]\n", "\n", "# Vision calculations\n", diff --git a/src/world.py b/src/world.py index b410b60..a7a754c 100644 --- a/src/world.py +++ b/src/world.py @@ -23,8 +23,7 @@ def step(self): self.alive += 1 - being.step() - action = being.choose_action() + action = being.step(location, self.locations) if action == 'STOP': being.speed = 0 @@ -62,4 +61,4 @@ def spawn(self, sprite_index): being = Being(sprite_index) self.locations[location] = being - return location, being + return location, being \ No newline at end of file